Acta Cybernetica 23 (2017) 327-347.

On the Completeness of the Traced Monoidal
Category Axioms in (Rel,+)*

Miklés Bartha®

To the memory of my friend and former colleague Zoltdn Esik

Abstract

It is shown that the traced monoidal category of finite sets and relations
with coproduct as tensor is complete for the extension of the traced sym-
metric monoidal axioms by two simple axioms, which capture the additive
nature of trace in this category. The result is derived from a theorem saying
that already the structure of finite partial injections as a traced monoidal
category is complete for the given axioms. In practical terms this means that
if two biaccessible flowchart schemes are not isomorphic, then there exists an
interpretation of the schemes by partial injections which distinguishes them.

Keywords: monoidal categories, trace, iteration, feedback, identities in cat-
egories, equational completeness

1 Introduction

It was in March, 2012 that Zoltan visited me at the Memorial University in St.
John’s, Newfoundland. I thought we would find out a research topic together, but
he arrived with a specific problem in mind. He knew about the result found by
Hasegawa, Hofmann, and Plotkin [12] a few years earlier on the completeness of
the category of finite dimensional vector spaces for the traced monoidal category
axioms, and wanted to see if there is a similar completeness statement true for the
matrix iteration theory of finite sets and relations as a traced monoidal category.
Unfortunately, during the short time we spent together, we could not find the solu-
tion, and after he had left I started to work on some other problems. Having learned
about his shocking untimely death, I felt impelled to finally solve the problem that
we started to work on together, and have it published in his memory.

The result obtained in this paper points beyond the original goal of finding a
suitable extension of the traced monoidal category axioms for which the category

*Work initiated by Zoltan Esik as part of a research project in 2012.
?Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL,
Canada, E-mail: bartha@mun.ca

DOI: 10.14232/actacyb.23.1.2017.18

328 Miklos Bartha

(Relyin, +) is complete. We show that already the category (Pingy;,,+) of finite
partial injections is complete for the minimal extension of the traced monoidal
axioms that can be expected from these structures. Since (Ping;,,+) is a subcate-
gory of (Relyin, +), the completeness result originally sought by Zoltan follows as
a corollary.

We shall assume familiarity with the basic concepts of category theory [19], and
it helps if the reader is also familiar with Zoltdn’s work on iteration theories [9].

2 'Traced monoidal categories

A symmetric monoidal category consists of a category C equipped with a bifunctor
® :C x C — C called tensor, and a unit object I of C. Furthermore, C has natural

isomorphisms:
axyz: (XQY)®Z—-X® (Y ®2)

called associators,
Ix: I®X —>Xandrx : X®I—+ X
called left and right unitors, and
coy UV VU

called symmetries, which isomorphisms are subject to the standard coherence ax-
ioms given in [19]. The monoidal category C is strict if the bifunctor ® is strictly
associative, so that

A®(B®C)=(A@B)@Cand A0 =I0 A=A,

and all of the associators and unitors are the identities.

Let C be a monoidal category with tensor ® and unit object I as specified
above. The following definition of traced monoidal categories uses the terminology
of [15], except that trace in is introduced as left trace, that is, an operation C(U +
A,U 4+ B) — C(A, B), rather than C(A+ U,B +U) — C(A, B) (i.e., right trace)
as it appears in [15]. The reason is to remain consistent with the notation used
in Zoltan’s and the author’s own work. Also, following in Zoltdn’s footsteps, we
write composition of morphisms in a left-to-right way, that is, the composite of
f:A—>Bandg:B—Cis fog: A—C.

Definition 1. A trace for C is a family of functions
Trh 5 :C(U®A,U®B)— C(A,B)

natural in A and B, satisfying the following four axioms:

vanishing:

Tri% (avyv.ao f) =Trh p(Trygaves(f o avv.n)),

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 329

where f: U® (V@A) - (U®V)® B;

SUPETPOSING:

Trl 5(f) © 9 = Trigc.pep(agisc o (f ©g) o avs.p),
where f: URA—->U®B, and g: C — D;
sliding:
TTX,B((Q ®1la)o f)= TTX,B(JC o(g®1p))
where f: VRA—->U®Bandg:U — V;
yanking:
TrgyU(cU,U) =1yp.

It is well-known that sliding of symmetries (whereby g is chosen as a symmetry
isomorphism in the sliding axiom) suffices in the presence of the other axioms. Also,
the special vanishing axiom:

Trl p(lao folg')=f for f: A— B,

which was part of the original system in [15], can easily be derived from the other
axioms and can therefore be omitted. As the reader can see, the necessity of using
the associator and unitor morphisms a(X,Y, Z), [x in the traced monoidal axioms
makes them look very complicated, even though their graphical representation be-
low shows that in fact they are quite intuitive and simple. It is known, see e.g. [20],
that every monoidal category is equivalent to a strict one. Quoting an argument
from [14], “most results obtained with the hypothesis that a monoidal category
is strict can, in principle, be reformulated and proved without that condition”.
Our result in this paper is no exception, therefore in the sequel we shall make the
technically simplifying assumption that our monoidal categories (traced or not) are
strict.

The graphical representation of the traced monoidal category axioms (with the
strictness assumption incorporated) is given in Figures 1-5.

