
Acta Cybernetica 23 (2017) 81–90.

Trace Simulation Semantics is not Finitely

Based over BCCSP∗

Luca Acetoa, David de Frutos Escrigb, and Anna Ingólfsdóttira

Abstract

This note shows that the trace simulation preorder does not have a finite
inequational basis over the language BCCSP. Indeed, no collection of sound
inequations of bounded depth is ground-complete with respect to the trace
simulation preorder over BCCSP even over a singleton set of actions.
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1 Introduction

The study of the equational theory of several algebraic structures has been one
of the main research interests of the late Zoltán Ésik—see, for instance, the refer-
ences [2, 3, 8, 9, 10, 13, 14, 16] for a small sample of his work in this area.

In the setting of process algebras, the study of complete axiomatizations of
behavioural equivalences can be traced back to the early contributions of Hennessy
and Milner [18], and Bergstra and Klop [7]. Since then, the investigation of the
equational theory of various process algebras has been a major topic of research and
Zoltán Ésik has contributed to this field in many ways—see, for instance, [1, 11, 15]

A complete axiomatization of a behavioural congruence yields a purely syntactic
characterization, independent of the actual details of the chosen semantic model for
processes and of the definition of the behavioural equivalence, of the semantics of a
process algebra. This bridge between syntax and semantics plays an important role
in both the practice and the theory of process algebras. From the point of view of
practice, these proof systems can be used to perform system verifications in a purely
syntactic way using general purpose theorem provers or proof checkers, and form
the basis of purpose built axiomatic verification tools. From the theoretical point of
view, complete axiomatizations of behavioural equivalences capture the essence of
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different notions of semantics for processes in terms of a basic collection of identities,
and this often allows one to compare semantics which may have been defined in
very different styles and frameworks. A review of existing complete equational
axiomatizations for many of the behavioural semantics in van Glabbeek’s spectrum
is offered in [26]. The equational axiomatizations offered in that reference are over
the language BCCSP, a common fragment of Milner’s CCS [21, 22] and Hoare’s
CSP [19] suitable for describing finite synchronization trees, and characterize the
differences between behavioural semantics in terms of a few revealing axioms.

In this paper, we contribute to the study of the equational theory of semantic
equivalences over BCCSP by showing that the trace simulation preorder does not
have a finite inequational basis over the language BCCSP (Theorem 1). Indeed, no
collection of sound inequations of bounded depth is ground-complete with respect
to the trace simulation preorder over BCCSP even over a singleton set of actions
(Theorem 2). The proof of our main result is proof theoretic. We are sure that
Zoltán Ésik would have preferred to see a model-theoretic argument, like those he
used with two of the authors of this paper in joint work on the max-plus algebra of
the natural numbers and on the equational theory of tropical semirings [2, 3], but
we hope that he would have found our result and its proof appealing nonetheless.

The paper is organized as follows. Section 2 presents preliminaries on the syntax
and semantics of BCCSP, the behavioural equivalences and preorders we study and
inequational logic. Section 3 introduces our main result, whose proof is given in
Section 3.1.

2 Preliminaries

Syntax of BCCSP We work with BCCSP [26, 19, 22] over the action set A.
This language is a basic process algebra for expressing finite process behaviour. Its
syntax consists of closed (process) terms p, q that are constructed from a constant 0,
a binary operator + called alternative composition, and the unary prefix operators
a with a ∈ A. Open terms t, u can, moreover, contain occurrences of variables from
a countably infinite set V (with typical elements x, y, z).

In what follows, for each n ≥ 0, we use an0 to stand for the term 0 if n = 0,
and for a(an−10) if n > 0.

A (closed) substitution maps variables in V to (closed) terms. For every term
t and substitution σ, the term σ(t) is obtained by replacing every occurrence of a
variable x in t by σ(x). Note that σ(t) is closed if σ is a closed substitution.

Transition rules Closed BCCSP terms denote finite process behaviours, where
0 does not exhibit any behaviour, p+ q is the nondeterministic choice between the
behaviours of p and q, and ap executes action a to transform into p. This intuition
is captured, in the style of Plotkin [25], by the transition rules below, which give
rise to a-labelled transitions, with a ∈ A, between closed terms.

ax
a−→ x

x
a−→ x′

x+ y
a−→ x′

y
a−→ y′

x+ y
a−→ y′
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The operational semantics is extended to open terms by assuming that variables
do not exhibit any behaviour. We write t9 if there are no action a and term t′

such that t
a−→ t′ holds.

