
Acta Cybernetica 23 (2017) 159–174.

On DR Tree Automata, Unary Algebras and

Syntactic Path Monoids

Magnus Steinbya

To the memory of Zoltán Ésik

Abstract

We consider deterministic root-to-frontier (DR) tree recognizers and the
tree languages recognized by them from an algebraic point of view. We make
use of a correspondence between DR algebras and unary algebras shown by
Z. Ésik (1986). We also study a question raised by F. Gécseg (2007) that
concerns the definability of families of DR-recognizable tree languages by
syntactic path monoids. We show how the families of DR-recognizable tree
languages path-definable by a variety of finite monoids (or semigroups) can
be derived from varieties of string languages. In particular, the three path-
definable families of Gécseg and B. Imreh (2002, 2004) are obtained this way.

Keywords: deterministic root-to-frontier tree automaton, tree language,
unary algebra, syntactic path monoid, variety of finite monoids, variety of
languages

1 Introduction

The tree languages recognized by deterministic root-to-frontier (top-down) tree
recognizers form a proper subfamily DRec of the family Rec of all recognizable
tree languages. The members of DRec, the DR-recognizable tree languages, are
characterized by the fact that they are completely determined by the labeled paths
appearing in their trees (cf. [11, 15, 16, 20]). Any path from the root of a tree to
one of its leaves is represented as a word over the so-called path alphabet. Each
symbol of this alphabet indicates both the label of a node of a tree and the direction
taken at that node. If we group together the paths leading to a leaf labeled with a
given symbol x of the leaf alphabet X, then all the paths appearing in the trees of a
given tree language T form a family 〈Tx〉x∈X of languages over the path alphabet,
and if T is DR-recognizable, it is completely determined by these languages Tx.
This implies that the DR-recognizable tree languages resemble string languages
more than general recognizable tree languages do. In particular, while few known

aDepartment of Mathematics and Statistics, University of Turku, FI-20014 Turku, Finland,
E-mail: steinby@utu.fi

DOI: 10.14232/actacyb.23.1.2017.10



160 Magnus Steinby

families of recognizable tree languages can be characterized by syntactic monoids or
semigroups, Gécseg and Imreh [7, 8] could characterize three subfamilies of DRec,
those of DR nilpotent, DR monotone and DR definite tree languages, in terms of
the syntactic path monoids or semigroups introduced in [12]. We shall show that
there exist many more such examples: any ∗ - or + -variety of string languages, as
defined by Eilenberg [2], yields a subfamily of DRec that can be characterized by
syntactic path monoids or semigroups.

If we regard the path alphabet as a unary ranked alphabet, then the path set
of a tree language T becomes a unary tree language δ(T ) that carries the same
information as the family 〈Tx〉x∈X . A DR recognizer may be seen as a finite DR
algebra equipped with an initial state and a final state assignment. In [3] Zoltán
Ésik associated with each DR algebra a unary algebra over the path alphabet, and
noted that using this association one may apply ideas of standard general algebra
to DR algebras. We complete the bijection between the two types of algebras by
the converse transformation from unary algebras to DR algebras. The usefulness of
this bijection derives from the fact that it preserves subalgebras, homomorphisms,
congruences and direct products. In particular, we may refer to varieties of finite
unary algebras when considering varieties of finite DR algebras. By extending
this correspondence to tree recognizers, we study the connections between DR-
recognizable tree languages and their unary path languages.

We shall recall or introduce all the special concepts used here. The basic uni-
versal algebra needed can be found in the first two chapters of [1], for example. For
tree automata and tree languages, the reader may consult [11] and for the theory
of varieties of (string) languages the books [2] and [17].

This paper is dedicated to the memory of Zoltán Ésik whom I learned know
already in the 1970s. He has made many important contributions in several areas
of theoretical computer science, and all his work is characterized by mathematical
elegance and precision. It is a pleasure to acknowledge the inspiration I got from
one of his, probably less well known, papers.

2 Preliminaries

For any integer n > 0, let [n] = {1, . . . , n}. Let A be any set. For any i ∈ [n], let
πi : An → A, (a1, . . . , an) 7→ ai be the ith projection map. The power-set of A is
denoted by ℘(A). If ϕ : A→ B is a mapping, the image ϕ(a) of an element a ∈ A
may be denoted also by aϕ. Especially homomorphisms will be written this way as
right operators. For any equivalence θ ∈ Eq(A) on A, we write aθ for the θ-class of
an element a ∈ A, and A/θ := {aθ | a ∈ A} is the quotient set. For any alphabet
X, the set of (finite) words over X is denoted by X∗ and the empty word by ε.

Let Σ be a ranked alphabet, i.e., a finite set of operation symbols, which does
not contain nullary symbols. For each m ≥ 1, Σm denotes the set of m-ary symbols
in Σ. The rank type of Σ is the set r(Σ) := {m | Σm 6= ∅}. In what follows, Σ is
always a ranked alphabet of rank type R and X is an ordinary finite non-empty
alphabet, called a leaf alphabet, disjoint from Σ. The set TΣ(X) of ΣX-trees is the



On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 161

least set such that X ⊆ TΣ(X), and f(t1, . . . , tm) ∈ TΣ(X), for all m ∈ R, f ∈ Σm
and t1, . . . , tm ∈ TΣ(X). A ΣX-tree language is any subset of TΣ(X). Often we
speak about trees and tree languages without specifying the alphabets.

A Σ-algebra A consists of a nonempty set A and a Σ-indexed family of operations
on A such that if f ∈ Σm (m ∈ R), then fA : Am → A is an m-ary operation. We
writeA = (A,Σ), and callA finite if A is a finite set. Subalgebras, homomorphisms,
congruences etc. are defined as usual. For any class K of Σ-algebras, let S(K)
consist of all algebras isomorphic to a subalgebra of a member of K, H(K) be the
class of all images of members of K, and Pf (K) be the class of algebras isomorphic
to a finite direct product of members of K. A class K of finite Σ-algebras is a
variety of finite Σ-algebras (a Σ-VFA for short) if S(K), H(K), Pf (K) ⊆ K. The
Σ-VFA generated by a class K of finite Σ-algebras is denoted by Vf (K).

The ΣX-term algebra TΣ(X) = (TΣ(X),Σ) is defined by setting, for all m ∈
R, f ∈ Σm and t1, . . . , tm ∈ TΣ(X), fTΣ(X)(t1, . . . , tm) = f(t1, . . . , tm).

