
Acta Cybernetica 23 (2017) 379–401.

Minimization of Deterministic Top-down

Tree Automata∗

Zoltán Fülöpa and Sándor Vágvölgyia

To the memory of Zoltán Ésik.

Abstract

We consider offline sensing unranked top-down tree automata in which
the state transitions are computed by bimachines. We give a polynomial time
algorithm for minimizing such tree automata when they are state-separated.

Keywords: bimachines, top-down unranked tree automata, minimization

1 Introduction

Minimization algorithms are necessary for the practical application of tree au-
tomata. Over ranked trees, Björklund and Cleophas [1] presented a taxonomy
of algorithms for minimizing deterministic bottom-up tree automata, and Gécseg
and Steinby [5] minimized deterministic top-down tree automata.

XML data or XML documents can be adequately represented by finite labeled
unranked trees, where unranked means that nodes can have arbitrarily many chil-
dren. This XML setting motivated the development of a theory of unranked tree
automata, both bottom-up and top-down computing were studied [2, 10]. Bottom-
up and top-down unranked tree automata have the same recognizing power [3].
Researchers usually abstract XML schema languages as Extended Document Type
Definitions (EDTDs for short) instead of tree automata. Minimizing unranked tree
automata or EDTDs is of both theoretical and practical importance [7].

In the case of bottom-up computing, Martens and Niehren [7] compared several
notions of bottom-up determinism for unranked tree automata, minimized various
types of deterministic bottom-up unranked tree automata, and showed that the
minimization problem is NP-complete for bottom-up unranked tree automata in
which the string languages in the transition functions are represented by determin-
istic finite state automata. For the size of deterministic bottom-up unranked tree

∗The publication is supported by the the NKFI grant no K 108448.
aInstitute of Informatics, University of Szeged, E-mail: {fulop,vagvolgy}@inf.u-szeged.hu

DOI: 10.14232/actacyb.23.1.2017.21

380 Zoltán Fülöp and Sándor Vágvölgyi

automata, Salomaa and Piao [11] presented upper and lower bounds for the union
and intersection operations, and an upper bound for tree concatenation. They [12]
presented a lower bound for the size blow-up of determinizing a nondeterministic
unranked tree automaton.

For deterministic top-down unranked tree automata a blind version and a sens-
ing version with two variants were introduced. The first variant is the online one,
the state of a child depends on the state and the label of its parent and the labels
of its left-siblings. Hence the child states are assigned when processing the child
string in one pass from left to right. Online deterministic top-down unranked tree
automata have been investigated in the context of XML schema languages, they
were called as restrained competition EDTDs [9]. The second variant is the offline
one, it first reads the complete child string and only then assigns states to all chil-
dren. The blind, online, and offline sensing deterministic top-down unranked tree
automata are increasingly more powerful, and all of them are less powerful than
nondeterministic top-down unranked tree automata [8].

Minimization runs in nondeterministic polynomial time for deterministic blind
top-down unranked tree automata, but the precise complexity is unknown, and
runs in polynomial time for deterministic online sensing top-down unranked tree
automata. Martens et al. [8] minimized deterministic offline sensing top-down
unranked tree automata, where an unambiguous nondeterministic finite state au-
tomaton, associated with the state of the parent, reads the complete child string
and assigns to each child the state it enters having read the child’s label. They [8]
reduced the minimization problem for unambiguous nondeterministic finite state
automata, shown to be NP-complete by Jiang and Ravikumar [6], into the mini-
mization for deterministic offline sensing top-down unranked tree automata, hence
the minimization is NP-complete for deterministic offline sensing top-down un-
ranked tree automata.

Cristau et al. [4] gave an equivalent formalism for deterministic offline sensing
top-down unranked tree automata in terms of bimachines, from now on we refer to
this notion simply as a deterministic top-down tree automaton (DTTA for short).
A bimachine associated with the state of the parent assigns states to all children
during the transition. Its two semi-automaton components read the child string
from left-to-right and right-to-left, respectively, and its output function computes
the state of a child depending on the label of the node and the states of the two
semi-automata. Cristau et al. [4] noted that restrained competition EDTDs can
be seen as a restricted version of the DTTAs. Martens and Niehren [7] minimized
single-type and restrained completion EDTDs in polynomial time.