Traced monoidal categories (with one additional axiom) and their graphical
language first appeared in [1] in an algebraic setting, using the name “scheme alge-
bra” for these structures. The operation corresponding to trace was called feedback.
The year was 1987, and already at that time Zoltan and Steve Bloom had a signif-
icant number of important results on iterative and iteration theories, the study of
which was initiated by Calvin C. Elgot in the early 1970s. The motivation of that
study was to find out the equational laws characterizing the iteration operation in
flowchart-related algorithms. The algebra (category) of flowcharts itself has also
been axiomatized in terms of the iteration operation [8]. This axiomatization was
a little awkward, however, because the iteration operation

fflin—=p for f:n—n+p,

where n and p are non-negative integers, was intended to capture the semanti-
cal aspects of iteration in the first place. For syntactical purposes the feedback

330 Miklos Bartha

C
U
g
A
f =
U B

Figure 1: Naturality of trace in A.

]

C
<
>
>

W=

C
<

[

Figure 2: Vanishing

operation
™M fip—q for f:n+p—n+tgqg

turns out to be a lot more practical and easier to deal with. No loss of generality
arises from the switch, provided that the underlying structures are algebraic the-
ories, since there are standard rewriting rules between iteration and feedback in
all such theories. See [9, 1, 25]. (The purely syntactical category of flowcharts is
of course not such a structure.) Regarding the exact relationship between traced
monoidal categories and iteration theories, it was proved in [1] that a single-sorted
traced monoidal category is an iteration theory iff it is an algebraic theory and
satisfies the commutative axioms discovered by Zoltan in [11].

Continuing the story of traced monoidal categories, essentially the same axiom-
atization and graphical language as the one presented in [1] was published a few
years later in [10] under the name “biflow”. Neither of these pioneer works noticed,
however, that the monoidal category of finite dimensional vector spaces, in which
tensor is tensor product and feedback is trace, is an obvious scheme algebra/biflow,
provided that the axiomatization is lifted from the single-sorted algebraic language

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 331

u A

Figure 4: Sliding

to the general “polymorphic” categorical one. Finally, in 1996, Joyal, Street, and
Verity made this important point by essentially rediscovering the old scheme axioms
in a general new context, which also covered balanced monoidal categories. They
also presented the fundamental Int construction on the embedding of an arbitrary
balanced traced monoidal category into a tortile one [15]. In case braiding is sym-
metry, as it is in our present study, the Int construction transforms an arbitrary
traced monoidal category into a compact closed category [17].

By virtue of the above discussion, the feedback operation is deeply rooted in
control theory, whereas trace is a concept used primarily in finite dimensional vector
spaces as an operation on linear maps (matrices). The usual interpretations of
trace and feedback have not much in common, since trace is “multiplicative” style
in contrast with feedback, which has a strong “additive” flavour. The informal
distinction “additive or multiplicative” uses the very basic category of sets and
functions as a basis for comparison. Taking tensor in this category as Cartesian
product with I = {@} (multiplicative) or coproduct with I = () (additive) results
in entirely different monoidal categories. On this basis, “multiplicative” in vector
spaces means that ® is tensor product rather than ordinary product, which happens
to coincide with coproduct.

According to the main result of [1], the free single-sorted category with feedback
generated by a collection of morphisms (boxes) is the algebra of flowchart schemes,

332 Miklos Bartha

U u U
U U U

Figure 5: Yanking

which is definitely additive style and reflects the flow of information in flowchart
algorithms. In summary, there are countless reasons to call the operation

Trh 5 :C(U®A,U®B)— C(A,B)

feedback, and just a few to call it trace. Nevertheless, the name “trace” stuck, and
today everyone calls the categorical structures corresponding to scheme algebras
traced monoidal categories.

To complicate the issue even further, categories with feedback have also been
considered in [16] and a series of works by the present author [2, 3, 4, 5]. In these
categories, however, yanking is missing from the axioms imposed. Feedback in
such categories is delayed like in synchronous systems, e.g. sequential circuits. The
meaning of the loop on the left-hand-side of the yanking axiom (Fig. 5) is a reg-
ister, a memory element, which suggests a step-by-step behavior for synchronous
systems (circuits/schemes). Note that this kind of categorical interpretation over
sets as objects is multiplicative style, since a morphism A — B is a Mealy automa-
ton U x A — U x B with U being an arbitrary set (of states). As a consequence,
there is no explicit control present in the system. In a sequential circuit, for ex-
ample, every logical gate and flip-flop is engaged in each clock cycle, so that the
whole system is massively parallel. What we call “control” in the von Neumann
computer architecture is just an abstraction, an extra control line carrying a digital
information indicating that the control is present or not. Nevertheless, if the un-
derlying monoidal category of the category of circuits (automata) is additive, then
the automata themselves will be additive, too, possessing the equivalent of some
kind of control.

As stated in the Introduction of [9], and demonstrated throughout the book,
iteration theories are ubiquitous in computer science. If this is true, then traced
monoidal categories are twice as ubiquitous and not only in computer science but in
the whole of mathematics. Indeed, these categories are more general than iteration
theories, therefore they cover more ground. Here are just a few among the most
important traced monoidal categories occurring with great frequency.

1. The additive category (Rel,+) of relations with ® being coproduct.

The base category of (Rel, +) is the category Rel of sets and relations. That is,
objects are sets, and a morphism A — B is a relation R C A x B. Tensor of objects
is disjoint union (+), I = @, and tensor of morphisms is disjoint union of relations.

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 333

ForR:U+A—U+B, TrgﬁBR is given by
(a,b) € TTX,BR iff Jug,...,uy € U, n >0, such that aRui R . .. Ru, Rb.

The category (Rel, +) restricts naturally to Rely;,, the category of finite sets and
relations. This restriction is equivalent to its full subcategory (Rely,+) induced
by the objects in N = {0,1,...n...}, where 0 = § and n +1 = n U {n} as in
Zermelo-Fraenkel set theory. This subcategory is strict and it is closed for trace.
It is also single-sorted, since the set of objects N is generated by the object 1 using
tensor. Clearly, I =0 in (Rely,+).