A ΣX-recognizer A = (A, α, F ) consists of a finite Σ-algebra A = (A,Σ), an
initial assignment α : X → A, and a set F ⊆ A of final states. The ΣX-tree
language recognized by A is the set T (A) := {t ∈ TΣ(X) | tαA ∈ F} where
αA : TΣ(X)→ A is the homomorphic extension of α. A ΣX-tree language is called
recognizable, or regular, if it is recognized by a ΣX-recognizer. Let Rec(Σ, X)
denote the set of all recognizable ΣX-tree languages.

If Σ = Σ1, we call Σ a unary alphabet and Σ-algebras are unary algebras. A
unary alphabet Σ may also be treated as an ordinary alphabet and we write Σ-terms
as expressions ξu, where ξ is a variable and u ∈ Σ∗. The term functions induced
by such terms ξu in a Σ-algebra C = (C,Σ) are mappings uC : C → C, c 7→ cuC ,
defined by cεC = c and cuC = gC(cvC) for u = vg (v ∈ Σ∗, g ∈ Σ).

On the other hand, we may view an ordinary (finite) alphabet Z as a unary
ranked alphabet and define Z-automata as unary algebras A = (A,Z) in which
each letter z ∈ Z induces a unary operation zA : A → A, a 7→ azA. For any word
w = z1 . . . zk in Z∗ (k ≥ 0, z1, . . . , zk ∈ Z), the operation wA : A → A is the
composition of zA1 , . . . , z

A
k . A Z-recognizer is now a system A = (A, a0, F ), where

A = (A,Z) is a finite Z-algebra, a0 ∈ A is the initial state, and F ⊆ A is the set of
final states. The language recognized by A is the set L(A) := {w ∈ Z∗ | a0w

A ∈ F}.
A language L ⊆ Z∗ is regular if it is recognized by a Z-recognizer.

Often we will say that a string or tree language is recognized by an algebra A if
it is recognized by a recognizer of an appropriate kind based on A.

3 DR algebras and unary algebras

In what follows, the frequently recurring phrase deterministic root-to-frontier is
abbreviated to DR. The following basic algebraic notions for DR algebras were
defined by Virágh [20], but most of them are obtained from those defined for DR tree
recognizers in [10]. To simplify the notation, we extend mappings and equivalence
relations to m-tuples: if a = (a1, . . . , am) ∈ Am, then for any map ϕ : A → B, let
aϕ̄ := (a1ϕ, . . . , amϕ), and for any θ ∈ Eq(A), let aθ̄ := (a1θ, . . . , amθ).



162 Magnus Steinby

A (finite) DR Σ-algebra consists of a nonempty (finite) set A and a Σ-indexed
family of root-to-frontier operations fA : A −→ Am (f ∈ Σ), where the arity m is
that of f(∈ Σm). Again we write simply A = (A,Σ).

Let A = (A,Σ) and B = (B,Σ) be any DR Σ-algebras. Then A is a subalgebra
of B if A ⊆ B and fA(a) = fB(a) for all f ∈ Σ and a ∈ A. A mapping ϕ : A→ B is
a homomorphism from A to B, and we write ϕ : A → B, if fA(a)ϕ̄ = fB(aϕ) for all
f ∈ Σ and a ∈ A. If ϕ is also bijective, it is an isomorphism, and we write A ∼= B
if A and B are isomorphic. The direct product of A and B is the DR Σ-algebra
A×B = (A×B,Σ) such that for all m ∈ R, f ∈ Σm and (a, b) ∈ A×B, if fA(a) =
(a1, . . . , am) and fA(b) = (b1, . . . , bm), then fA×B((a, b)) = ((a1, b1), . . . , (am, bm)).
The general finite direct product A1 × · · · × An (n ≥ 0) is defined the same way.

A congruence on A is an equivalence θ on A such that for any a, a′ ∈ A and
f ∈ Σ, if aθa′, then fA(a)θ̄ = fA(a′)θ̄. Let Con(A) denote the set of all congruences
on A. For any θ ∈ Con(A), the quotient DR algebra A/θ = (A/θ,Σ) is defined by
fA/θ(aθ) := fA(a)θ̄ for all a ∈ A and f ∈ Σ.

All the usual facts about subalgebras, homomorphisms, congruences, etc. hold
for DR algebras, too. For example, the kernel of any homomorphism ϕ : A → B is
a congruence on A, and A/ kerϕ ∼= B if ϕ is surjective.

The tree languages recognized by deterministic root-to-frontier recognizers are
characterized by the labeled paths appearing in their trees. The paths are described
using the path alphabet Σ̂ :=

⋃
m∈R Σm × [m]. A pair (f, i) ∈ Σ̂ is written simply

as fi. We regard Σ̂ either as a unary ranked alphabet or as an ordinary alphabet.
Following Ésik [3] we associate with any DR Σ-algebra A = (A,Σ) a unary

algebra Au = (A, Σ̂) such that fA
u

i (a) = fA(a)πi for all a ∈ A, m ∈ R, f ∈ Σm
and i ∈ [m]. Let us also introduce a converse transformation: for any Σ̂-algebra

C = (C, Σ̂), let Cd = (C,Σ) be the DR Σ-algebra with fCd(c) = (fC1 (c), . . . , fCm(c))
for all c ∈ C, m ∈ R and f ∈ Σm. Since Aud = A for any DR Σ-algebra A and
Cdu = C for any Σ̂-algebra C, there is a natural bijective correspondence between
DR Σ-algebras and Σ̂-algebras.

Lemma 3.1. Let A = (A,Σ) and B = (B,Σ) be any DR Σ-algebras.

(a) A is a subalgebra of B if and only if Au is a subalgebra of Bu.

(b) A mapping ϕ : A→ B is a homomorphism from A to B if and only if it is a
homomorphism from Au to Bu.

(c) (A× B)u = Au × Bu.

(d) Con(A) = Con(Au).

(e) (A/θ)u = Au/θ for any θ ∈ Con(A).

Proof. All five statements follow directly from the appropriate definitions, and (c)
was noted already in [3]. Let us verify (e) as an example.

Firstly, (A/θ)u and Au/θ are Σ̂-algebras with the same set A/θ of elements.
Moreover, for any a ∈ A, m ∈ R, f ∈ Σm and i ∈ [m],

f
(A/θ)u
i (aθ) = fA/θ(aθ)πi = fA(a)θ̄πi = fA(a)πiθ = fA

u

i (a)θ = f
Au/θ
i (aθ),



On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 163

so also their operations are the same.

