
Acta Cybernetica 22 (2016) 791–805.

The Holonomy Decomposition of some Circular

Semi-Flower Automata
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Abstract

Using holonomy decomposition, the absence of certain types of cycles in
automata has been characterized. In the direction of studying the structure
of automata with cycles, this paper focuses on a special class of semi-flower
automata and establish the holonomy decomposition of certain circular semi-
flower automata. In particular, we show that the transformation monoid
of a circular semi-flower automaton with at most two bpis divides a wreath
product of cyclic transformation groups with adjoined constant functions.

Keywords: transformation monoids, semi-flower automata, holonomy de-
composition

1 Introduction

Usefulness of a decomposition method for any given system does not require any
justification. The primary decomposition theorem due to Krohn and Rhodes has
been considered as one of the fundamental results in the theory of automata and
monoids [13]. Eilenberg has given a slight generalization of the primary decomposi-
tion called the holonomy decomposition [8]. Here, Eilenberg established that every
finite transformation monoid divides a wreath product of its holonomy permutation-
reset transformation monoids. The holonomy decomposition of an automaton is
considered to be the holonomy decomposition of the transformation monoid of the
automaton. The holonomy decomposition is also used to study the structural prop-
erties of certain algebraic structures [11, 12]. The holonomy decomposition method
appears to be relatively efficient and has been implemented computationally [4, 5].
One can use the computer algebra package, SgpDec [7] to obtain the holonomy
decomposition of a given finite transformation monoid.

In order to ascertain the structure of an automaton, the holonomy decompo-
sition considers the monoid of automaton and looks for groups induced by the
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monoid permuting some set of subsets of the state set. These groups are called the
holonomy groups, which are building blocks for the components of the holonomy
decomposition. Using the holonomy decomposition, Egri-Nagy and Nehaniv char-
acterized the absence of certain types of cycles in automata [6]. In fact, they proved
that an automaton is algebraically cyclic-free if and only if the holonomy groups
are trivial. On the other hand, the structure of automata with cycles is much more
complicated.

In the direction of studying the structure of automata with cycles, this work
concentrates on a special class of semi-flower automata (SFA) [9, 15]. Using SFA,
the rank and intersection problem of certain submonoids of a free monoid have
been studied [10, 16, 17].

In this paper, we consider circular semi-flower automata (CSFA) classified by
their bpi(s) – branch point(s) going in – and obtain the holonomy decomposition of
CSFA with at most two bpis. We present some preliminary concepts and results in
Section 2. The main work of the paper is presented in Section 3. Finally, Section
4 concludes the paper.

2 Preliminaries

This section has two subsections on the holonomy decomposition and automata to
present necessary background materials on these topics.

2.1 The Holonomy Decomposition

In this subsection, we provide brief details on the holonomy decomposition which
will be useful in this paper. For more details one may refer [2, 4, 8].

We fix our notation regarding functions. Let f : X → Y be a function from X
into Y . We write an argument x ∈ X of f on its left so that xf is the value of f at
x. The rank of f , denoted rank(f), is the cardinality of its image set Xf . The set
of all functions from X into Y is denoted by Y X . The composition of functions is
designated by concatenation, with the leftmost function understood to apply first
so that xfg = (xf)g.

A transformation monoid is a pair (P,M) consists of a nonempty finite set P
and a submonoid M of T (P ), where T (P ) is the monoid of all functions on P with
respect to composition of functions. Note that there is an action of submonoid M
on set P . Let us denote the action of m ∈M on p ∈ P as pm. If M is a subgroup
of T (P ), then (P,M) is called a transformation group.