We minimize the size of a DTTA by minimizing the number of its states and the
number of the states of the bimachines associated with its states. A state of a DTTA
is an ∅-state if it accepts the empty tree language. A DTTA is state-separated if
each transition yields a sequence of ∅-states or a sequence of non ∅-states. We show
that it is decidable if a DTTA is state-separated. As the main result of our paper,
we give a polynomial time minimizing algorithm for state-separated DTTAs. We
will measure time as the number of elementary steps, assuming that each such step
takes a constant time. The core of our algorithm is twofold. Following the ideas of

Minimization of Deterministic Top-down Tree Automata 381

[5], we compute the connected part of the DTTA, find the equivalent states, and
then collapse them into a single state, which is their equivalence class. Then we do
similar minimization steps for the semi-automaton components of the bimachines
associated with the DTTA states. We compute the connected parts of the semi-
automata, find the equivalent semi-automaton states, and then collapse them into
a single state, which is their equivalence class. Here two states of either of the
semi-automata are equivalent if they yield the same output along all computations
on any input word starting from them and any state of the other semi-automaton
of the bimachine.

In Section 2, we present a brief review of the notions and notations used in the
paper. In Section 3, we recall the concept of a bimachine, then study and minimize
bimachines. In Section 4, we recall the concept of a DTTA. Then we present our
minimization algorithm for state-separated DTTAs, and show the correctness of
our algorithm.

2 Preliminaries

We denote by N the set of positive integers.
The cardinality of a set A is written as |A|. The composition of two mappings

f : A→ B and g : B → C is the mapping f◦g : A→ C defined by f◦g(a) = g(f(a))
for every a ∈ A.

A (binary) relation ρ over a set A is a subset ρ ⊆ A × A. For (a, b) ∈ ρ we
write aρb. We denote the reflexive and transitive closure of ρ by ρ∗. Let ρ be an
equivalence relation (i.e., a reflexive, symmetric, and transitive relation) over A.
For every a ∈ A, we denote by a/ρ the equivalence class which contains a, i.e.,
a/ρ = {b ∈ A | aρb}. Moreover, for every B ⊆ A we define B/ρ = {a/ρ | a ∈ B}.
Hence A/ρ is the set of all equivalence classes determined by ρ.

For a set X we denote by X∗ the set of all finite words over X. The empty
word is denoted by ε. For every x ∈ Σ∗, we denote by |x| and x−1 the length and
the reversal of x, respectively, and define them in the usual way.

A tree domain is a non-empty, finite, and prefix-closed subset D of N∗ satisfying
the following condition: if xi ∈ D for x ∈ N∗ and i ∈ N, then xj ∈ D for all j with
1 ≤ j < i.

Let Σ be an alphabet, i.e., a finite and non-empty set of symbols. An unranked
tree over Σ (or just a tree) is a mapping ξ : dom(ξ) → Σ, where dom(ξ) is a tree
domain. The elements of dom(ξ) are called the nodes of ξ. For every x ∈ dom(ξ)
we call the element ξ(x) of Σ the label of the node x and the number rkξ(x) =
max{i ∈ N | xi ∈ dom(ξ)} the rank of the node x in ξ. The root of ξ is ξ(ε). If
xi ∈ dom(ξ) for some x ∈ dom(ξ) and i ∈ N, then we call xi the successor of x. As
usual, a node of ξ without successors is called a leaf of ξ. The height height(ξ) of
ξ is defined by height(ξ) = max{ |x| | x ∈ dom(ξ) }. We denote by TΣ the set of all
trees over Σ.

Furthermore, let ξ, ξ′ ∈ TΣ and x ∈ dom(ξ). The subtree ξ|x of ξ at position
x is defined by dom(ξ|x) = {y ∈ N∗ | xy ∈ dom(ξ)} and ξ|x(y) = ξ(xy) for all

382 Zoltán Fülöp and Sándor Vágvölgyi

y ∈ dom(ξ|x). Moreover, we denote by ξ[x← ξ′] the tree which is obtained from ξ
by “replacing ξ|x by ξ′”, i.e. defined by

dom(ξ[x← ξ′]) = (dom(ξ) \ {xy | y ∈ N∗}) ∪ {xy | y ∈ dom(ξ′)}

and

ξ[x← ξ′](z) =

{
ξ(z) if z ∈ (dom(ξ) \ {xy | y ∈ N∗})
ξ′(y) if z = xy for some y ∈ dom(ξ′)}.