It is very instructive to look at the matrix representation of (Rely, +), for this
category is a matrix iteration theory as well. It was shown in [9, Corollary 5.5] that
this theory is generated by the initial w-idempotent Boolean semiring B. In other
words, if relations are represented as 0-1 matrices, then composition and tensor
(coproduct!) of relations is that of matrices, using the algebraic rules of B rather
than those of GF(2). (That is, 1+1=1 and not 0.) The trace of a finite relation
R :n+ p— n+ q having a matrix decomposition

(2 5)

with A:n—>n,B:n—gq,C:p—n, D:p— qcan then be obtained by the
well-known Kleene formula:

Trr ,R=D +CA*B, (1)

where A* denotes the infinite sum

according to the Boolean semiring addition and multiplication rules. That is, in
the Kleene formula (1), + denotes the Boolean sum of matrices p — ¢ (rather than
+ as tensor/coproduct). The present definition of the Kleene star * coincides with
the star operation used in matrix iteration theories.

2. The multiplicative category (Rel, x) of relations with product as tensor.

The base category of (Rel, x) is also Rel, but tensor is x (Cartesian product of
sets) rather than 4. The object I is {}. The tensor of two relations is the product
of them in the usual sense. For R: U x A — U x B, its trace is defined by

(a,b) € TTX,BR iff 3u € U such that ((u,a), (u,b)) € R.

Again, (Rel, x) restricts to the category Rely;, of finite sets and relations, which
category is equivalent to its full subcategory (Rely,-) induced by the objects N,
provided that the “set” n x m is identified with n-m in a given canonical way (e.g.
enumeration by rows or columns). In everyday language, take the matrix repre-
sentation of relations. The unit object I is 1. The category (Rely,-) is no longer

334 Miklos Bartha

single-sorted, but it is still generated by the prime numbers (and 0) as objects, and
it is strict.

3. The multiplicative category (FdVecty,®) of finite dimensional vector spaces
over a given field K.

The base category is FdVect, and ® is tensor product of linear maps. The ob-
ject I is the field K as a 1-dimensional vector space. Analogously to (Rel, x), this
category is also equivalent to its restriction induced by the concrete n-dimensional
spaces F7, in which linear maps are simply n x m matrices. In this context we
can even identify the object F with the number n, since K is fixed. The reduced
category is again strict. For a linear map (matrix, for simplicity) M : U — U,
TrY M is the sum of diagonal elements in M. The general definition of trace is
tecﬁnically more complicated, and the reader is referred to [15] for the details of
this definition. The analogy between (Relyn, x) and (FdVectk, ®) is that, when
relations are represented as 0-1 matrices, their tensor and trace is calculated in the
exact same way as in (the strict equivalent of) (FdVectk, ®), interpreting the ring
operations according to the Boolean semiring B rather than the field K. Since B
is just a commutative semiring (addition is idempotent in B), the morphisms of
(Relyin, x) are not linear maps between vector spaces. (They are just linear maps
of free semimodules over the semiring B.)

4. The additive category (Iso,®) of quantum control.

Let FdHilb denote the category of finite dimensional Hilbert spaces. The base
category Iso is then the subcategory of FdHilb having isometries only as its mor-
phisms. Tensor is now @, that is, coproduct/product in FdHilb. The unit object
I is the zero space. Notice the drastic change from the multiplicative tensor ®
in (FdVectk,®) to the additive @, which is analogous to + in (Relg;,,+) as a
matrix theory.

Let 7: U &K = U @ L be an isometry. Then TT%,LT : K — L is the isometry
specified as follows. Consider the matrix of 7

u L
u TA TB
K TC D
according to the biproduct decomposition
T = <[7_A7 TC]? [TB, TD]>7

where [-] stands for coproduct and {_) for product. Trace is defined again by the
Kleene formula
TT%LT = nlLH;O(TD +71c o1y oTR). (2)

In the present Kleene formula

n

*n 7

TA :E TA>
=0

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 335

where 74 = Iy and 74" = 7% o 74. In other words, 74" is the n-th approximation
of 74’s Neumann series well-known in operator theory.

It was proved in [7] that the limit in (2) always exists and the convergence is
strong, resulting in an isometry. This result is very surprising, for the monoidal
category (Iso,®) does not even resemble to an algebraic theory and yet, it has a
trace completely analogous to iteration in matrix iteration theories. Also, the ring
operations addition and multiplication performed in matrix composition and sum
are over the field C, not over the trivial Boolean semiring B. The Kleene formula
(2) does not work in the whole category (FdHilb, @) [21], and there appears to be
no way to find a reasonable trace for this monoidal category.

The additive style quantum trace explains how the flow of quantum information
can be controlled in a quantum flowchart algorithm [23] or a Turing machine [7].
At the moment its consistency is only proved for finite dimensional Hilbert spaces,
which is insufficient to explain the semantics of general Turing machines with an
infinite number of tape cells (or the semantics of a von Neumann style analog
quantum computer architecture having an infinite memory component). Further
analysis is needed to generalize the quantum trace for separable (i.e. countably
infinite dimensional) Hilbert spaces. This issue is of utmost importance in the
logical design of quantum computers.

At this point the reader might wonder why the very basic monoidal category
(Set, x) is missing from the above list of examples. What is a reasonable trace for
this category, or a suitable extension of it? At the moment this question is still
unanswered. Trace cannot simply be adopted from (Rel, x), because the trace of
a function might turn out to be a relation only. Thus, a deterministic computation
would trigger a nondeterministic one, which we certainly do not want to allow.
The author proved in [4] that the category with (delayed) circular feedback freely
generated from (Set s;,,, x) is the category Sim(Set;,, x) of simulation equivalent
finite state deterministic Mealy automata. No delay-free model is currently known.