A transformation monoid (P,M) divides a transformation monoid (Q,N), de-
noted (P,M) ≺ (Q,N), if there exists a partial surjective function ϕ : Q → P
and, for every m ∈ M , an element n ∈ N such that (qϕ)m = (qn)ϕ for each
q ∈ Dom(ϕ). The wreath product of two transformation monoids (P,M) and
(Q,N), denoted (P,M) o (Q,N), is the transformation monoid (P ×Q,W ), where
W = {(f, n) | f ∈MQ and n ∈ N} is the monoid with operation given by

(f, n)(g, k) = (h, nk), qh = (qf)((qn)g) for every q ∈ Q,
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and the action of (f, n) ∈W on an element (p, q) ∈ P ×Q is given by

(p, q)(f, n) = (p(qf), qn).

The wreath product is an associative operation on transformation monoids.

Let (P,M) be a transformation monoid. For p ∈ P , let p̃ be the constant
function on P which takes the value p. The semigroup of all these constant functions
on P is denoted by P̃ . The closure of (P,M) is the transformation monoid (P,M) =

(P,M ∪ P̃ ). The skeleton of (P,M) is J =
{
Pm

∣∣ m ∈ M} ∪ ⋃
p∈P

{
{p}
}

with the

subduction relation ≤ on J given by R ≤ S if and only if R ⊆ Sm for some
m ∈ M . The subduction relation is a preorder relation. Consequently, there is an
equivalence relation ∼ on J given by R ∼ S if and only if R ≤ S and S ≤ R.
We write Ji to denote the set of all elements of J of cardinality i (for i ≥ 1), i.e.,

Ji =
{
T ∈J

∣∣ |T | = i
}
.

Let (P,M) be a transformation monoid. The height of T ∈J is given by the
function η : J → Z, which is defined by Tη = 0 if |T | = 1, and for |T | > 1,
Tη is the length of the longest subduction chain(s) in the skeleton starting from
a non-singleton set and ending in T . The height of (P,M) is defined as Pη. For
T ∈J with |T | > 1, put K(T ) =

{
m ∈M

∣∣ Tm = T
}

. The paving of T , denoted
B(T ), is the set of maximal subsets of T that are contained in J , i.e.,

B(T ) =
{
R ∈J

∣∣ R ( T and if S ∈J with R ⊆ S ⊆ T, then S = R or S = T
}
.

The set G(T ) of all distinct permutations on B(T ) induced by elements of K(T )
is called the holonomy group of T , and

(
B(T ), G(T )

)
is a transformation group.

We denote an element of G(T ) by m̌ which is induced by m ∈ K(T ). For T, T ′ ∈J
with |T | > 1, |T ′| > 1, if T ∼ T ′, then

(
B(T ), G(T )

)
is isomorphic to

(
B(T ′), G(T ′)

)
.

The holonomy decomposition theorem due to Eilenberg states that every finite
transformation monoid divides a wreath product of its holonomy permutation-reset
transformation monoids, as presented in the following:

Theorem 2.1 ([8]). If (P,M) is a finite transformation monoid of height n, then

(P,M) ≺H1 oH2 o . . . oHn,

where, for 1 ≤ i ≤ n,

Hi =

 ki∏
j=1

B(Tij),

ki∏
j=1

G(Tij)

 ,

in which ki is the number of equivalence classes at height i and {Tij | 1 ≤ j ≤ ki}
is the set of representatives of equivalence classes at height i.
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2.2 Automata

This subsection is devoted for essential preliminaries on automata and monoids.
For more details one may refer [1, 9, 15].

Let A be a nonempty finite set called alphabet with its elements as symbols.
The free monoid over A is denoted by A∗ whose elements are called words, and ε
denotes the empty word – the identity element of A∗.

By an automaton, we mean a quintuple A = (Q,A, δ, q0, F ), where Q is a
nonempty finite set called the set of states, A is alphabet, q0 ∈ Q called the initial
state, F ⊆ Q called the set of final states, and δ : Q×A→ Q called the transition
function. Clearly, by denoting the states as vertices and the transitions as labeled
directed edges, an automaton can be represented by a digraph in which the initial
state and final states shall be distinguished appropriately. A path in a digraph is
an alternating finite sequence v0, e1, v1, e2, v2, . . . vk−1, ek, vk of vertices and labeled
directed edges such that, for 1 ≤ i ≤ k, the tail and the head of the edge ei are vi−1
and vi, respectively. A path in an automaton is a path in its digraph. For pi ∈ Q
(0 ≤ i ≤ k) and aj ∈ A (1 ≤ j ≤ k), let

p0
a1−→ p1

a2−→ p2
a3−→ · · · ak−1−−−→ pk−1

ak−→ pk

be a path in A. The word a1 · · · ak ∈ A∗ is called the label of the path. A null path
is a path from a state to itself labeled by the empty word ε. A path that starts
and ends at the same state is called as a cycle, if it is not a null path.