If the root of ξ is labeled by a and the root has k successors at which the direct
subtrees ξ1, . . . , ξk are rooted, then we write ξ = a(ξ1 . . . ξk).

Throughout the paper Σ and Γ denote arbitrary alphabets.

3 Bimachines

In this section we recall the concept of a bimachine, and establish a pumping lemma
for bimachines and give a polynomial time algorithm for minimizing a bimachine.

3.1 General concepts

A semi-automaton is a quadruple S = (S,Σ, s0, δ), where S is a finite set (states),
Σ is an alphabet (input alphabet), s0 ∈ S (initial state), and δ : S × Σ → S is a
mapping (transition mapping). Let s ∈ S be a state and w = a1...ak ∈ Σ∗ an input
word. The s-run of S on w is the sequence t0 . . . tk of states such that t0 = s and
ti = δ(ti−1, ai) for all 1 ≤ i ≤ k. We denote the state tk also by swS or by sw if
S is clear from the context. The s0-run of S on w is called the run of S on w. A
state s ∈ S is reachable (in S) if there is a w ∈ Σ∗ such that s = s0w. The set
of all reachable states is Sc = {s0w | w ∈ Σ∗}. Moreover, the connected part of S
is the semi-automaton Sc = (Sc,Σ, s0, δ

c), where δc(s, a) = δ(s, a) for each s ∈ Sc
and a ∈ Σ. (Note that δ(s, a) ∈ Sc.) We call S connected if Sc = S. Obviously, Sc
is connected. The following result is well-known.

Proposition 1. There is a polynomial time algorithm which constructs Sc for a
given S.

Proof. The standard algorithm runs in O(|S|2|Σ|) time.

A congruence of S is an equivalence relation ρ over S such that sρt implies
δ(s, a)ρδ(t, a) for every s, t ∈ S and a ∈ Σ. The factor semi-automaton of S de-
termined by a congruence ρ is the semi-automaton S/ρ = (S/ρ,Σ, s0/ρ, δρ), where
δρ(s/ρ, a) = δ(s, a)/ρ for all s ∈ S and a ∈ Σ.

Let T = (T,Σ, t0, δ
′) be a semi-automaton. A mapping ϕ : S → T is a homo-

morphism from S to T if
• ϕ(s0) = t0 and,
• ϕ(δ(s, a)) = δ′(ϕ(s), a) for every s ∈ S and a ∈ Σ.

Minimization of Deterministic Top-down Tree Automata 383

t�k t�k−1 t�k−2
. . . t�1 t�0 = s�

a1 a2 . . . ak−1 ak

s� = t�0 t�1 . . . t�k−2 t�k−1 t�k

↓↓ ↓ . . . ↓

bkb1 b2 . . . bk−1

Figure 1: Visualization of the definition of the mapping ||B||(s�,s�)

For a homomorphism ϕ from S to T , we have ϕ(swS) = ϕ(s)wT . If ϕ is a surjective
homomorphism, then T is a homomorphic image of S. If, in addition, ϕ is a
bijection, then we say that S and T are isomorphic and write S ∼= T .

A bimachine is a system B = (Σ,Γ,S�,S�, f), where Σ and Γ are alpha-
bets (input and output), S� = (S�,Σ, s�

0 , δ
�) and S� = (S�,Σ, s�

0 , δ
�) are semi-

automata, and f : S� × Σ× S� → Γ is a mapping (output function).
For every s� ∈ S� and s� ∈ S�, we define the mapping

||B||(s�,s�) : Σ∗ → Γ∗

as follows. Let ||B||(s�,s�)(ε) = ε. For every k ≥ 1 and w = a1 . . . ak ∈ Σ∗, we let
||B||(s�,s�)(w) = b1 . . . bk, where b1, . . . , bk ∈ Γ are obtained as follows. Let
• t�0 t�1 . . . t�k−1t

�
k be the s�-run of S� on a1 . . . ak,

• t�0 t�1 . . . t�k−1t
�
k the s�-run of S� on the reversed input ak . . . a1, and

• let bi = f(t�i−1, ai, t
�
k−i) for 1 ≤ i ≤ k, see Fig. 1.