4 DR tree recognizers and unary recognizers

Let us now extend the correspondence between DR algebras and unary algebras to
recognizers. A DR ΣX-recognizer A = (A, a0, α) consists of a finite DR Σ-algebra
A = (A,Σ), an initial state a0 ∈ A, and a final state assignment α : X → ℘(A). To
accept or reject an input tree t ∈ TΣ(X), A starts at the root of t in state a0, and if it
has reached a node ν of t labeled with f ∈ Σm in state a and fA(a) = (a1, . . . , am),
then it continues its working at the ith immediate successor node of ν in state ai
(i ∈ [m]). The tree is accepted if A reaches each leaf in a state a (∈ A) matching
the label x (∈ X) of that leaf, i.e., a ∈ α(x). For a formal definition, we extend
α to a mapping α̃ : TΣ(X) → ℘(A) by setting α̃(x) = α(x) for each x ∈ X,
and α̃(t) = {a ∈ A | fA(a) ∈ α̃(t1) × . . . × α̃(tm)} for t = f(t1, . . . , tm). Then
T (A) := {t ∈ TΣ(X) | a0 ∈ α̃(t)} is the tree language recognized by A, and the
ΣX-tree language T (A) is said to be DR-recognizable. Let DRec(Σ, X) denote the
set of DR-recognizable ΣX-tree languages. Two DR ΣX-recognizers A and B are
equivalent if T (A) = T (B).

The set δ(t) ⊆ TΣ̂(X) of paths in a ΣX-tree t is defined by δ(x) = {x} for
x ∈ X, and δ(t) = f1δ(t1) ∪ . . . ∪ fmδ(tm) for t = f(t1, . . . , tm). Thus δ(t) is a set
of unary trees in Polish form. The path language of a ΣX-tree language T is the
set δ(T ) :=

⋃
{δ(t) | t ∈ T}. The path closure ∆(T ) := δ−1(δ(T )) of T ⊆ TΣ(X)

consists of all ΣX-trees t such that δ(t) ⊆ δ(T ), and T is path closed if T = ∆(T ).
Quite generally, for any U ⊆ TΣ̂(X), the set δ−1(U) := {t ∈ TΣ(X) | δ(t) ⊆ U}
is path-closed. As shown in [16], a regular tree language is DR-recognizable if and
only if it is path closed. For properties of the operators δ and ∆, cf. [15, 20].

Remark 4.1. Let Σ be unary. Then Σ̂ = {f1 | f ∈ Σ} and we may use Σ itself
as the path alphabet. Furthermore, we may regard any DR Σ-algebra A = (A,Σ)
also as a Σ-algebra by identifying any 1-tuple (a) with the element a(∈ A), but as
a DR ΣX-recognizer and as a ΣX-recognizer A reads the input trees in opposite
directions. Nevertheless, it is clear that DRec(Σ, X) = Rec(Σ, X) for every X.

Let us now regard Σ̂ as a usual alphabet. For each x ∈ X, the set of x-paths in
a ΣX-tree t is gx(t) := {u ∈ Σ̂∗ | ux ∈ δ(t)}. For any T ⊆ TΣ(X) and x ∈ X, let
Tx denote the set

⋃
{gx(t) | t ∈ T} of x-paths appearing in T . Obviously, δ(T ) can

be recovered from the family 〈Tx〉x∈X .
Next we recall a few notions from [10, 11]. Let A = (A, a0, α) be a DR ΣX-

recognizer and A = (A,Σ). For any a ∈ A, let Aa := (A, a, α). A state a is a
0-state if T (Aa) = ∅, and it is reachable if a0 ⇒∗A a for the reflexive transitive
closure ⇒∗A of the relation ⇒A⊆ A × A, where for any a, b ∈ A, a ⇒A b if and
only if b = fA(a)πi for some m ∈ R, f ∈ Σm and i ∈ [m]. The recognizer A
is normalized, if for all m ∈ R, f ∈ Σm and a ∈ A, either every component in
fA(a) = (a1, . . . , am) is a 0-state or no ai is a 0-state, reduced if T (Aa) = T (Ab)
implies a = b (a, b ∈ A), connected if all of its states are reachable, and it is minimal



164 Magnus Steinby

if it is connected and reduced. In [10] it was shown that any DR ΣX-recognizer can
be converted into an equivalent normalized minimal DR ΣX-recognizer, and this is
also minimal with respect to the number of states and unique up to isomorphism
(the isomorphism of DR ΣX-recognizers is defined in the natural way, cf. [10]).

Let us associate with any DR ΣX-recognizer A = (A, a0, α) the DR Σ̂X-

recognizer Au = (Au, a0, α), and with any DR Σ̂X-recognizer C = (C, c0, γ) the
DR ΣX-recognizer Cd = (Cd, c0, γ). Obviously, Aud = A and Cdu = C.

Proposition 4.1. T (A) = δ−1(T (Au)) for any DR ΣX-tree recognizer A.

Proof. Let A = (A, a0, α) with A = (A,Σ). We show by induction on t that for all
t ∈ TΣ(X) and a ∈ A, t ∈ T (Aa) if and only if t ∈ δ−1(T (Aua)). The case t ∈ X is
obvious, so let t = f(t1, . . . , tm). If fA(a) = (a1, . . . , am), then

t ∈ T (Aa) iff t1 ∈ T (Aa1
), . . . , tm ∈ T (Aam)

iff δ(t1) ⊆ T (Aua1
), . . . , δ(tm) ⊆ T (Auam)

iff f1δ(t1), . . . , fmδ(tm) ⊆ T (Aua)
iff δ(t) ⊆ T (Aua)
iff t ∈ δ−1(T (Aua)).

Hence, T (Aa) = δ−1(T (Aua)) and, in particular, T (A) = δ−1(T (Au)).

Corollary 4.1. T (Cd) = δ−1(T (C)) for any DR Σ̂X-recognizer C.

Proof. T (Cd) = δ−1(T (Cdu)) = δ−1(T (C)) by Proposition 4.1 and Cdu = C.

Proposition 4.2. T (Au) = δ(T (A)) for any normalized DR ΣX-recognizer A.

Proof. Let A = (A, a0, α) with A = (A,Σ). The inclusion δ(T (A)) ⊆ T (Au)
follows from Proposition 4.1 and the fact that δ(δ−1(U)) ⊆ U for any U ⊆ TΣ̂(X).