Given an automaton A, we can inductively extend the transition function for
words by, for all u ∈ A∗, a ∈ A and q ∈ Q,

δ(q, ε) = q, and δ(q, au) = δ(δ(q, a), u).

We write qu instead of δ(q, u). There is a natural way to associate a finite monoid
to A. For each x ∈ A∗, we define a function δx : Q→ Q by qδx = qx for all q ∈ Q.
The set of functions, M(A) = {δx | x ∈ A∗}, forms a monoid under the composition
of functions. If M(A) is a group, then A is called a permutation automaton. Note
that the monoid M(A) is generated by the functions defined by symbols. Further,
for all x, y ∈ A∗, we have δxy = δxδy and δε is the identity function on Q.

Let A be an automaton. A state q is called a branch point going in, in short
bpi, if the number of transitions coming into q (i.e. the indegree of q – the number
of edges coming into q – in the digraph of A) is at least two. We write BPI(A) to
denote the set of all bpis of A. A state q is accessible (respectively, coaccessible)
if there is a path from the initial state to q (respectively, a path from q to a final
state). An automaton A is called a trim automaton if all the states of A are
accessible and coaccessible. An automaton A is called a semi-flower automaton (in
short, SFA) if it is a trim automaton with a unique final state that is equal to the
initial state such that all the cycles in A visit the unique initial-final state q0.

Let X = {p1, . . . , pr} be a finite set and Y ⊆ X. A Y-cycle is a permutation fY
on X such that fY induces a cyclic ordering on Y (= {pi1 , . . . , pis}, say) and fY is
identity on X \ Y , i.e., for 1 ≤ j < s and p ∈ X \ Y ,

pijfY = pij+1 , pisfY = pi1 , and pfY = p.



The Holonomy Decomposition of some Circular Semi-Flower Automata 795

A circular permutation on X is an X-cycle. It is well known that for every permuta-
tion f on X, there exists a partition {Y1, . . . , Yt} of X such that f = fY1fY2 · · · fYt ,
a composition of (disjoint) Yi-cycles.

An automaton A is called a circular automaton if there exists a symbol a ∈
A such that δa is a circular permutation on Q. Circular automata have been
studied in various contexts. Pin proved the Černý conjecture for circular directable
automata with a prime number of states [14]. Further, Dubuc showed that the
Černý conjecture is true for any circular directable automata [3].

In order to investigate the holonomy decomposition of circular semi-flower au-
tomata, we consider these automata classified by their number of bpis and complete
the task for the automata with at most two bpis.

3 Main Results

We present results of the paper in three subsections. In Subsection 3.1, we obtain
some properties of circular semi-flower automata (CSFA) which are useful in the
work. We investigate the holonomy decomposition of CSFA with at most one bpi
and two bpis in subsections 3.2 and 3.3, respectively.

In what follows, A = (Q,A, δ, q0, q0) is an SFA such that |Q| = n (n > 1).
Further, for 1 ≤ m ≤ n, Cm denotes a transformation group (X,Cm) for some set
X ⊆ Q with |X| = m and Cm is the cyclic group generated by circular permutation
induced by a word on the set X.

3.1 Circular Semi-Flower Automata

In this subsection, we first ascertain that there is a unique circular permutation
induced by symbols on the state set of CSFA and then we proceed to obtain certain
properties pertaining to the bpis of CSFA.

Proposition 3.1. Let A be an SFA and a, b ∈ A.