3 Looking at trace in the Hungarian way

In this section we relate the trace operation in (Rely;y, +) to bipartite graph match-
ings, and show how the trace of a relation R : U + A — U + B can be constructed
by the help of the well-known Hungarian method. We also take a closer look at
Selinger’s construction [22] of embedding the category (Rel, +) into (Rel, x), and
interpret this embedding as a network flow problem. Let R: U+ A — U + B be
a relation over finite sets. The standard graph representation of R is a bipartite
graph Gg = (U + A,U + B). See Fig. 6. Extend Gr by edges connecting each
vertex u € U in bipartition U + A with the corresponding w in U + B. See Fig. 7.
Let G% denote the resulting graph. Consider the collection of newly added edges
as a matching M in G%, and construct the relation Ry : A — B in the following
way. For each (a,b) € A x B, put (a,b) in Ry iff there is an augmenting path
in GY, from a to b with respect to M. Recall from [18] that an augmenting path
is an M-alternating path starting and ending at vertices not covered by M. It is

336 Miklos Bartha

U+A

U+B

U B

Figure 6: The graph of relation R

immediate by the definitions that
(a,b) € TrY zgR iff (a,b) € Ry

U+A

uU+B

U B

Figure 7: The graph GY, with matching M

Thus, in order to calculate Tr% pR, it is sufficient to apply the Hungarian
method on the graph G% with matching M to find a maximum matching in GY,.
This is done by looking at the Hungarian forest I’ obtained at the final stage of
the algorithm and see which vertex pairs (a,b) are in the same tree of F. See [18]
for the details of the Hungarian method.

The functorial embedding of (Rel, +) into (Rel, x) by Selinger [22] is yet an-
other example of traced monoidal categories emerging naturally in combinatorial
optimization problems. Let R : A — B be a relation between finite sets A and B,
and consider the bipartite graph Gr = (A, B) corresponding to R. Interpret Gr
as a network flow problem [18] by assigning non-negative integers to the vertices
in A and B. The assignment f4 : A — N specifies the supply of some merchandise
available at each vertex (warehouse) a € A, while the assignment fp : B — N
captures the demand on the B side for the same merchandise. Assume that

tr=>_ fala)=)_ fo(b)

acA beB

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 337

holds, so that the total supply meets the total demand.
The task is to deliver all the goods from side A to side B (in one round) along
the roads (edges) between the two sides according to Gr. See Fig. 8. Clearly, a

A

FR:

Figure 8: The network flow problem for R

solution to the problem is an assignment p : F(Ggr) — N satisfying the conditions

fal@) =3 plat) and 3 p(a',b) = fu(d)

veB a’€A

foralla € A and b € B.
The functor F : (Rel,+) — (Rel, X) is now defined as follows.

On objects: For every set A, FA =[A — N];,, where [A — N]y;,, denotes the set
of functions f : A — N by which f(a) = 0 for all but finitely many a € A.

On morphisms: If R: A — B is a relation, then for every f4 € FA and fp € FB,
(fa, fB) € FR iff the network flow problem (f4, fp) in Gg has a solution.

Note that the concrete problem (fa4, fg) is finite, because both f4 and fp are in

It was proved in [22] that F' is a functorial embedding of traced monoidal cate-
gories. Selinger has also proved that there exists no such embedding of (Rely;,,, +)
into (Rely;y,, x). In particular, for the restriction of our concrete embedding F to
(Relyin, +), one cannot assume that the supply and demand numbers assigned by
fa and fp to the vertices of Gi remain under a fixed upper bound.

4 Free traced monoidal categories

In general, a coherence result for a subcategory p of monoidal categories is about
establishing a left adjoint for a forgetful functor F' from the category of u-monoidal
categories into an appropriate syntactical category, and providing a graphical char-
acterization of the free monoidal p-categories so obtained. For some typical exam-
ples, see [19, 20, 17, 24, 1, 2]. In this section we briefly overview the construction
of the free traced monoidal category generated by a set of morphisms (variables)

338 Miklos Bartha

presented in [6]. We shall maintain the assumption that the monoidal category to
be constructed is strict, even though it is very simple to modify the construction
to obtain the non-strict free traced monoidal categories. Our way of choosing the
forgetful functor F differs from the method followed e.g. in [17], where the category
structure was still preserved. We go one step further in forgetting, and preserve
only the alphabet structure of morphisms. To remain consistent with set theory,
assume that the hom-sets of our monoidal categories are indeed sets.

For a class O of object variables, a doubly ranked alphabet or monoidal signature

X =(0,M,r)

[14] consists of a set M of morphism variables and a mapping r which assigns for
each variable f € M a domain dom(f) and a codomain cod(f), which are finite
sequences (strings) over O. The pair (dom(f),cod(f)) is called the rank of f. As
it is natural, we write f : dom(f) — cod(f). In case O is the set N, the standard
concept of doubly ranked alphabet is recaptured. An alphabet mapping between
ranked alphabets ¥ = (O, M, r) and A = (O’, M’,r') is a mapping ¢, which assigns
to each object variable A in O an object variable A in O’ and to each morphism
variable f : u — v in M a morphism variable ¢f : ¢u — ¢v in M’, where ¢ is
extended to strings in O* in the natural way. Thus, an alphabet mapping preserves
the rank of morphism variables.