We call ||B||(s�
0 ,s

�
0) the mapping computed by B and denote it by ||B||.

Throughout the paper, B and B′ will denote the bimachines

• B = (Σ,Γ,S�,S�, f), with semi-automata S� = (S�,Σ, s�
0 , δ

�)
and S� = (S�,Σ, s�

0 , δ
�) and

• B′ = (Σ,Γ, T �, T �, f ′) with semi-automata T � = (T�,Σ, t�0 , γ
�)

and T � = (T�,Σ, t�0 , γ
�),

respectively.

The bimachines B and B′ are equivalent if ||B|| = ||B′||. Next we prove a pumping
lemma for bimachines.

Lemma 1. There is an integer N > 0 such that for every x ∈ Σ∗ with |x| > N
and ||B||(x) = y, there are x1, x2, x3 ∈ Σ∗ and y1, y2, y3 ∈ Γ∗ such that
• x = x1x2x3 and y = y1y2y3,
• |xi| = |yi| for 1 ≤ i ≤ 3,
• 0 < |x2| = |y2| ≤ N , and
• ||B||(x1x

n
2x3) = y1y

n
2 y3 for every n ≥ 0.

384 Zoltán Fülöp and Sándor Vágvölgyi

Proof. Let N = |S�||S�||Σ|. Moreover, let x = a1 . . . ak ∈ Σ∗ be an input string
with a1, . . . , ak ∈ Σ and k > N and ||B||(x) = y. Let
• s�

0 s
�
1 . . . s

�
k−1s

�
k be the run of S� on a1 . . . ak,

• s�
0 s

�
1 . . . s

�
k−1s

�
k the run of S� on ak . . . a1, and

• let bi = f(s�
i−1, ai, s

�
k−i) for 1 ≤ i ≤ k.

Then y = b1 . . . bk. Since k > N , there are 1 ≤ i < j ≤ k such that

(s�
i−1, ai, s

�
k−i) = (s�

j−1, aj , s
�
k−j).

We may assume w.l.o.g. that the triples in the sequence (s�
i , ai+1, s

�
k−i−1) . . .

(s�
j−1, aj , s

�
k−j) are pairwise different. Then we define

x1 = a1 . . . ai, x2 = ai+1 . . . aj , and x3 = aj+1 . . . ak,

and decompose y into y1, y2, and y3 accordingly. By standard arguments we can
show that these decompositions of x and y satisfy the requirements of the lemma.

Let s� ∈ S�, s� ∈ S�, and x, y ∈ Σ∗. It should be clear that

||B||(s�,s�)(xy) = ||B||(s�,s�y−1)(x)||B||(s�x,s�)(y).

We will use this fact later in the paper.
Let s� ∈ S� and s� ∈ S�. The pair (s�, s�) is reachable (in B) if there is a

string x = a1 . . . ak ∈ Σ∗ with runs
• s�

0 s
�
1 . . . s

�
k−1s

�
k of S� on a1 . . . ak and

• s�
0 s

�
1 . . . s

�
k−1s

�
k of S� on ak . . . a1

such that (s�, s�) = (s�
i−1, s

�
k−i) for some 1 ≤ i ≤ k. We note that (s�, s�) is

reachable in B if and only if s� is reachable in S� and s� is reachable in S�.
The connected part of B is the bimachine Bc = (Σ,Γ,S�c,S�c, f c), where:
• S�c and S�c are the connected parts of S� and S�, respectively,
• f c(s�, a, s�) = f(s�, a, s�) for every s� ∈ S�c, s� ∈ S�c, and a ∈ Σ.

It is obvious that Bc is equivalent to B. We call B connected if Bc = B. We note
that B is connected if both S� and S� are connected. Hence Bc is connected. By
Proposition 1 we have the following result.