(i) If δa is a permutation on Q, then δa is circular permutation on Q.

(ii) If δa and δb are permutations on Q, then δa = δb.

Proof.

(i) Write δa = fQ1
· · · fQt

, a composition of Qi-cycles for some partition
{Q1, . . . , Qt} of Q. Let q0 ∈ Qr for some r ∈ {1, . . . , t}. If Qr = Q, then
t = r = 1 and so that δa is circular permutation on Q. Otherwise, there exists
q ∈ Q \Qr and s ∈ {1, . . . , t} \ {r} such that q ∈ Qs. Note that the Qs-cycle
induces a cycle in A that does not pass through the initial-final state q0; a
contradiction.

(ii) On the contrary, let us assume that δa 6= δb. From Proposition 3.1 (i), the
permutations δa and δb are circular permutations on Q. Let cyclic orderings
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on Q with respect to δa and δb be as shown below.

δa : q0, qi1 , qi2 , . . . , qin−1

δb : q0, qj1 , qj2 , . . . , qjn−1

Since δa 6= δb, let k be the least number such that qik 6= qjk . Note that there
exists s > k such that qik = qjs and also there exists r > k such that qjk = qir .
The path

qik
ar−k

−−−→ qir = qjk
bs−k

−−−→ qjs = qik

is a cycle in A labeled by the word ar−kbs−k that does not pass through the
initial-final state q0; a contradiction.

Corollary 3.1. There is a unique circular permutation induced by symbols on the
state set of a CSFA.

Proposition 3.2. Let A be an SFA; then

BPI(A) = ∅⇐⇒ |A| = 1.

Proof. In an n-state automaton,

the total indegree of all states = the total number of transitions = n|A|.

Since A is accessible, indegree of each state is at least one. Consequently,

BPI(A) = ∅⇐⇒ the total indegree of all states = n⇐⇒ |A| = 1.

In what follows, B = (Q,A, δ, q0, q0) stands for an CSFA with |Q| = n (n > 1). If
the number of bpis in B is less than the number of states in B, then there is a unique
symbol induces a permutation on Q. For the rest of the paper we fix the following
regarding B. Assume that the symbol a ∈ A induces a circular permutation δa on
Q. Accordingly,

δa : q0, q1, . . . , qn−1

is the cyclic ordering on Q with respect to δa.

Proposition 3.3. If B has at least one bpi, then its initial-final state q0 is a bpi.

Proof. Since B has at least one bpi, by Proposition 3.2, we have |A| ≥ 2. We claim
that qn−1δb = q0 for all b ∈ A \ {a} and so that q0 is a bpi.

On the contrary, let us assume that qn−1δc 6= q0 for some c ∈ A \ {a}. Then
qn−1δc = qi for some i (with 1 ≤ i < n). Note that qiδan−i−1c = qi. Therefore there
is a cycle in B from qi to qi labeled by the word an−i−1c that does not pass through
the initial-final state q0; a contradiction. Hence qn−1δb = q0 for all b ∈ A \ {a}.
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Proposition 3.4. For 1 ≤ m < n, if |BPI(B)| = m, then any non-permutation
function in M(B) has rank at most m.

Proof. Since |BPI(B)| = m ≥ 1, by Proposition 3.2, we have |A| ≥ 2. Note that
the permutation δa contributes one to the indegree of each state of B.

For x ∈ A∗, let δx be a non-permutation function in M(B). The nonempty
word x contains at least one symbol of A \ {a}. We claim that |Qδb| ≤ m for
all b ∈ A \ {a} and so that the rank of δx is at most m. On the contrary, let us
assume that |Qδc| > m for some c ∈ A \ {a}. This implies that |BPI(B)| > m; a
contradiction. Hence |Qδb| ≤ m for all b ∈ A \ {a}.

In view of Proposition 3.3, we have the following corollary of Proposition 3.4.

Corollary 3.2. If B has a unique bpi, then Qδb = {q0} for all b ∈ A \ {a}.