For the converse inclusion we need the assumption that A is normalized. It is
enough to show that for all a ∈ A and r ∈ TΣ̂(X), if r ∈ T (Aua), then r ∈ δ(t) for
some t ∈ T (Aa). This we do by induction on r. For r ∈ X, we may let t := r. Next,
let r = fis for some f ∈ Σm, m ∈ R, i ∈ [m] and s ∈ TΣ̂(X), and assume that the
claim holds for s. If fA(a) = (a1, . . . , am), then s ∈ T (Auai) implies that s ∈ δ(ti)
for some ti ∈ T (Aai). Since ai is not a 0-state, there is for every j ∈ [m], j 6= i a
tree tj ∈ T (Aaj ). Clearly, t := f(t1, . . . , tm) ∈ T (Aa) and r ∈ δ(t).

The following fact appears, in a different form, already in [16].

Corollary 4.2. If T ∈ DRec(Σ, X), then δ(T ) ∈ DRec(Σ̂, X).

Proposition 4.3. A normalized DR ΣX-recognizer A is minimal if and only if
Au is a minimal DR Σ̂X-recognizer of δ(T (A)).

Proof. Let A = (A, a0, α) with A = (A,Σ). Consider any two states a, b ∈ A. If
T (Aa) = T (Ab), then T (Aua) = δ(T (Aa)) = δ(T (Ab)) = T (Aub) by Proposition 4.2.
On the other hand, if T (Aua) = T (Aub), then Proposition 4.2 yields δ(T (Aa)) =



On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 165

δ(T (Ab)). Since T (Aa) and T (Ab) are path-closed, this means that T (Aa) =
T (Ab). Hence, A is reduced if and only if Au is reduced.

It is obvious that the reachability relations ⇒∗A and ⇒∗Au of A and Au are
identical. Hence, A is connected if and only if Au is connected.

Next we show how a DR Σ-algebra recognizing a ΣX-tree language T yields a
DR Σ̂-algebra recognizing the Σ̂-languages Tx (x ∈ X), and how a DR Σ-algebra

recognizing T is obtained from DR Σ̂-algebras recognizing the Σ̂-languages Tx.

Proposition 4.4. Let T be a DR-recognizable ΣX-tree language.

(a) If a finite DR Σ-algebra A = (A,Σ) recognizes T , then Au = (A, Σ̂) recognizes
every language Tx (x ∈ X).

(b) For each x ∈ X, let Ax = (Ax, Σ̂) be a finite Σ̂-algebra that recognizes Tx.
Then the direct product

∏
(Adx | x ∈ X) recognizes T .

Proof. Let A = (A, a0, α) be a DR ΣX-recognizer of T . It is easy to see that, for

each x ∈ X, the Σ̂-recognizer Ax = (Au, a0, α(x)) recognizes Tx.

To prove (b), consider for each x ∈ X a Σ̂-recognizer Ax = (Ax, ax0, Fx) of
Tx. The direct product A :=

∏
x∈X Adx simulates the computation of Ax by its

x-component along every path of a given tree t ∈ TΣ(X). Hence, started in state
(ax0)x∈X , A should accept t if and only if it reaches, for each y ∈ X, every y-
labeled leaf in a state (ax)x∈X such that ay ∈ Fy. This means that T = T (A) for
A = (A, (ax0)x∈X , α) if we define α by α(y) =

∏
x∈X Gy(x), where Gy(y) = Fy

and Gy(x) = Ax for all x ∈ X,x 6= y.

5 Definability by syntactic monoids

Let us first recall (cf. [2, 17]) that the syntactic congruence of a string language
L ⊆ Z∗ is the relation θL on Z∗ defined by

u θL v iff (∀w,w′ ∈ Z∗)(wuw′ ∈ L↔ wvw′ ∈ L),

and that the syntactic monoid of L is the quotient monoid M(L) := Z∗/θL.
Next we define the syntactic monoids and syntactic path monoids of tree lan-

guages introduced in [19] and [12], respectively.
Let ξ be a symbol that does not appear in our alphabets Σ or X. A ΣX-context

is a Σ(X ∪ {ξ})-tree in which ξ occurs exactly once. The set of all ΣX-contexts is
denoted by CΣ(X). If p, q ∈ CΣ(X) and t ∈ TΣ(X), then p ·q = q(p) and t ·q = q(t)
are the ΣX-context and the ΣX-tree obtained by replacing the ξ in q by p or t,
respectively. Then CΣ(X) forms for the product p · q a monoid in which ξ is the
identity element. If Σ is unary, no X-symbols appear in ΣX-contexts, and hence
we write CΣ for CΣ(X).

The syntactic monoid congruence µT of a ΣX-tree language T is the relation
on CΣ(X) is defined by

p µT q iff (∀t ∈ TΣ(X))(∀r ∈ CΣ(X))(t · p · r ∈ T ↔ t · q · r ∈ T ),



166 Magnus Steinby

and the syntactic monoid of T is the quotient monoid SM(T ) := CΣ(X)/µT . The
syntactic path congruence µ̂T is the relation on CΣ̂ defined by

p µ̂T q iff (∀s ∈ TΣ̂(X))(r ∈ CΣ̂)(s · p · r ∈ δ(T ) ↔ s · q · r ∈ δ(T )),

and the syntactic path monoid of T is the quotient monoid PM(T ) := CΣ̂/µ̂T .
In [19] it was shown that T is regular if and only if SM(T ) is finite, and in [12]

that a path closed T is DR-recognizable if and only if PM(T ) is finite.

In [12] PM(T ) was defined as the quotient Σ̂∗/θT where θT is the intersection

of the congruences θTx
(x ∈ X). It is easy to see that CΣ̂/µ̂T

∼= Σ̂∗/θT , and hence
the next lemma follows from the fact that θT =

⋂
{θTx | x ∈ X}. To see this,

combine Theorem II.6.2 and Lemma II.8.2 of [1]. In [5] the corresponding fact
about transition monoids was used.

Lemma 5.1. For any T ∈ DRec(Σ, X), PM(T ) is a subdirect product of the
monoids M(Tx) (x ∈ X).

If Σ is unary and we use Σ itself as the path alphabet, then TΣ̂(X) = TΣ(X)
and CΣ̂ = CΣ. Moreover, δ(U) = U for any U ⊆ TΣ(X), and µ̂U and µU become
identical. Hence, PM(U) ∼= SM(U) for any unary tree language U . Similarly,

for any ranked alphabet Σ, we may use Σ̂ as its own path alphabet, and then
δ(δ(T )) = δ(T ) for any T ⊆ TΣ(X), which implies µ̂T = µ̂δ(T ). By combining these
observations, we obtain the following result.