For each s ∈ A∗, the transition relation
s−→ is defined thus, where ε denotes

the empty string:

• t ε−→ t′ if, and only if, t = t′;

• t as−→ t′ if, and only if, there is some t′′ such that t
a−→ t′′

s−→ t′.

If t
s−→ t′, then we say that s is a trace of t. Such a trace is complete if t′9 .

For each BCCSP term t, we define

T (t) = {s | t s−→ t′ for some t′}.

The depth of a term t, written depth(t), is the length of a longest trace s ∈ T (t).
The norm of a term t, written norm(t), is the length of a shortest complete trace
s ∈ T (t). (The notion of norm stems from [6].) For example, the closed term a2+a3

has norm two and depth three.

Simulation, bisimulation and trace simulation We define the following three
variations on the notion of simulation over closed BCCSP terms.

Definition 1 (Simulations). A binary relation R over closed BCCSP terms is:

• a simulation [20, 24] if p R q and p
a−→ p′ imply q

a−→ q′ for some q′ with
p′ R q′;

• a bisimulation [22, 24] if it is a simulation whose inverse is also a simulation;

• a trace simulation if it is a simulation that satisfies the following condition:

p R q implies T (q) = T (p).

We write p -TS q if there is a trace simulation R with p R q, and p↔ q if there is
a bisimulation R with p R q. We will refer to -TS as the trace simulation preorder,
and to ↔ as bisimilarity.

Let -∈ {-TS ,↔}. We define t - u if σ(t) - σ(u) for each closed substitution
σ.

It is well known that -TS is a preorder and ↔ is an equivalence relation.
Moreover, both relations are preserved by the operators of the language BCCSP.

Inequational logic An inequation (respectively, an equation) over the language
BCCSP is a formula of the form t ≤ u (respectively, t = u), where t and u are
BCCSP terms. An (in)equational axiom system is a collection of (in)equations over
the language BCCSP. An equation t = u is derivable from an equational axiom
system E if it can be proven from the axioms in E using the rules of equational
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logic (viz. reflexivity, symmetry, transitivity, substitution and closure under BCCSP
contexts).

t = t
t = u

u = t

t = u u = v

t = v

t = u

σ(t) = σ(u)

t = u

at = au

t = u t′ = u′

t+ t′ = u+ u′

For the derivation of an inequation t ≤ u from an inequational axiom system E,
the rule for symmetry is omitted.

It is well known that, without loss of generality, one may assume that substi-
tutions happen first in (in)equational proofs, i.e., that the fourth rule may only be
used when its premise is one of the (in)equations in E. Moreover, by postulating
that for each equation in E also its symmetric counterpart is present in E, one
may assume that applications of symmetry happen first in equational proofs, i.e.,
that the second rule is never used in equational proofs. (See, e.g., [12, page 497] for
a thorough discussion of this ‘normalized equational proofs’.) In the remainder of
this paper, we shall always tacitly assume that equational axiom systems are closed
with respect to symmetry. Note that, with this assumption, there is no difference
between the rules of inference of equational and inequational logic. In what follows,
we shall consider an equation t = u as a shorthand for the pair of inequations t ≤ u
and u ≤ t.

The depth of t ≤ u and t = u is the maximum of the depths of t and u. The
depth of a collection of (in)equations is the supremum of the depths of its elements.

An inequation t ≤ u is sound with respect to -TS if t -TS u holds. For example,
as our readers can readily check, the inequation

ax ≤ ax+ x (1)

is sound with respect to -TS if A = {a} and is unsound otherwise.

An (in)equational axiom system E is sound with respect to -TS if so is each
(in)equation in E. It is complete if each valid inequation t -TS u can be derived
from E, and it is ground complete if each valid inequation t -TS u relating closed
terms can be derived from E. A set of complete and sound (in)equations is some-
times referred to as an (in)equational basis.

The core axioms A1–A4 for BCCSP given below are classic and stem from [18].
They are complete [23], and sound and ground complete [18, 22], over BCCSP (over
any nonempty set of actions) modulo bisimulation equivalence [22, 24], which is the
finest semantics in van Glabbeek’s spectrum [26].