3.2 Circular Semi-Flower Automata with at most one bpi

In this subsection, we obtain the holonomy decomposition of an SFA which is
permutation automaton or has no bpis or circular automaton with a unique bpi.
We first prove the following result.

Proposition 3.5. Let A be an SFA. If A is permutation automaton or has no bpis,
then M(A) is a cyclic group.

Proof.

Case (A is permutation): The monoid M(A) is a group. All elements in M(A)
induced by words are permutation functions on Q. Note that M(A) is gener-
ated by the functions induced by symbols. Also A is an SFA, all the permu-
tations on Q induced by symbols are equal (cf. Proposition 3.1). Therefore
M(A) is a cyclic group.

Case (A has no bpis): Here |A| = 1 (cf. Proposition 3.2 ). Clearly the function
induced by the symbol is a circular permutation onQ, and soA is permutation
SFA. Therefore, by the previous case, the monoid M(A) is a cyclic group.

Theorem 3.1. Let A be an SFA. If A is permutation automaton or has no bpis
or circular automaton with a unique bpi, then (Q,M(A)) ≺ Cn.

Proof.

Case (A is permutation or has no bpis): Here M(A) is a group (cf. Proposi-
tion 3.5). Therefore |Qδx| = n for all δx ∈M(A).

Case (A is circular with a unique bpi): Since A has a unique bpi, we have
Qδb = {q0} for all b ∈ A \ {a} (cf. Corollary 3.2). This implies that δb = δc
for all b, c ∈ A \ {a}, and so that M(A) is generated by the set {δa, δb} of
functions induced by the symbols a and b. For δx ∈ M(A), by Proposition
3.4, we have either |Qδx| = n or |Qδx| = 1.
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In all the cases, the skeleton of the transformation monoid (Q,M(A)) is J =
{Q} ∪J1. Clearly B(Q) = J1 and so that |B(Q)| = n. Note that K(Q) ={
δai

∣∣ 1 ≤ i ≤ n
}

. The holonomy group G(Q) is

G(Q) =
{
δ̌ai

∣∣ 1 ≤ i ≤ n
}
.

For 1 ≤ i ≤ n, since δai = (δa)
i
, we have δ̌an = (δ̌a)n = δ̌ε. The holonomy group

G(Q) is cyclic group of order n generated by δ̌a. Thus, in each case, the holonomy
decomposition of (Q,M(A)) is

(Q,M(A)) ≺ Cn.

3.3 Circular Semi-Flower Automata with two bpis

In this subsection, we investigate the holonomy decomposition of CSFA with two
bpis. Here B = (Q,A, δ, q0, q0) denotes a CSFA with two bpis. Note that, by
Proposition 3.2, we have |A| ≥ 2. If |Q| = 2, then the holonomy decomposition
of B follows directly from Theorem 3.1. Therefore, let us assume that |Q| > 2.
By Proposition 3.3, the initial-final state q0 of B is always a bpi. Let qm, where
1 ≤ m < n, be the other bpi of B so that BPI(B) = {q0, qm}. Note that there is
only one symbol a ∈ A which induces the permutation on Q.

Lemma 3.1. Let B = (Q,A, δ, q0, q0) be a CSFA with two bpis.

(i) For a symbol b ∈ A, if rank(δb) = 2, then Qδb = BPI(B).

(ii) There exists a symbol b ∈ A \ {a} such that Qδb = BPI(B).

Proof. We note that δa contributes one to the indegree of each state of B. Since
BPI(B) = {q0, qm}, we have Qδb ⊆ {q0, qm} for all b ∈ A \ {a} (cf. Proposition
3.4).

(i) Straightforward from the above statement.