Proposition 5.1. PM(T ) ∼= PM(δ(T )) ∼= SM(δ(T )) for any ΣX-tree language T .

In [5] Gécseg poses the following question. Assume that some property P of
regular string languages is determined by a class M of finite monoids in the sense
that a language has property P if and only if its syntactic monoid is in M. Under
what conditions can we conclude that the ‘corresponding’ property of regular tree
languages is similarly determined by M? In [6] the question is also considered for
DR tree languages in terms of syntactic path monoids. Let us describe the result
of [6] concerning the DR-case.

A class M of finite monoids is said to be closed under subdirect products if any
subdirect product of a finite family of members of M also belongs to M, and it
is closed under subdirect factors if whenever a subdirect product of a finite family
of monoids belongs to M, then all the factors are in M, too1. A property P of
DR tree languages is path-defined by M if a DR-recognizable tree language T has
property P if and only if PM(T ) ∈M. Somewhat reformulated, Theorem 11 of [6]
reads as follows.

Proposition 5.2. (F. Gécseg 2011 ) Let P be a property of tree languages that is
also defined for string languages, and let M be a class of finite monoids. Assume
that the following three conditions are satisfied.

(1) A DR-recognizable ΣX-tree language T has property P if and only if Tx has
property P for every x ∈ X.

1In [5, 6] this is required of subdirect products of two factors only, but the stronger form is
actually used.



On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 167

(2) For string languages the property P is defined by M.

(3) M is closed under subdirect products and subdirect factors.

Then P is path-defined for DR-recognizable tree languages by M.

Condition (3) is explained by Lemma 5.1. If M is a variety of finite monoids
(VFM), i.e., if S(M), H(M), Pf (M) ⊆M, condition (3) is always satisfied. Hence,
it is redundant when we consider properties that define varieties of string languages
(cf. [2, 17]), and this concerns many of the best-known families of regular languages.
In what follows, we replace “properties” by families of tree or string languages.

A family of tree languages (FTL) V assigns to all pairs Σ, X a set V(Σ, X) of
ΣX-tree languages. We write V = {V(Σ, X)} with the understanding that Σ and X
range over the appropriate alphabets. If Σ is allowed to range over the unary ranked
alphabets only, then V is a family of unary tree languages (FUTL). From any FTL
V = {V(Σ, X)} we get a FUTL Vu = {Vu(Σ, X)} by restricting the range of Σ to
unary alphabets. We call V = {V(Σ, X)} a DR family of tree languages (DR-FTL)
if V(Σ, X) ⊆ DRec(Σ, X) for all Σ and X. Similarly, a FUTL V = {V(Σ, X)} is a
DR-FUTL if V(Σ, X) ⊆ DRec(Σ, X) for every unary Σ and every X.

Let M be a class of finite monoids. For any Σ and X, let

Mp(Σ, X) := {T ∈ DRec(Σ, X) | PM(T ) ∈M}.

Then Mp = {Mp(Σ, X)} is the DR-FTL path-defined by M, and Mu := (Mp)u is
the DR-FUTL path-defined by M.

Note that owing to Proposition 5.1, the third condition could be dropped in the
following variant of Proposition 5.2.

Proposition 5.3. Let V = {V(Σ, X)} be a DR-FTL, and let M be a class of finite
monoids. If

(1) Vu = Mu, and

(2) T ∈ V(Σ, X) if and only if δ(T ) ∈ Vu(Σ̂, X) for all Σ, X and T ⊆ TΣ(X),

then V = Mp.

Proof. Consider any Σ and X. For every T ∈ DRec(Σ, X),

T ∈Mp(Σ, X) iff PM(T ) ∈M iff PM(δ(T )) ∈M

iff δ(T ) ∈Mu(Σ̂, X) iff δ(T ) ∈ Vu(Σ̂, X)

iff T ∈ V(Σ, X),

where we used the definition of Mp, Proposition 5.1, the definition of Mu, assump-
tion (1), and finally assumption (2). Hence V = Mp.

Let us now show a way to get all DR-FTLs path-defined by a VFM. For this,
recall that Eilenberg [2] defines a ∗-variety as a family of languages with certain
closure properties and shows that every ∗-variety L = {L(Z)} is defined by a unique



168 Magnus Steinby

VFM M in the sense that for any L ⊆ Z∗, L ∈ L(Z) if and only if M(L) ∈M. For
any ∗-variety L, let VL = {VL(Σ, X)} be the FTL where

VL(Σ, X) = {T ∈ DRec(Σ, X) | (∀x ∈ X)Tx ∈ L(Σ̂)},

for all Σ and X.

Proposition 5.4. If L = {L(Z)} is a ∗-variety and M is the corresponding VFM,
then VL = {VL(Σ, X)} is a DR-FTL path-defined by M.

Proof. Let T ∈ DRec(Σ, X). Since PM(T ) is a subdirect product of the monoids
M(Tx) (x ∈ X) and M is a VFM, we conclude that PM(T ) ∈ M if and only if

M(Tx) ∈M for every x ∈ X. Because T ∈ VL(Σ, X) if and only if Tx ∈ L(Σ̂) for

every x ∈ X, and Tx ∈ L(Σ̂) if and only if M(Tx) ∈M (x ∈ X), this implies that
T ∈ VL(Σ, X) if and only if PM(T ) ∈M. Hence, VL = Mp.

Next we show that every DR-FTL path-defined by a VFM is obtained this way.

Proposition 5.5. If a DR-FTL V = {V(Σ, X)} is path-defined by a VFM M and
L = {L(Z)} is the ∗-variety defined by M, then V = VL.

Proof. Consider any Σ and X. For every T ∈ DRec(Σ, X),

T ∈ V(Σ, X) iff PM(T ) ∈M iff PM(Tx) ∈M for every x ∈ X

iff Tx ∈ L(Σ̂) for every x ∈ X iff T ∈ VL(Σ, X),

where we used the assumptions of the proposition and Lemma 5.1.

Many families of regular languages are characterized by syntactic semigroups
rather than by syntactic monoids, and in [6] Gécseg gives the corresponing versions
of his results. Let us modify our Propositions 5.3, 5.4 and 5.5 in the same manner.