Every (strict) monoidal category M can trivially be considered as a ranked
alphabet ¥ = AM in which the object variables are the objects of M (denoted by
Oy as a concrete monoid structure). As an important twist, however, the empty
string € in O}, must be identified with the object I in Op;. The morphism variables
of ¥ with rank w — v are simply all the morphisms |u| — |v]| in M, where |u| and
|v| are the evaluations of v and v in the given monoid structure on Ops;. We shall
use the distinctive subscript f,_,, to refer to the morphism variable ©u — v that
is actually the morphism f : |u| — |v|. This is necessary in order to define the
domain and codomain of variables in a unique way. Since v and v are finite strings,
the collection of morphism variables © — v remains a set.

If F: M — M’ is a monoidal functor, then AF : AM — AM’ is the alphabet
mapping ¢ by which A = FA and

¢fu—>’u = FfFu—>F'U

for every morphism f : |u| — |v| in M, where F' is extended to strings of objects
in the obvious natural way.
With the above definition we have established the functor

A : MonCat — Alph

between the category of monoidal categories and that of ranked alphabets. Our
aim is to provide a left adjoint G for the functor A, when restricted to the subcat-
egory TraMon of traced monoidal categories. In algebraic terms this amounts to
constructing the traced monoidal category freely generated by some doubly ranked

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 339

alphabet 3. In order to keep the discussion simple, we shall assume that O = N that
is, our categories are single-sorted. Then the free traced monoidal category gener-
ated by a doubly ranked alphabet is essentially the category of flowchart schemes
as described in [1]. The only significant difference arises from the absence of the
axiom:

TT?JlU = 1],

where 17 : U — U denotes the identity morphism. In the single-sorted setting this
axiom is equivalent to

Tll = 107

which was imposed as axiom S6 in [1]. (Read 1 simply as T’ ;.) If this axiom is not
present, then the policy with respect to the so called loop vertex in schemes changes
as follows: every subexpression T 1; contributes a separate loop vertex 0 — 0 to the
scheme being constructed. Thus, loop vertices multiply during the construction,
as opposed to the policy applied in [8, 1] that there is a unique loop vertex in
each scheme. (In other words, loop vertices do not multiply.) This straightforward
change covers the whole impact of adding axiom S6 to the standard trace monoidal
category axioms. The change is clearly visible e.g. in the category (FdVectg, ®),
where the sequence of morphisms

Tr30 0la0, Tr2i gilor, Tr2a oloe, ..., Tran gulon, ...
produces the sequence of elements
1,2=1+1,22=2.2,...,2"=2-2....-2,... in K.

The same dilemma, whether to multiply the loop vertices or not in the axioma-
tization of schemes, occurred already to Bloom and Esik when writing the paper
[8]. The author knows this from Zoltdn himself, who told him in 1986 that they
decided not to multiply the loop vertices because they only had algebraic theories
in mind for possible interpretations. Otherwise the issue was trivial. Since Zoltan
used to be the advisor of the author in previous years, the loop vertices did not
multiply in the axiomatization [1] either.

Rather than giving the formal definition of Y-schemes for a doubly ranked al-
phabet ¥, we just show an example scheme S : 4 — 1 in Fig. 9. The scheme S has
4 input channels and 1 output channel. The alphabet ¥ consists of the morphism
variables h : 2 — 1 and g : 1 — 1. A variable occurrence in S is a box labelled by
that variable. Boxes have numbered input and output ports (numbered from left to
right), with as many input (output) ports as the domain (respectively, codomain)
of the corresponding variable. The input channels have exactly one output port,
while the output channels have a single input port. Each output port in the scheme
is connected to exactly one input port, and every input port is the endpoint of a
single edge coming from an output port. In addition, there are an arbitrary number
of isolated loop vertices (none in our scheme), which vertices have no input or
output ports and are labelled by the special symbol L not in 2.

340 Miklos Bartha

Figure 9: A ¥-scheme 4 — 1

Two X-schemes are isomorphic if they are isomorphic as directed graphs by an
isomorphism ¢ which preserves the labeling of the boxes, and the input/output
channels. Furthermore, ¢ must respect the numbering of the ports in boxes as well.

The traced monoidal category Sch(X) of X-schemes uses the graph operations
disjoint union for tensor, gluing schemes by their input/output channels for compo-
sition, and adding an edge from the first output channel to the first input channel
for feedback, bypassing the pair of the connected channels themselves. Whenever
feedback connects two channels that are already connected to each other in the
opposite direction, a new instance of the loop vertex is created and added to the
scheme. The interpretation of the identity and symmetry morphisms is straight-
forward, using straight lines connecting the input channels to the output ones. See
[1, 6] for details. With this interpretation, the category Sch(X) is that of isomor-
phism classes of X-schemes.

If ¥ is not single-sorted, then the only modification to the above description is
that ports are also labelled by the object variables in such a way that for every box
labelled by morphism variable f, the sequence of object variables corresponding to
the input (output) ports read from left to right is dom(f) (respectively, cod(f)).
Obviously, edges must respect the labeling of the ports. The scheme is u — v if
the sequence of input (output) channel labels is u (respectively, v).

In order to interpret a scheme S : z — y in a traced monoidal category C, one
must first assign an object ¢A in C to each object variable A occurring in S, and
concrete morphisms ¢u — ¢v in C to each morphism variable © — v occurring in
S as a box label. Then represent S in normal form in the following way. Take the
tensor (disjoint union) of the boxes in S, together with some straight lines, apply
a suitable permutation from either side, and create the edges of S using feedback.
Finally, copy this procedure at the level of semantics in the category C. The result
is a morphism ¢x — ¢y, and it will not depend on the concrete syntactical normal
form chosen, as long as we do not introduce a cycle of straight lines with feedback
in the normal form. See again Fig. 7 in Section 3. This should be avoided by
taking only a minimum number of straight lines in the normal form, unless there

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 341

are loop vertices in the scheme. Each loop vertex 1 4 counts as such a “looping”
feedback, which corresponds semantically to 14 14 with the chosen interpretation
of the object variable A. Again, see [1, 6] for details.