Proposition 2. There is a polynomial time algorithm which constructs Bc for a
given B.

Proof. We compute S�c and S�c. Thus, by Proposition 1, the algorithm runs in
O((|S�|2 + |S�|2)|Σ|) time.

A congruence ρ of B is a pair (ρ�, ρ�), where
• ρ� and ρ� are congruences of the semi-automata S� and S�, respectively,

and
• for all s�, t� ∈ S�, s�, t� ∈ S�, and a ∈ Σ, if s�ρ�t� and s�ρ�t�, then

f(s�, a, s�) = f(t�, a, t�).

Minimization of Deterministic Top-down Tree Automata 385

For a congruence ρ = (ρ�, ρ�) of B, we define the factor bimachine of B determined
by ρ to be

B/ρ = (Σ,Γ,S�/ρ�,S�/ρ�, fρ),

where fρ(s
�/ρ�, a, s�/ρ�) = f(s�, a, s�) for all s� ∈ S�, s� ∈ S�, and a ∈ Σ.

A pair ϕ = (ϕ�, ϕ�) of mappings ϕ� : S� → T� and ϕ� : S� → T� is a
homomorphism from B to B′ if ϕ� and ϕ� are homomorphisms from S� to T �

and S� to T �, respectively, and in addition f(s�, a, s�) = f ′(ϕ�(s�), a, ϕ�(s�))
for every s� ∈ S�, s� ∈ S�, and a ∈ Σ. If ϕ is a homomorphism and both ϕ�

and ϕ� are surjective, then B′ is a homomorphic image of B. If both ϕ� and ϕ�

are bijections, then we say that B and B′ are isomorphic and write B ∼= B′.

Lemma 2. If there is a homomorphism ϕ = (ϕ�, ϕ�) from B to B′, then

||B||(s�,s�) = ||B′||(ϕ�(s�),ϕ�(s�))

for every s� ∈ S� and s� ∈ S�. In particular, ||B|| = ||B′||.

Proof. For every s� ∈ S� and s� ∈ S�, ||B||(s�,s�)(ε) = ε and
||B′||(ϕ�(s�),ϕ�(s�))(ε) = ε.

Let k ≥ 1 and w = a1 . . . ak ∈ Σ∗. Then ||B||(s�,s�)(w) = b1 . . . bk, where
b1, . . . , bk are obtained as follows. Let
• t�0 t�1 . . . t�k−1t

�
k be the s�-run of S� on a1 . . . ak,

• t�0 t�1 . . . t�k−1t
�
k be the s�-run of S� on the reversed input ak . . . a1, and

• bi = f(t�i−1, ai, t
�
k−i) for 1 ≤ i ≤ k, see Fig. 1.

Then
• ϕ�(t�0)ϕ�(t�1) . . . ϕ�(t�k−1)ϕ�(t�k) is the ϕ�(s�)-run of T � on a1 . . . ak, and
• ϕ�(t�0)ϕ�(t�1) . . . ϕ�(t�k−1)ϕ�(t�k) is the ϕ�(s�)-run of T � on the reversed

input ak . . . a1.
As ϕ is a homomorphism, bi = f ′(ϕ�(t�i−1), ai, ϕ

�(t�k−i)) for 1 ≤ i ≤ k. Hence
||B′||(ϕ�(s�),ϕ�(s�))(w) = b1 . . . bk.

By the corresponding definitions we have the following result.

Lemma 3. If there is a surjective homomorphism ϕ from B to B′, then |T�
q | ≤ |S�

q |
and |T�

q | ≤ |S�
q |.

Lemma 4. If ρ is a congruence of B, then B/ρ is a homomorphic image of B.

Proof. It is easy to check that the mapping ϕ� : S� → S�/ρ� defined by ϕ�(s�) =
s�/ρ� is a surjective homomorphism from S� to S�/ρ�. Also, the mapping
ϕ� : S� → S�/ρ� defined analogously is a surjective homomorphism from S�

to S�/ρ�.