(ii) By Lemma 3.1(i), it is sufficient to prove that rank(δb) = 2 for some b ∈
A \ {a}. On the contrary, let us assume that rank(δb) 6= 2 for all b ∈ A \ {a}.
Then rank(δb) = 1 for all b ∈ A \ {a} (cf. Proposition 3.4). This implies that
either Qδb = {q0} or Qδb = {qm} for all b ∈ A \ {a}. If Qδb = {qm} for some
b ∈ A \ {a}, then there is a loop at qm; which is not possible. Consequently
Qδb = {q0} for all b ∈ A \ {a}, and so that BPI(B) = {q0}; a contradiction.
Hence rank(δb) = 2 for some b ∈ A \ {a}.

The following lemma provides the skeleton of the transformation monoid
(Q,M(B)).
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Figure 1: CSFA B1 with two bpis

Lemma 3.2. Let B be a CSFA with BPI(B) = {q0, qm}. Then the skeleton of
transformation monoid (Q,M(B)) is given by

J = {Q} ∪J2 ∪J1,

where J2 =
{
{q0, qm}δai

∣∣ 1 ≤ i ≤ n
}

.

Proof. In view of Proposition 3.4, other than Q and singletons, the skeleton J can
have some sets of size two. Therefore it is sufficient to determine J2.

By Lemma 3.1(ii), there exists a symbol b ∈ A \ {a} such that Qδb = {q0, qm}.
Therefore, for 1 ≤ i ≤ n, the image set Qδbai = {q0, qm}δai ∈J2, and so that{

{q0, qm}δai

∣∣ 1 ≤ i ≤ n
}
⊆J2.

Let us assume that Qδw ∈J2 for some nonempty word w ∈ A∗. Then w is of
the form

w = ai1b1a
i2b2 · · · aikbkaik+1 ,

for ij ≥ 0 (1 ≤ j ≤ k+1) and bt ∈ A (1 ≤ t ≤ k) such that the rank of each function
δbt is two (cf. Proposition 3.4). Write w = ai1b1ubka

ik+1 , where u = ai2b2 · · · aik .
Since rank(δb1ubk) = rank(δbk) = 2, we have

Qδb1ubk = Qδbk = {q0, qm},

by Lemma 3.1(i). Therefore Qδw = Qδai1b1ubka
ik+1 = {q0, qm}δaik+1 , and conse-

quently

J2 =
{
{q0, qm}δai

∣∣ 1 ≤ i ≤ n
}
.

Remark 3.1. As shown in Example 3.1, the cardinality of J2 is not necessarily
n.
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Example 3.1. The 4-state automaton B1 given in the Figure 1 is CSFA with
BPI(B1) = {q0, q2}. We observe that

{q0, q2}δa = {q1, q3}, {q0, q2}δa2 = {q0, q2}, and so that |J2| = 2.

Lemma 3.3. Let B be a CSFA with BPI(B) = {q0, qm}. Then there is a nonempty
word x ∈ A∗ such that q0δx = qm and qmδx = q0.

Proof. If there exists a symbol b ∈ A \ {a} such that q0δb 6= q0, then clearly
the word x = b will serve the purpose. Otherwise we have q0δb = q0 for all
b ∈ A \ {a}. However, by Lemma 3.1(ii), there exists a symbol c ∈ A \ {a} such
that Qδc = {q0, qm}.

Note that the permutation δa induces the cyclic ordering q0, q1, . . . , qn−1 of the
state set Q. Since q0δc = q0 and the state qm is the other bpi of B, there exists a
state qi (with 1 ≤ i < m) such that qiδc = qm. Let t (with 1 ≤ t < m) be the least
integer such that qtδc = qm. Choose the word x = atc and observe that q0δx = qm.
We claim that qmδx = q0.

On the contrary, let us assume that qmδx 6= q0. Since BPI(B) = {q0, qm}, we
have qmδx = qm and so that there is a cycle in B from qm to qm labeled by the
word x. Since B is SFA, the cycle must pass through q0. Since q0δc = q0, there
exist t1 and t2 (1 ≤ t1, t2 < t) with t1 + t2 = t such that

qmδat1 = q0 and q0δat2c = qm.

Note that q0δat2c = qt2δc = qm. This contradicts the choice of t, as t2 < t. Thus
we have qmδx = q0.