We shall be interested in two more axioms in Section 5.

Acc (accessibility): f =g for f,g: I — A, and

Ter (termination): f=g for f,g: A— 1.

By T'racepiqcc we shall mean the set of traced monoidal category axioms extended
by Acc and Term.

Notice that imposing the axioms Acc and Term prompts the addition of con-
stants 04 : I — A and 04 : A — I to the traced monoidal language. These
constants must then satisfy the following further monoidal axioms:

Opof=0p for f: A— B,

04 ®0B =0axB,
(0a®1a)ocan=14a®04,

and the dual counterparts of these axioms for 04. See [1, 13]. Regarding schemes
as morphisms in the corresponding free category Schpiaec(X), one must lift the
condition that for each input port of a box (or output channel) there exists an
edge arriving at that port, and dually, there need not exist an edge going out
from any particular output port. (The ignored ports do not cease to exist, though,
they just become idle.) All schemes must be biaccessible, however. Recall from
[1, 8, 9] that a X-scheme S is accessible if each boz (i.e. not necessarily the output
channels) can be reached from at least one input channel through a directed path
in S. Dually, S is terminating if from each box there exists a path to at least one
output channel. Scheme S is biaccessible if it is both accessible and terminating.
The axiomatization statement for Schpiq..(X) as a free category follows from the
yet more general axiomatization presented in [1].

5 The completeness result

In this section we take a closer look at the definition of a given monoidal category be-
ing complete for the traced monoidal category axioms extended by the axioms Acc
and Term. We also show that already the initial single-sorted monoidal category
satisfying the axioms Tracepiacc, the category (Piny, +) of finite partial injections
over the objects N as a subcategory of (Rely, +) is complete for Tracepg;ace-

The reader might have the impression that this statement is trivial, since
(Piny, +), being initial (with or without the additional constants 0; : 1 — 0
and 0! : 0 — 1), is present in the category of biaccessible schemes as a subcate-
gory. While this is certainly true, it does not imply that (Piny, +) is complete for
Tracepiqcc- In general, there could be a lot of identities valid in the initial algebra
of an equational class that are not valid in the free algebras of that class generated

342 Miklos Bartha

by several variables. For example, the initial D-algebra in [1], as a monoidal cat-
egory, coincides with the initial algebraic theory, and it can be embedded in the
single sorted monoidal category of cycle-free schemes with junctions allowed. (Add
a constant d : 2 — 1 to the single-sorted monoidal language, or d4 : A A — A
in general, as the “diagonal”. See [1, 13].) This category is the free D-algebra
generated by its boxes, yet, it is very far from being an algebraic theory.

The motivation for our study is the observation made in [12] that the category
(FdVectk, ®) is complete for the traced monoidal axioms, whenever the field K
has an infinite characteristic (i.e. the elements 1,14+1,...,1+1+...4+1,... are all
distinct.) The authors of [12] rely on the following understanding of completeness.

If two networks (schemes) have the same value under all interpretations
over K, then they are isomorphic.

Our more formal understanding of interpretation and completeness is the following.
Consider the doubly ranked alphabet ¥ = (O, M, r) (fixed for the rest of the paper)
in which O is a countably infinite set and M (p, ¢) is also countably infinite for each
p,q € O*. In other words, we have as many object and morphism variables in X
as we want in order to use them for labeling schemes. Then a traced monoidal
identity is a pair (p,q) of X-schemes u — v for some u,v € O*. As usual, we write
p = q for the pair (p,q). Accordingly, by a Tracepiqc. identity we mean a pair of
biaccessible schemes.

Definition 2. A Tracepgiqcc identity p = q is wvalid in a traced monoidal category
C if for every alphabet mapping ¢ : ¥ — AC,

(Go)p = (Go)a-

Recall that G : Alph — TraMon is the left adjoint of the forgetful functor A.
In the present case of biaccessible identities, take G to be the left adjoint of the
appropriate counterpart of A.

Definition 3. A traced monoidal category C satisfying the additional axioms Acc
and Term is complete for the traced monoidal axioms Tracep;qc. if for every valid
identity p = q in C, the biaccessible schemes p and q are isomorphic.

There is a slight problem with Definitions 2 and 3, which is highlighted by the
following example.

Example Let Bi denote the axiom
Bi: f=g for f,g:1—1,

and add it to the the traced monoidal ones to obtain the system T'racep;. Consider
the obvious single-sorted traced monoidal category (Bi,+) of bijections n — n as
a subcategory of (Rely;,,+). Is it complete for Tracep;? One could immediately
answer no, since e.g. Acc and Ter are valid in (Bi, +), yet they are not provable
from Tracep;. This answer is not fair, however, because the axioms Acc and Ter

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 343

are just partially meaningful in (Bi, +), and when they are, they are equivalent to
Bi.

The anomaly arises from the fact that categories are not simply multi-sorted
algebras. Their hom-sets could be empty. Since we defined the alphabet X very
generously, we must assign a morphism |¢pp| — |¢q| to each morphism variable
(box) f:p — ¢ in ¥ in order to create an alphabet mapping ¢ : ¥ — A(Bi,+).
There will not be any, however, unless all object variables are mapped into I = 0
by ¢. Indeed, if A # I was mapped into say 1 (i.e. A = 1), then — since the empty
string I = € goes automatically to 0 — the morphism variables ¢ — A could not be
mapped anywhere, for Bi(0,1) = §). One could (and must) get around this problem
by including a “dummy” morphism in each hom-set of (Bi, +) and define the traced
monoidal operations on these morphisms e.g. in the strict way (always resulting in
the dummy morphism if either of the arguments is dummy). One may even extend
(Bi,+) to the traced monoidal category of partial injections. The extension will
not make the problem go away, though, because the axioms Acc and T'er would still
remain valid in the extended categories but not in the quotient of Sch(X) by Bi.
This fact is already justifiable, however, since “bases are loaded” in the extended
categories.