Firstly, all languages to be considered are ε-free, and ∗-varieties are replaced by
+-varieties and VFMs by varieties of finite semigroups (VFSs). Also, instead of
the syntactic monoid M(L) of a language L ⊆ Z+(:= Z∗ \ {ε}) we use its syntactic
semigroup S(T ). For these notions, cf. [2] or [17]. Furthermore, the syntactic path
monoid PM(T ) of a ΣX-tree language is replaced by the syntactic path semigroup
PS(T ) := C+

Σ̂
/σ̂T , where C+

Σ̂
:= CΣ̂ \ {ξ} and σ̂T is µ̂T restricted to C+

Σ̂
.

Let T+
Σ (X) := TΣ(X) \X, and let us call a ΣX-tree language T ε-free if T ⊆

T+
Σ (X). Obviously T is ε-free if and only if every Tx (x ∈ X) is ε-free. Furthermore,

we call a DR-FTL or a DR-FUTL V = {V(Σ, X)} ε-free if every tree language in
V is ε-free. The ε-free DR-FTL Sp = {Sp(Σ, X)} path-defined by a class of finite
semigroups S is defined by

Sp(Σ, X) := {T ∈ DRec(Σ, X) | T ⊆ T+
Σ (X), PS(T ) ∈ S},

and the ε-free DR-FUTL path-defined by S is Su := (Sp)u. Finally, for any
+-variety L = {L(Z)}, let VL = {VL(Σ, X)} be the ε-free DR-FTL defined by

VL(Σ, X) := {T ∈ DRec(Σ, X) | T ⊆ T+
Σ (X), (∀x ∈ X)Tx ∈ L(Σ̂)}.

We may now state the following variants of Propositions 5.3, 5.4 and 5.5.



On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 169

Proposition 5.6. Let V = {V(Σ, X)} be an ε-free DR-FTL, and let S be a class
of finite semigroups. If (1 ) Vu = Su, and (2 ) T ∈ V(Σ, X) if and only if δ(T ) ∈
V(Σ̂, X) for all Σ, X and T ⊆ T+

Σ (X), then V = Sp.

Proposition 5.7. If L = {L(Z)} is a +-variety and S is the corresponding VFS,
then VL = {VL(Σ, X)} is an ε-free DR-FTL path-defined by S.

Proposition 5.8. If an ε-free DR-FTL V = {V(Σ, X)} is path-defined by a VFS
S and L = {L(Z)} is the +-variety defined by S, then V = VL.

6 Some examples

Let us now apply the above results to the families of DR-recognizable tree languages
considered by Gécseg and Imreh [5, 6, 7, 8]. In [7] they studied monotone string
and tree automata and languages. Since monotonicity is basically a property of
the underlying algebras, we begin by defining monotone algebras. A Z-algebra
A = (A,Z) is monotone if there is a partial order ≤ on A such that a ≤ azA for all
a ∈ A and z ∈ Z. A language is monotone if it is recognized by a finite monotone
algebra. Let Mon = {Mon(Z)} be the family monotone languages.

A DR Σ-algebra A is monotone if Au is monotone. A ΣX-tree language is DR
monotone if it is recognized by a finite monotone DR Σ-algebra. Let DMon =
{DMon(Σ, X)} be the DR-FTL of DR monotone tree languages. These definitions
are equivalent to the ones of Gécseg and Imreh [7] and the next lemma is an
immediate consequence of their corresponding results.

Lemma 6.1. A DR Σ-algebra A = (A,Σ) is monotone if and only if the reachability
relation ⇒∗A is a partial order on A. Moreover, if A is monotone for some partial
order ≤, then a⇒∗A b implies a ≤ b (a, b ∈ A).

Let Mcld be the class of the finite monoids in which all right-unit submonoids are
closed under divisors. These notions, introduced in [7], can be defined by saying
that a finite monoid M belongs to Mcld if s(r1r2) = s implies sr1 = s for all
s, r1, r2 ∈M ; each s ∈M has its right-unit submonoid RU(s) := {r ∈M | sr = s}.
In [7] it was shown that that a regular string language is monotone if and only if its
syntactic monoid is in Mcld, and in [5] Proposition 5.2 was used for showing that
the DR monotone tree languages are path-defined by Mcld. That Mcld is closed
under subdirect products and factors is also implied by the following fact.

Proposition 6.1. Mcld is a VFM.

Proof. It is clear that S(Mcld), Pf (Mcld) ⊆ Mcld. To prove H(Mcld) ⊆ Mcld, let
ϕ : M →M ′ be an epimorphism and assume that M ∈Mcld. If M ′ /∈Mcld, there
are elements a′, b′, c′ ∈ M ′ such that a′b′c′ = a′, but a′b′ 6= a′. Let a, b, c ∈ M
be elements for which aϕ = a′, bϕ = b′ and cϕ = c′. Since M is finite, there
are numbers k ≥ 0,m ≥ 1 such that (bc)k+m = (bc)k. Let d := a(bc)k. Then
d · (b · (c(bc)m−1)) = a(bc)k+m = d but d · b 6= d because (d · b)ϕ = a′b′ while
dϕ = a′. This would mean that b /∈ RU(d) although b · (c(bc)m−1) ∈ RU(d). Hence,
M ′ ∈Mcld must hold.



170 Magnus Steinby

Since Mon is defined by Mcld, it follows from Eilenberg’s Variety Theorem that
Mon = {Mon(Z)} is a ∗-variety.

Proposition 6.2. DMon = VMon.

Proof. Let T ∈ DRec(Σ, X). If T ∈ DMon(Σ, X), then T is recognized by a finite
monotone DR Σ-algebra A. By Proposition 4.4, every Tx (x ∈ X) is recognized by

the monotone Σ̂-algebra Au. Hence, T ∈ VMon(Σ, X).

Conversely, if Tx ∈ Mon(Σ̂) for every x ∈ X, then each Tx is recognized by a

monotone Σ̂-algebraAx. By Proposition 4.4 T is recognized by the direct product of
the algebras Adx, and this DR algebra is monotone (cf. Proposition 7.2 below).

By Proposition 5.4, Theorem 22 of [7] follows from Proposition 6.2.

Corollary 6.1. DMon is path-defined by the VFM Mcld.

As a second example we consider nilpotent DR algebras and tree languages.
Since nilpotent string languages are characterized by their syntactic semigroups, we
shall use Proposition 5.7. The finite and co-finite ε-free languages form a +-variety
Nil = {Nil(Z)} which corresponds to the VFS Nil of finite nilpotent semigroups:
a semigroup S is nilpotent if it has a zero-element 0 and there is a number k ≥ 1
such that s1 · . . . · sk = 0 for all s1, . . . , sk ∈ S (cf. [2, 17]). A Z-algebra A = (A,Z)
is nilpotent if there exist an element ã ∈ A and a number k ≥ 0 such that avA = ã
for all a ∈ A and every v ∈ Z∗ of length k. It is easy to see that the ε-free languages
recognized by these algebras are exactly the members of Nil (cf. [9], p. 125).