Theorem 3.2. If B is an n-state CSFA with BPI(B) = {q0, qm}, then

(Q,M(B)) ≺ C2 o Cr,

where r (with 1 < r ≤ n) is the smallest integer such that {q0, qm}δar = {q0, qm}.

Further, if n is an odd number, then

(Q,M(B)) ≺ C2 o Cn.

Proof. From Lemma 3.2, the skeleton of (Q,M(B)) is given by

J = {Q} ∪J2 ∪J1

in which all the elements of J2 are equivalent to each other.
For 1 ≤ i ≤ n, note that δai permutes the elements of Q. Also, for x ∈ A∗,

if δx 6= δai for any i (with 1 ≤ i ≤ n), then δx is not a permutation on Q (cf.
Proposition 3.1). Consequently we have K(Q) =

{
δai

∣∣ 1 ≤ i ≤ n
}

. Since the
elements of J2 are maximal in Q, we have B(Q) = J2. Let r (with 1 < r ≤ n)
be the smallest integer such that {q0, qm}δar = {q0, qm} so that |B(Q)| = r. The
holonomy group of Q is

G(Q) =
{
δ̌ai

∣∣ 1 ≤ i ≤ r
}
.
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For 1 ≤ i ≤ r, since δai = (δa)
i
, we have δ̌ar = (δ̌a)r = δ̌ε. The holonomy group

G(Q) is cyclic group of order r generated by δ̌a, and so that (B(Q), G(Q)) = Cr.
Let P = {q0, qm} be representative in J2. Clearly B(P ) =

{
{q0}, {qm}

}
.

By Lemma 3.3, there exists a nonempty word x ∈ A∗ such that q0δx = qm and
qmδx = q0. This implies that K(P ) = {δx, δε}. Therefore the holonomy group
G(P ) is cyclic group of order two generated by δ̌x, and so that (B(P ), G(P )) = C2.
Thus the holonomy decomposition of (Q,M(B)) is

(Q,M(B)) ≺ C2 o Cr.

If n is an odd number, we claim that r = n. On the contrary, let us assume that
r < n. Since {q0, qm}δar = {q0, qm} and δa is circular permutation on Q. It follows
that q0δar = qm and qmδar = q0. This implies that q0δa2r = q0 and qmδa2r = qm
with 1 < 2r < 2n. Therefore 2r = n; which is a contradiction. Thus the holonomy
decomposition of (Q,M(B)) is

(Q,M(B)) ≺ C2 o Cn.
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Figure 2: CSFA B2 with two bpis

Example 3.2. The 4-state automaton B1 given in the Figure 1 is CSFA with
BPI(B1) = {q0, q2}. Using [18], we find the skeleton of (Q,M(B1)) as

J = {Q} ∪J2 ∪J1,

where J2 =
{
{q0, q2}δai

∣∣ 1 ≤ i ≤ 4
}

. Clearly B(Q) = J2. The smallest integer r
(with 1 < r ≤ 4) such that {q0, q2}δar = {q0, q2} is two, and therefore |B(Q)| = 2.
The holonomy group G(Q) is cyclic group of order two generated by δ̌a, and so
that (B(Q), G(Q)) = C2.

We observe that the elements of J2 are equivalent to each other. Let P =
{q0, q2} be representative in J2. Clearly B(P ) =

{
{q0}, {q2}

}
⊆ J1. The

holonomy group G(P ) is cyclic group of order two generated by δ̌ab, and so that
(B(P ), G(P )) = C2. Thus the holonomy decomposition of (Q,M(B1)) is

(Q,M(B1)) ≺ C2 o C2.
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If the cardinality of the state set is an odd number, the following example
illustrates Theorem 3.2.