The above discussion shows that the anomaly of the Example is rooted in the
polymorphic nature of the categorical language used to specify equational axioms
(identities), and more analysis is required to provide a satisfactory explanation. For
the moment, however, we shall rely on the straightforward solution of introducing
the dummy morphisms if necessary, so at least we escape the contradiction arising
from possibly empty hom-sets. Thus, the category (Bi, +) is presently not complete
for Tracep;.

Theorem 1. The category (Pingy,,+) is complete for the axioms Tracepiace-

Proof. Let S;R : u — v be two biaccessible ¥-schemes. We must find an inter-
pretation ¢ of the alphabet ¥ in (Piny;,, +) that distinguishes these two schemes,
provided that they are not isomorphic. Obviously, we can assume that both u
and v are different from I = e. We can also assume, without loss of generality,
that there exists an input-output path in at least one of S and R passing through
at least one box. Indeed, otherwise it is trivial to separate S and R directly in
(Ping;y,+) by interpreting each object variable A as $A = 1 and each morphism
variable f :p — q as ¢f = 02(?) 4 0g(q), 1-€., the totally undefined injection.

First let us assume that each box in S and R is labelled by the same morphism
variable f : p — ¢ in M. Since the schemes are biaccessible, p # € and ¢ # €. Let
us spell out the trajectory of an input-output path in -schemes. As in standard
graph theory, it is an alternating sequence

quela(p15q1)7€25'"a(pnaqn)venapn+1 (3)

of vertices and edges, starting from and ending at a vertex (port), such that each
edge e; in the sequence is incident with the vertex (output port ¢;—1) immediately
preceding it and with the vertex (input port p;) immediately following it. Remem-
ber that each port is numbered, and it is also labelled by an object variable in O.

344 Miklos Bartha

For simplicity, the number assigned to the port of an input/output channel is the
serial number of that channel.
For a path « of the form (3), ¢(a) will denote the “trace” of a:

(lOa BO)? ((mlv Al)a (llv Bl))a ERE) ((mna An)a (lna Bn))v (mn+17 An+1)'

In this sequence, 1 < ly < length(u) and 1 < my,41 < length(v) identify the serial
number of the input channel the output port of which is gqg and that of the output
channel identified by port p,4+1. The pair (my, 4;) ((I;, B;)) consists of the serial
number and object variable corresponding to the input port p; (respectively, output
port g;). By definition, B; = A;41 for every 0 <14 < n.

Now we turn to defining the separating interpretation ¢. For all object variables
A € O, let ¢(A) = k, where k is a sufficiently large integer, the magnitude of which
will be specified later. In this way we can think of a morphism variable f : p — ¢
as a single-sorted one f : k- m — k-1, where m > 0 and [> 0 are the length of p
and ¢, respectively. The morphism ¢f : k- m — k-1 will be the partial injection
by which

(mi—1) k+im li—1) k+it1 (4)

for every 1 < i < k and appropriately chosen numbers 1 < m; <m, 1 <; <.

It is easy to visualize the partial injection (G¢)S for scheme S using the Hun-
garian method discussed in Section 3. Every edge e in S counts as k parallel edges
in the corresponding single-sorted scheme Sy, where each port is “multiplied” by k.
Let M be the set of all edges in Si. The set M becomes a matching if we consider
Sk as a bipartite graph on the ports as vertices rather than one on the boxes. Add
of to Sy as edges inside the boxes, and let Sk(¢) denote the resulting bipartite
graph. Intuitively, whenever the control reaches a box at input port m; in “dimen-
sion” @ < k, it will leave at output port /; in dimension ¢ + 1. Thus, (G¢)S can be
obtained by looking for “dual” augmenting paths in Sy (¢) with respect to matching
M, that is, alternating paths starting and ending with M-positive edges incident
with the set of leaves of Si(¢) consisting of the input-output channels (ports). If
such a path exists between input channel [in dimension ¢ and output channel m
in dimension j, then (I,i) = (I — 1) - k + ¢ is mapped to (m,j) = (m —1)-k+j
according to (G¢)S. (Mind that an input channel is in fact an output port and an
output channel counts as an input port.)

Observe that the procedure of calculating (G¢)S by the Hungarian method
would be exactly the same if we were to interpret S under relations, rather than
partial injections.

What we need in order to finish the proof is an understanding of schemes S
and R being isomorphic. It is a standard graph theory argument that S and R
are isomorphic iff, for each input-output channel pair (I,m), whenever there exists
a path « connecting ! with m in the one scheme (say S), then there exists such a
path 8 in R, too, so that ¥(«a) = ¥(8). (Remember that ¢ denotes the trace of
a path.) Indeed, the numbered ports, together with the biaccessibility restriction,
make the graph isomorphism test for S and R straightforward.

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 345

Now let us assume that S and R are not isomorphic. Then there exists an
input-output path « in say S such that its trace ¢ («) is missing from the traces of
paths in R. Clearly, the length of a remains under a fixed number that depends
on the size of S and R only. Choose a to be shortest among such paths, and let
N denote the length of a. For k > N, set the numbers m; and [; in (4) according
to the parameters of o up to dimension N, and arbitrarily for N < ¢ < k. It is
clear that this choice of ¢f will distinguish S and R, since only (G¢)S will take the
input channel [y in dimension 1 to output channel my in dimension N + 1.