Let us call a DR Σ-algebra A nilpotent if the Σ̂-algebra Au is nilpotent. It is
clear that this definition is equivalent to the one of [8]. A ΣX-tree language is
DR nilpotent if it is recognized by a finite nilpotent DR Σ-algebra. Let DNil =
{DNil(Σ, X)} be the FTL of ε-free DR nilpotent tree languages.

Proposition 6.3. DNil = VNil.

Proof. The proposition follows from Proposition 4.4 and the facts mentioned above.
Firstly, if T ⊆ T+

Σ (X) is recognized by a finite nilpotent DR Σ-algebraA, then every

Tx is recognized by the finite nilpotent Σ̂-algebra Au, and therefore belongs to
Nil(Σ̂). On the other hand, if each Tx is recognized by a finite nilpotent Σ̂-algebra
Ax, then T is recognized by the finite nilpotent DR Σ-algebra

∏
(Adx | x ∈ X).

Proposition 5.7 yields the following result proved in [8].

Corollary 6.2. DNil is path-defined by the VFS Nil.

As our third example we discuss the DR definite tree languages considered in
[6, 8]. Let us first recall that a Z-algebra A = (A,Z) is definite if there is a k ≥ 0
such that avA = bvA for all a, b ∈ A and every v ∈ Z∗ of length k. The languages
recognized by definite algebras are also called definite, and they are the languages of
the form E∪Z∗F where, for some k ≥ 0, E is a set of words of length < k and F is
a set of words of length k (cf. [9], for example). The ε-free definite languages form



On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 171

a +-variety Def = {Def(Z)} characterized by the VFS D of all finite semigroups
S such that Se = {e} for every idempotent e ∈ S (cf. [2]).

Let us call a DR Σ-algebra A definite if the Σ̂-algebra Au is definite, and say
that a ΣX-tree language is DR definite if it is recognized by a finite definite DR
Σ-algebra. Again, these definitions are equivalent to those of [8]. Let DDef =
{DDef(Σ, X)} be the DR-FTL of all ε-free DR definite tree languages.

It follows directly from our definitions and Proposition 4.4 that DDef = VDef .
Hence, Proposition 5.7 yields the following result proved in [8].

Proposition 6.4. DDef is path-defined by the VFS D.

Thus all three families of DR-recognizable tree languages shown in [6, 8] to
be path-definable by a class of finite monoids or semigroups are obtained from a
∗ - or a + -variety using Proposition 5.4 or Proposition 5.7. By Propositions 5.5
and 5.8 this can be expected once we know that the corresponding family of string
languages is a ∗ - or a + -variety. Indeed, any ∗ - and + -variety will yield a DR-FTL
or an ε-free DR-FTL path-definable by a VFM or a VFS, respectively.

7 Varieties of finite DR algebras

In this section we discuss varieties of finite DR Σ-algebras for an arbitrarily fixed
ranked alphabet Σ. The class operators S, H, Pf and Vf are defined for DR Σ-
algebras in the natural way, and we call a class K of finite DR Σ-algebras a variety
of finite DR Σ-algebras (DR Σ-VFA) if S(K), H(K), Pf (K) ⊆ K.

In [3] Ésik defines Ku := {Au | A ∈ K} for any class K of DR Σ-algebras.
He noted that K is a variety of DR Σ-algebras if and only if Ku is a variety of
Σ̂-algebras, and that notions from the theory of varieties of algebras may therefore
be extended to DR algebras. We shall apply the operation K 7→ Ku to classes of
finite DR Σ-algebras, and we also introduce the converse operation that associates
with each class U of finite Σ̂-algebras the class Ud := {Cd | C ∈ U} of finite DR
Σ-algebras. Obviously, Kud = K and Udu = U.

Lemma 7.1. Let K be a class of finite DR Σ-algebras and U be a class of finite
Σ̂-algebras. Then

(a) H(K)u = H(Ku), S(K)u = S(Ku) and Pf (K)u = Pf (Ku), and

(b) H(U)d = H(Ud), S(U)d = S(Ud) and Pf (U)d = Pf (Ud).

Hence, K is a DR Σ-VFA if and only if Ku is a Σ̂-VFA, and U is a Σ̂-VFA if and
only if Ud is a DR Σ-VFA.

Proof. The equalities in (a) and (b) are immediate consequences of Lemma 3.1,
and the remaining claims follow from them.

An easy modification of Tarski’s well-known HSP-theorem (cf. [1], p. 61) yields
Vf (K) = HSPf (K) for any ranked alphabet Σ and any class K of finite Σ-algebras
(cf. [18], for example). Let us derive the corresponding representation for finite
DR Σ-algebras.



172 Magnus Steinby

Proposition 7.1. Vf (K) = HSPf (K) for any class K of finite DR Σ-algebras.

Proof. Clearly, K ⊆ HSPf (K). As a special case of the fact noted above, we get

Vf (Ku) = HSPf (Ku). This means, in particular, that HSPf (Ku) is a Σ̂-VFA.
Since HSPf (K)u = HSPf (Ku), this implies by Lemma 7.1 that HSPf (K) is a
DR Σ-VFA. If L is a DR Σ-VFA with K ⊆ L, then HSPf (K) ⊆ HSPf (L) = L.
Hence, HSPf (K) is the DR Σ-VFA generated by K.

Lemma 7.1 and Proposition 7.1 yield the following fact.

Corollary 7.1. Vf (K) = Vf (Ku)d for any class K of finite DR Σ-algebras.

Let DMonΣ, DNilΣ and DDefΣ denote the classes of all finite monotone,
nilpotent and definite DR Σ-algebras, respectively.

Proposition 7.2. DMonΣ, DNilΣ and DDefΣ are DR Σ-VFAs.

Proof. By Lemma 7.1, it suffices to verify that the corresponding classes DMonuΣ,

DNiluΣ and DDefuΣ of unary algebras are Σ̂-VFAs.
Gécseg and Imreh [7] proved that all finite direct products and homomorphic

images of monotone finite automata are monotone. These results apply directly to
unary algebras, and hence Pf (DMonuΣ) ⊆ DMonuΣ and H(DMonuΣ) ⊆ DMonuΣ.
Since it is clear that subalgebras of monotone algebras are monotone, we may
conclude that DMonuΣ is a Σ̂-VFA.