Example 3.3. The 5-state automaton B2 given in the Figure 2 is CSFA with
BPI(B2) = {q0, q3}. Using [18], we find the skeleton of (Q,M(B2)) as

J = {Q} ∪J2 ∪J1,

where J2 =
{
{q0, q3}δai

∣∣ 1 ≤ i ≤ 5
}

. Clearly B(Q) = J2. The smallest integer r
(with 1 < r ≤ 5) such that {q0, q3}δar = {q0, q3} is five, and therefore |B(Q)| = 5.
The holonomy group G(Q) is cyclic group of order five generated by δ̌a, and so that
(B(Q), G(Q)) = C5.

We observe that the elements of J2 are equivalent to each other. Let P =
{q0, q3} be representative in J2. Clearly B(P ) =

{
{q0}, {q3}

}
⊆ J1. The

holonomy group G(P ) is cyclic group of order two generated by δ̌ab, and so that
(B(P ), G(P )) = C2. Thus the holonomy decomposition of (Q,M(B2)) is

(Q,M(B2)) ≺ C2 o C5.

We conclude the paper by looking at two examples that exhibit that the study
on the holonomy decomposition of CSFA with more than two bpis is much more
complicated.
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Figure 3: CSFA B3 with three bpis

Example 3.4. The 6-state automaton B3 given in the Figure 3 is CSFA with
BPI(B3) = {q0, q1, q5}. Using [18], we find the skeleton of (Q,M(B3)) as

J = {Q} ∪J3 ∪J2 ∪J1,

where J3 =
{
{q0, q1, q5}δai

∣∣ 1 ≤ i ≤ 6
}

, and J2 =
{
{q0, q1, q5}δbai

∣∣ 1 ≤ i ≤ 6
}

.
Clearly B(Q) = J3 and |J3| = 6. The holonomy group G(Q) is cyclic group of
order six generated by δ̌a, and so that (B(Q), G(Q)) = C6.

We observe that the elements of J3 are equivalent to each other. Let P =
{q0, q1, q5} be representative in J3. Clearly B(P ) =

{
{q0, q1}, {q0, q5}

}
⊆ J2.
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The holonomy group G(P ) is cyclic group of order two generated by δ̌ab, and so
that (B(P ), G(P )) = C2.

We further observe that all six elements of J2 are equivalent to each other. Let
T = {q0, q1} be representative in J2. Clearly B(T ) =

{
{q0}, {q1}

}
⊆ J1. The

holonomy group G(T ) is cyclic group of order two generated by δ̌b, and so that
(B(T ), G(T )) = C2. Thus the holonomy decomposition of (Q,M(B3)) is

(Q,M(B3)) ≺ C2 o C2 o C6.
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Figure 4: CSFA B4 with three bpis

Example 3.5. The 6-state automaton B4 given in the Figure 4 is CSFA with
BPI(B4) = {q0, q2, q4}. Using [18], we find the skeleton of (Q,M(B4)) as

J = {Q} ∪J3 ∪J1,

where J3 =
{
{q0, q2, q4}, {q1, q3, q5}

}
. Clearly B(Q) = J3. The holonomy group

G(Q) is cyclic group of order two generated by δ̌a, and so that (B(Q), G(Q)) = C2.
We observe that the elements of J3 are equivalent to each other. Let P =

{q0, q2, q4} be representative in J3. Clearly B(P ) =
{
{q0}, {q2}, {q4}

}
⊆ J1.

The holonomy group G(P ) is cyclic group of order three generated by δ̌b, and so
that (B(P ), G(P )) = C3. Thus the holonomy decomposition of (Q,M(B4)) is

(Q,M(B4)) ≺ C3 o C2.

4 Conclusion

In this paper we have initiated the investigations on the holonomy decomposition of
circular semi-flower automata (CSFA) classified by their number of bpis. In fact, we
have ascertained the holonomy decomposition of CSFA with at most two bpis. Our
experiments for the holonomy decomposition of CSFA with more than two bpis
over numerous examples exhibit that their structure is much more complicated.
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However, we feel that the approach adopted in the paper may be useful to target
the holonomy decomposition of CSFA having arbitrary number of bpis. In general,
one can look for the holonomy decomposition of semi-flower automata.
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