Lemma 5. Let ρ = (ρ�, ρ�) be a congruence of the bimachine B. Then

||B||(s�,s�) = ||B/ρ||(s�/ρ�,s�/ρ�)

for all s� ∈ S� and s� ∈ S�. In particular, ||B|| = ||B/ρ||.

Proof. It follows from Lemmas 2 and 4.

386 Zoltán Fülöp and Sándor Vágvölgyi

3.2 Minimization of bimachines

The bimachine B is called minimal if |S�| ≤ |T�| and |S�| ≤ |T�| for any bima-
chine B′ which is equivalent to B.

We introduce the relation ρ�
B ⊆ S�×S� as follows: for all s�, t� ∈ S�, we have

s�ρ�
B t

� if ||B||(s�,s�) = ||B||(t�,s�) for all s� ∈ S�. Analogously, we define ρ�
B ⊆

S� × S� such that for all s�, t� ∈ S�, we have s�ρ�
B t

� if ||B||(s�,s�) = ||B||(s�,t�)

for all s� ∈ S�. Moreover, let ρB = (ρ�
B , ρ

�
B).

Lemma 6. The relations ρ�
B and ρ�

B are congruences of the semi-automata S� and
S�, respectively. Moreover, ρB is a congruence of B.

Proof. We show that ρ�
B is a congruence of S�. Obviously, ρ�

B is an equivalence re-
lation. Now let s�, t�, u�, v� ∈ S�, and a ∈ Σ such that s�ρ�

B t
�, u� = δ�(s�, a),

and v� = δ�(t�, a). Moreover, let w ∈ Σ∗ and s� ∈ S�. Then we have

||B||(s�,s�)(aw) = f(s�, a, t�)||B||(u�,s�)(w), and

||B||(t�,s�)(aw) = f(t�, a, t�)||B||(v�,s�)(w),

where t� = s�w−1 in S�. Since the left-hand side of both equalities are the same,
we obtain ||B||(u�,s�)(w) = ||B||(v�,s�)(w), which proves that u�ρ�

B v
�.

Analogously, we can show that ρ�
B is a congruence of the semi-automata S�.

Finally, let s�, t� ∈ S�, s�, t� ∈ S�, and a ∈ Σ such that s�ρ�
B t

� and s�ρ�
B t

�.
Then

||B||(s�,s�) = ||B||(t�,s�) = ||B||(t�,t�).

In particular, ||B||(s�,s�)(a) = ||B||(t�,t�)(a), i.e., f(s�, a, s�) = f(t�, a, t�). Hence,
ρB is a congruence of B.

Let us recall that B/ρB = (Σ,Γ,S�/ρ�
B ,S�/ρ�

B , fρB).
A bimachine B is called reduced if both ρ�

B and ρ�
B are the identity relation. It

is easy to check that B/ρB is reduced.

Lemma 7. Assume that B and B′ are connected and reduced. Then

||B|| = ||B′|| if and only if B ∼= B′.

Proof. Assume that ||B|| = ||B′||. Let us define the relation ϕ� ⊆ S�×T� as follows:

ϕ� = {(s�
0 x, t

�
0 x) | x ∈ Σ∗}.

The domain of ϕ� is S� because B is connected. First we show by contradic-
tion that ϕ� is a mapping. For this, we assume that there are x, y ∈ Σ∗ such
that s�

0 x = s�
0 y and t�0 x 6= t�0 y. Since B′ is reduced, there are u, z ∈ Σ∗

such that ||B′||(t�0 x,t�0 z)(u) 6= ||B′||(t�0 y,t�0 z)(u). Consequently, ||B′||(t�0 x,t�0)(uz
−1) 6=

||B′||(t�0 y,t�0)(uz
−1). On the other hand, by ||B|| = ||B′||,

||B||(s�
0 ,s

�
0)(xuz

−1) = ||B′||(t�0 ,t�0)(xuz
−1) and

||B||(s�
0 ,s

�
0)(yuz

−1) = ||B′||(t�0 ,t�0)(yuz
−1).

Minimization of Deterministic Top-down Tree Automata 387

Thus

||B||(s�
0 x,s

�
0)(uz

−1) = ||B′||(t�0 x,t�0)(uz
−1) and

||B||(s�
0 y,s

�
0)(uz

−1) = ||B′||(t�0 y,t�0)(uz
−1).