If there are several morphism variables assigned as labels to the boxes of S and
R, then the proof can be augmented by adding a distinctive “preamble” injection
to the interpretation of each morphism variable in each dimension, and driving the
control through this preamble. Details are straightforward and left to the reader.
The proof is now complete. O

Corollary 1. The traced monoidal category (Relyiyn, +) is complete for Tracepiqce.

Proof. Indeed, (Ping;,,+) can be embedded in (Rely;,, +) as a subcategory. More-
over, bases are loaded in both categories, that is, no hom-set is empty. Therefore
any valid identity p = q in (Rely;y,, +) is valid in (Ping;,, +) as well. Consequently,
by Theorem 1, p and q are isomorphic as biaccessible schemes. [l

6 Conclusion

We have shown that the traced monoidal category (Ping;,,+) of finite partial
injections is complete for the extension of the traced monoidal axioms by two iden-
tities that reflect the biaccesible property of schemes as morphisms in the category
freely generated by a given monoidal signature. The proof was a classical separa-
tion argument, showing that if two biaccessible schemes are not isomorphic, then
there exists an interpretation in terms of finite partial injections which distinguishes
them. Since (Piny;,,+) is the initial single-sorted traced monoidal category sat-
isfying the given axioms, our result holds for every traced monoidal category into
which (Ping;,,+) can be embedded as a sub-monoidal category, and in which the
identities Acc and Ter are valid.

References

[1] Bartha, M. A finite axiomatization of flowchart schemes. Acta Cybernetica,
8(2):203-217, 1987.

[2] Bartha, M. An equational axiomatization of systolic systems. Theoret. Com-
put. Sci., 55:265-289, 1987.

[3] Bartha, M. An algebraic model of synchronous systems. Information and
Computation, 97:97-131, 1992.

346

[4]

Miklos Bartha

Bartha, M. Simulation equivalence of automata and circuits. In: Csuhaj-
Varju, E. and Esik, Z. editors, 12th International Conference on Automata
and Formal Languages, Balatonflired, Hungary, Local Proceedings, pages 86—
99, 2008.

Bartha, M. Equivalence relations of Mealy automata. In: Bordihn, H., Fre-
und, R., Holzer, M., Kutrib, M., and Otto, F. editors, First Workshop on
Non-Classical Models of Automata and Applications, Wroclaw, Poland, Pro-
ceedings: books@ocg.at 256, Austrian Computer Society, pages 31-45, 2009.

Bartha, M. The monoidal structure of Turing machines. Mathematical Struc-
tures in Computer Science, 23(2):204-246, 2013.

Bartha, M. (2011) Quantum Turing automata. In Lowe, B. and Winskel, G.
editors, 8th International Workshop on Developments in Theoretical Computer
Science (DCM 2012), pages 17-31, Electronic Proceedings in Theoretical Com-
puter Science, 2014.

Bloom, S.L. and Esik, 7. Axiomatizing schemes and their behaviors. J. Com-
put. System Sci. 31:375-393, 1985.

Bloom, S.L. and Esik, Z. Iteration Theories: The Equational Logic of Iterative
Processes. Springer-Verlag, Berlin, 1993.

Cazanescu, V.E. and Stefinescu, Gh. Towards a new algebraic foundation of
flowchart scheme theory. Fundamenta Informaticae, 13:171-210, 1990.

Esik, Z. Identities in iterative and rational theories. Computational Linguistics
and Computer Languages, 14:183-207, 1980.

Hasegawa, M., Hofmann, M. and Plotkin, G. Finite dimensional vector spaces
are complete for traced symmetric monoidal categories. In Pillars of Computer
Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, Springer LNCS 4800, pages 367-385, February 2008.

Hasegawa, M. Bialgebras in Rel. In 26th Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVI), May 2010, Ottawa.
Electronic Notes in Theoretical Computer Science 265, pages 337-359, 2010.

Joyal, A. and Street, R. The geometry of tensor calculus I. Advances in
Mathematics, 88(1):55-112, 1991.

Joyal, A., Street, R. and Verity, D. Traced monoidal categories. Math. Proc.
Camb. Phil. Soc., 119:447-468, 1996.

Katis, P., Sabadini, N. and Walters, R.F.C. Feedback, trace, and fixed-point
semantics. Theoret. Informatics Appl., 36:181-194, 2002.

Kelly, G. M. and Laplaza, M. L. Coherence for compact closed categories. J.
Pure Appl. Algebra, 19:193-213, 1980.

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 347

[18]
[19]

[20]

[21]

22]

23]

[24]

[25]

Lovasz, L. and Plummer, M.D. Matching Theory. North Holland, 1986.

Mac Lane, S. Categories for the Working Mathematician. Springer-Verlag,
1971.

Mac Lane, S. and Paré, R. Coherence for bicategories and indexed categories.
J. Pure and Appl. Algebra, 37:59-80, 1985.

Malherbe, O., Scott, P.J., and Selinger, P. Partially traced categories. Journal
of Pure and Applied Algebra, 216(12):2563-2585, 2011.

Selinger, P. A note on Bainbridge’s power set construction. Manuscript 10
pages, 1998.

Selinger, P. Towards a quantum programming language. Mathematical Struc-
tures in Computer Science 14:527-586, 2004

Selinger, P. A survey of graphical languages for monoidal categories. In Coecke
(editor), New Structures for Physics, Lecture Notes in Physics 183, Springer-
Verlag, Berlin, 2009.

Stefanescu, Gh. Network Algebra. Series in Discrete Mathematics and Theo-
retical Computer Science, Springer, Heidelberg, 2000.