A1 x+ y ≈ y + x
A2 (x+ y) + z ≈ x+ (y + z)
A3 x+ x ≈ x
A4 x+ 0 ≈ x

In what follows, for notational convenience, we consider terms up to the least
congruence generated by axioms A1–A4, that is, up to bisimulation equivalence.
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3 The negative result

Our aim in what follows is to show the following theorem.

Theorem 1. The (in)equational theory of -TS over BCCSP does not have a finite
inequational basis. In particular, no finite set of sound inequations over BCCSP
modulo -TS can prove all of the sound inequations in the family

a2m ≤ a2m + am (m ≥ 0).

In what follows, we shall present a proof of the above result, which has proof
has a ‘proof-theoretic’ flavour.

Remark 1. The family of inequations in the statement of Theorem 1 was used
in [5, 4] to prove that the 2-nested simulation preorder from [17] does not afford a
finite ground-complete inequational axiomatization over BCCSP.

3.1 A proof-theoretic argument for Theorem 1

Our proof of Theorem 1 is based on obtaining that result as a corollary of the
following one.

Theorem 2. Let E be a collection of inequations whose elements are sound modulo
-TS and have depth smaller than m. Suppose furthermore that the closed inequation
p ≤ q is derivable from E, that q -TS a2m + am and norm(p) = 2m. Then
norm(q) = 2m.

Having shown the above result, Theorem 1 can be proved as follows. Let E
be a finite inequational axiom system that is sound modulo -TS . Pick m larger
than the depth of E. (Such an m exists since E is finite.) Then, by Theorem 2, E
cannot prove the valid inequation

a2m ≤ a2m + am,

and is therefore incomplete. Indeed, a2m has norm 2m, but a2m + am has norm m.
In the remainder of this section, we shall present a proof of Theorem 2. In

order to show that result, we shall first prove that the property mentioned in that
statement holds true for instantiations of sound inequations whose depth is smaller
than m. Next we use this fact to argue that the stated property is preserved by
arbitrary inequational derivations from a collection of inequations whose elements
have depth smaller than m and are sound modulo -TS .

Definition 2. We say that a term t has an occurrence of variable x reachable via
a sequence of actions s if there is some term t′ such that t

s−→ x+ t′.

For example, ax+a0 has an occurrence of x reachable via a because ax+a0
a−→

x and x = x+ 0.
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Lemma 1. Assume that t -TS u and that u has an occurrence of variable x
reachable via a sequence of actions s. Then t also has an occurrence of variable x
reachable via some sequence of actions s′.

Proof. Assume that t -TS u and that u has an occurrence of variable x reachable
via a sequence of actions s. Let m be larger than the depth of t. Consider the
closed substitution σ mapping x to am and every other variable to 0. Since u has

an occurrence of variable x reachable via s, it is easy to see that σ(u)
sam

−→ 0. As

σ(t) -TS σ(u) because t -TS u by assumption, it must be the case that σ(t)
sam

−→ p
for some p. As the depth of t is smaller than m, the substitution σ maps all variables

different from x to 0 and σ(u)
sam

−→ p, it follows that t
s′−→ x+ t′ for some t′, which

was to be shown.

Remark 2. Note that, in general, the traces s and s′ mentioned in the statement
of the above lemma need not be equal. For instance, as we observed previously, the
inequation

ax ≤ ax+ x

is sound with respect to -TS if A = {a} and the term ax+ x has an occurrence of
variable x reachable via the sequence of actions ε. However, the only occurrence of
x in the term ax is reachable via the sequence of actions a.

The following lemma is the first stepping stone towards the proof of Theorem 2.
It establishes that the property mentioned in that statement holds true for instan-
tiations of sound inequations whose depth is smaller than m.

Lemma 2. Suppose that t -TS u and that m is larger than the depth of u. Let
σ be a closed substitution. Suppose, furthermore, that σ(u) -TS a2m + am and
norm(σ(t)) = 2m. Then norm(σ(u)) = 2m.