Hence ||B||(s�
0 x,s

�
0)(uz

−1) 6= ||B||(s�
0 y,s

�
0)(uz

−1), which is a contradiction by our as-
sumption s�

0 x = s�
0 y.

By interchanging the role of B and B′, we obtain that ϕ� is injective. Moreover,
it is obvious that ϕ� is surjective.

We can also show that ϕ� is a homomorphism. For this, let x ∈ Σ∗ and a ∈ Σ.
Then we have

ϕ�(δ�(s�
0 x, a)) = ϕ�(s�

0 xa) = t�0 xa = γ�(t�0 x, a) = γ�(ϕ�(s�
0 x), a).

Thus S� and T � are isomorphic.
Analogously, we can define the relation ϕ� and show that it is an isomorphism

between S� and T �. Finally, we show that the pair ϕ = (ϕ�, ϕ�) is an isomorphism
between B and B′. For this, let x, y ∈ Σ∗ and a ∈ Σ. Then

||B||(xay−1) = ||B′||(xay−1).

By the corresponding definition this means that f(s�
0 x, a, s

�
0 y) = f ′(t�0 x, a, t

�
0 y).

With this we have proved that B ∼= B′. The proof of the other implication is
trivial.

Lemma 8. Assume that B and B′ are connected. Then

||B|| = ||B′|| if and only if B/ρB ∼= B′/ρB′ .

Proof. If B/ρB ∼= B′/ρB′ , then by Lemma 5 we obtain ||B|| = ||B′||.
Next assume that ||B|| = ||B′||. Again, by Lemma 5 we obtain ||B/ρB|| = ||B′/ρB′ ||.

Moreover, both B/ρB and B′/ρB′ are connected and reduced. Hence, by Lemma 7,
B/ρB ∼= B′/ρB′ .

Theorem 1. If the bimachine B is connected, then B/ρB is minimal.

Proof. Let us assume that B is connected and that ||B|| = ||B′||. By Lemma 4,
B′/ρB′ is a homomorphic image of B′. By Lemma 8, B/ρB ∼= B′/ρB′ . Hence B/ρB
is also a homomorphic image of B′.

In the rest of this section we give an algorithm which computes ρB, i.e., ρ�
B and

ρ�
B . First we deal with ρ�

B .
For every i ≥ 1, we define the relation ρ�

i ⊆ S� × S�, by induction as follows.
For all s�, t� ∈ S�,

(i) let s�ρ�
1 t

� if for all a ∈ Σ and s� ∈ S�, we have f(s�, a, s�) = f(t�, a, s�),
and

388 Zoltán Fülöp and Sándor Vágvölgyi

(ii) for each i ≥ 1, let s�ρ�
i+1t

� if s�ρ�
i t

� and δ�(s�, a)ρ�
i δ

�(t�, a) for each
a ∈ Σ.

Obviously, we have
ρ�

1 ⊇ ρ�
2 ⊇ · · ·

and thus there is an integer i ≥ 1 such that ρ�
i = ρ�

i+1.

For the rest of this section, let i0 be the least integer such that ρ�
i0

=
ρ�
i0+1. We will show that ρ�

i0
= ρ�
B .

Claim 1. ρ�
i0+1 = ρ�

i0+2 = · · · .

Proof. We prove by contradiction that ρ�
i = ρ�

i+1 implies ρ�
i+1 = ρ�

i+2 for every
i ≥ 1. For this we assume that ρ�

i = ρ�
i+1 and ρ�

i+1 ⊃ ρ�
i+2 for some i ≥ 1. Then

there exist two states s�, t� ∈ S� such that s�ρ�
i+1t

� but s�ρ�
i+2t

� does not hold.
This means that there exists a symbol a ∈ Σ such that δ�(s�, a)ρ�

i+1δ
�(t�, a)

does not hold. As ρ�
i = ρ�

i+1, we obtain that δ�(s�, a)ρ�
i δ

�(t�, a) does not hold
either. Hence s�ρ�

i+1t
� does not hold either. This contradicts our assumption

ρ�
i = ρ�

i+1.