In [18] it was noted that for any ranked alphabet Σ, the finite nilpotent Σ-
algebras form an Σ-VFA, and in [4] Ésik proved the corresponding fact about finite

definite Σ-algebras. Hence, also DNiluΣ and DDefuΣ are Σ̂-VFAs.

Let us now consider equational definitions of DR Σ-VFAs. The terms appearing
in Σ̂-identities are written as expressions ξu, where ξ is a variable and u ∈ Σ̂∗.
There are two types of Σ̂-identities, the regular identities ξu ≈ ξv and the irregular
identities ξu ≈ ξ′v, in which ξ and ξ′ are two distinct variables. A Σ̂-algebra
C = (C, Σ̂) satisfies ξu ≈ ξv if uC = vC , and it satisfies ξu ≈ ξ′v, where ξ 6= ξ′, if
cuC = dvC for all c, d ∈ C. Furthermore, C ultimately satisfies an ω-sequence

E = 〈`0 ≈ r0, `1 ≈ r1, `2 ≈ r2, . . .〉

of Σ̂-identities if there exists an n0 ≥ 0 such that C satisfies `n ≈ rn for every
n ≥ n0. The class Eu of finite Σ̂-algebras ultimately defined by E consists of the
finite Σ̂-algebras ultimately satisfying E. By a well-known theorem by Eilenberg
and Schützenberger (cf. [2, 17]), a class K of finite Σ̂-algebras is a Σ̂-VFA if and

only if K = Eu for some ω-sequence E of Σ̂-identities.
Following Ésik [3] we say that a DR Σ-algebra A satisfies a Σ̂-identity ` ≈ r if

Au satisfies ` ≈ r. Naturally, A ultimately satisfies an ω-sequence E of Σ̂-identities
if Au ultimately satisfies E. The class of finite DR Σ-algebras ultimate satisfying
E is denoted by Ed. Thus Eu is a class of Σ̂-algebras and Eud := (Eu)d is the
corresponding class of DR Σ-algebras. Similarly, Edu := (Ed)u is the class of

Σ̂-algebras corresponding to the class Ed of DR Σ-algebras. Since Eud = Ed and



On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 173

Edu = Eu, the next proposition follows from the Eilenberg-Schützenberger theorem
and Lemma 7.1.

Proposition 7.3. A class K of finite DR Σ-algebras is a DR Σ-VFA if and only
if K = Ed for some ω-sequence E of Σ̂-identities.

8 Concluding remarks

We have considered some aspects of DR tree recognizers and DR-recognizable tree
languages. Our algebraic approach is in a large part based on the connection
between DR algebras and unary algebras put forward by Ésik [3]. It was used for
describing the relationship between a DR-recognizable tree language and its path
language as well as in the discussion of varieties of finite DR algebras.

In Section 5 we showed that any ∗ - or + -variety defines a family of DR-
recognizable tree languages path-definable by a variety of finite monoids or a variety
of finite semigroups, respectively. Hence there are many families of DR-recognizable
tree languages that could be investigated similarly as the families DMon, DNil
and DDef were studied in the papers [7, 8, 13, 14]. On a more general level,
one should describe the common properties of all such families. In particular, it
is conceivable that they are characterized by some closure properties. It is also
natural to consider the families of DR-recognizable tree languages that correspond
to a varieties of finite DR algebras. Such questions belong to a variety theory of
DR-recognizable tree languages still to be developed.

References

[1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-
Verlag, New York, 1981.

[2] S. Eilenberg, Automata, Languages, and Machines. Vol. B, Academic Press,
New York 1976.

[3] Z. Ésik, Varieties and general products of top-down algebras, Acta Cybernetica
7 (1986), 293-298.

[4] Z. Ésik, Definite tree automata and their cascade composition, Publicationes
Mathematicae Debrecen 48 3–4 (1996), 243–261.

[5] F. Gécseg, Classes of tree languages determined by classes of monoids, Inter-
national Journal of Foundations of Computer Science 18 (2007), 1237-1246.

[6] F. Gécseg, Classes of tree languages and DR tree languages given by classes
of semigroups, Acta Cybernetica 20 (2011), 253-267.

[7] F. Gécseg and B. Imreh, On monotone automata and monotone languages,
Journal of Automata, Languages and Combinatorics 7 (2002), 71-82.



174 Magnus Steinby

[8] F. Gécseg and B. Imreh, On definite and nilpotent DR tree languages, Journal
of Automata, Languages and Combinatorics 9 (2004), 55-60.

[9] F. Gécseg and I. Peák: Algebraic theory of automata, Akadémiai Kiadó, Bu-
dapest 1972.

[10] F. Gécseg and M. Steinby, Minimal ascending tree automata, Acta Cybernetica
4 (1978), 37-44.

[11] F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.
2. ed. downloadable from arXiv.org as arXiv:1509.06233, September 2015.

[12] F. Gécseg and M. Steinby, Minimal recognizers and syntactic monoids of DR
tree languages, Words, Semigroups and Transductions (eds. M. Ito, G. Paun
and S. Yu), World Scientific, Singapore 2001, 155-167.

[13] Gy. Gyurica, On monotone languages and their characterization by regular
expressions, Acta Cybernetica 18 (2007), 117-134.

[14] Gy. Gyurica, On nilpotent languages and their characterization by regular
expressions, Acta Cybernetica 19 (2009), 231-244.

[15] E. Jurvanen, On Tree Languages Defined by Deterministic Root-to-frontier
Recognizers, Dissertation, Department of Mathematics, University of Turku,
Turku 1995.

[16] M. Magidor and G. Moran, Finite Automata over Finite Trees, Technical Re-
port 30, Department of Mathematics, Hebrew University, Jerusalem 1969.

[17] J.E. Pin, Varieties of Formal Languages, North Oxford Academic Publishers,
London 1986.

[18] M. Steinby, A theory of tree language varieties, Tree Automata and Languages
(eds. M. Nivat and A. Podelski), North-Holland, Amsterdam 1992, 57-81.

[19] W. Thomas, Logical aspects in the study of tree languages, 9th Colloquium
on Trees in Algebra and Programming (ed. B. Courcelle), Proc. 9th CAAP,
Bordeaux, 1984, Cambridge University Press, London, 1984, pp. 31–49.

[20] J. Virágh, Deterministic tree automata I, Acta Cybernetica 5 (1980), 33-42;
II, ibid 6 (1983), 291-301.