Proof. The assumption that σ(u) -TS a
2m + am yields that norm(σ(u)) = 2m or

norm(σ(u)) = m. Assume, towards a contradiction, that norm(σ(u)) = m. Then,
since depth(u) < m, there are some i < m and some variable x such that u has

an occurrence of variable x reachable via ai and σ(x)
am−i

−→ 0. Since t -TS u
and depth(t) < m too (because t -TS u clearly implies that depth(t) = depth(u)
and depth(u) < m by our assumption), there is some j < m such that t has an
occurrence of variable x reachable via aj . But then σ(t) has a trace of length
j+ (m− i) < 2m leading to 0. This contradicts the assumption that norm(σ(t)) =
2m. Therefore norm(σ(u)) = 2m, as claimed.

We will now argue that the property stated in Theorem 2 is preserved by arbi-
trary inequational derivations from a collection of inequations whose elements are
sound modulo .TS and have depth smaller than m. The following lemma will allow
us to handle closure under action prefixing in that proof.

Lemma 3. Assume that aq -TS a
2m + am. Then norm(aq) = 2m.
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Proof. By our assumptions, it follows that m ≥ 1, depth(aq) = 2m and that
norm(aq) = 2m or norm(aq) = m.

Assume, towards a contradiction, that norm(aq) = m. Then q has depth 2m−1
and norm m − 1. Since aq -TS a

2m + am and depth(q) = 2m − 1, it must be the
case that q -TS a

2m−1. But this is impossible since q can terminate in m− 1 steps
and a2m−1 cannot. Therefore aq has norm 2m, as claimed.

We now have all the necessary ingredients to complete our proof of Theorem 2,
and therefore of Theorem 1.

Proof. (of Theorem 2) Assume that E is a collection of inequations whose elements
are sound modulo -TS and have depth smaller than m. Suppose furthermore that

• the inequation p ≤ q is derivable from E,

• q -TS a
2m + am, and

• norm(p) = 2m.

(Observe that m is positive because it is larger than the depth of E.) We shall
prove that norm(q) = 2m by induction on a closed derivation of p ≤ q from E. We
proceed by examining the last rule used in the proof of p ≤ q from E. The case
of reflexivity is trivial and that of transitivity follows by applying the inductive
hypothesis twice. If p ≤ q is proved by instantiating an inequation in E, then the
claim follows by Lemma 2. We are therefore left with the congruence rules, which
we examine separately below.

• Suppose that E proves p ≤ q because p = ap′, u = aq′ and E proves p′ ≤ q′

by a shorter inference. By the soundness of E and the proviso of the theorem,
we have that

p = ap′ -TS u = aq′ -TS a
2m + am

and norm(p) = 2m. Lemma 3 now yields norm(q) = 2m, as required.

• Suppose that E proves p ≤ q because p = p1 + p2, q = p1 + p2 and E proves
pi ≤ qi, 1 ≤ i ≤ 2, by shorter inferences. Since p has norm 2m and m is
positive, we may assume, without loss of generality, that p1 has norm 2m.
Moreover, the depth of p1 is also 2m, since

p = p1 + p2 -TS q1 + q2 = q -TS a
2m + am.

Therefore q1 has depth 2m because E is sound. Since q1 + q2 -TS a
2m + am,

for each q′1 such that q1
a−→ q′1 we have that q′1 -TS a

2m−1 or q′1 -TS a
m−1.

As q1 has positive depth, this means that q1 -TS a
2m+am. We may therefore

apply the induction hypothesis to obtain that norm(q1) = 2m. If p2 is 0 then
we are done since, in that case, q2 is also 0 by the soundness of E. If p2 is not
0, then its norm is also 2m, because p has norm and depth equal to 2m. But
then, reasoning as above, we may infer that norm(q2) = 2m. Since q = q1+q2
and norm(q1) = norm(q2) = 2m, we have that norm(q) = 2m, which was to
be shown.

This completes the proof.
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Dedication Luca Aceto and Anna Ingólfsdóttir dedicate this paper to the mem-
ory of their collaborator and friend Zoltán Ésik, from whom they have learned much
and with whom they have shared many pleasant days. They will miss him.
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[10] Bloom, Stephen L. and Ésik, Zoltán. Iteration algebras are not finitely axioma-
tizable. extended abstract. In Gonnet, Gaston H., Panario, Daniel, and Viola,
Alfredo, editors, LATIN 2000: Theoretical Informatics, 4th Latin American
Symposium, Punta del Este, Uruguay, April 10–14, 2000, Proceedings, volume
1776 of Lecture Notes in Computer Science, pages 367–376. Springer, 2000.
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