Claim 2. For all l ≥ 1, s�, t� ∈ S�, if s�ρ�
l t

�, then for each s� ∈ S� and w ∈ Σ∗

with |w| = l, we have ||B||(s�,s�)(w) = ||B||(t�,s�)(w).

Proof. We proceed by induction on l. If l = 1, then w = a for some a ∈ Σ and
hence ||B||(s�,s�)(w) = f(s�, a, s�) = f(t�, a, s�) = ||B||(t�,s�)(w).

Now assume that the claim holds for l ≥ 1. Let w = av ∈ Σ∗ such that |v| = l
(that is, |w| = l + 1). Then, by the definition of ρ�

l+1, we have f(s�, a, s�v−1) =
f(t�, a, s�v−1) and (s�a)ρ�

l (t�a). From this, by the induction hypothesis,
||B||(s�a,s�)(v) = ||B||(t�a,s�)(v) for all s� ∈ S�. Thus

||B||(s�,s�)(w) = f(s�, a, s�v−1)||B||(s�a,s�)(v) =

f(t�, a, s�v−1)||B||(t�a,s�)(v) = ||B||(t�,s�)(w)

for all s� ∈ S�.

Claim 3. ρ�
i0
⊆ ρ�
B .

Proof. Assume that s�ρ�
i0
t�. Observe that ||B||(s�,s�)(ε) = ε = ||B||(t�,s�)(ε). Let

w ∈ Σ∗ with |w| = l ≥ 1 be arbitrary. By the definition of i0 and Claim 1,
ρ�
i0
⊆ ρ�

l . Consequently, we also have s�ρ�
l t

�, from which we obtain by Claim 2
that ||B||(s�,s�)(w) = ||B||(t�,s�)(w). Hence s�ρ�

B t
�.

Claim 4. ρ�
i0
⊇ ρ�
B .

Proof. It suffices to show that, for all s�, t� ∈ S�, if for each s� ∈ S� we have
||B||(s�,s�) = ||B||(t�,s�), then s�ρ�

i t
� for all i ≥ 1.

We proceed by induction on i. Let i = 1 and a ∈ Σ. By our assumption,
f(s�, a, s�) = ||B||(s�,s�)(a) = ||B||(t�,s�)(a) = f(t�, a, s�). Consequently, s�ρ�

1 t
�.

Minimization of Deterministic Top-down Tree Automata 389

Now assume that the claim holds for i ≥ 1, i.e., s�ρit
�. Let s� ∈ S�, a ∈ Σ

and v ∈ Σ∗ be arbitrary. Then f(s�, a, s�v−1)||B||(s�a,s�)(v) = ||B||(s�,s�)(av) =
||B||(t�,s�)(av) = f(t�, a, s�v−1)||B||(s�a,s�)(v). Hence f(s�, a, s�v−1) =
f(t�, a, s�v−1) and ||B||(s�a,s�)(v) = ||B||(t�a,s�)(v). From the latter, we have
||B||(s�a,s�) = ||B||(t�a,s�), thus by the induction hypothesis, (s�a)ρ�

i (t�a). Then,
by the definition of ρ�

i+1, we obtain s�ρ�
i+1t

� holds as well.

Lemma 9. We have ρ�
i0

= ρ�
B .

Proof. It follows from Claims 3 and 4.

Analogously, we can define a decreasing sequence

ρ�
1 ⊇ ρ�

2 ⊇ · · ·

of relations over S� such that ρ�
B = ρ�

i0
for the least integer i0 with ρ�

i0
= ρ�

i0+1.
Hence we can conclude the following.

Proposition 3. There is a polynomial time algorithm which constructs the mini-
mal bimachine which is equivalent to B.

Proof. By Proposition 2 we compute the connected part Bc of B in polynomial
time. So assume that B is connected. We compute ρ�

B as follows. We compute ρ�
1

in O(|S�|2|Σ||S�|) time and, for every 1 < i ≤ i0, we compute ρ�
i in O(|S�|2|Σ|2)

time. Since i0 ≤ |S�|, we compute ρ�
i0

in O(|S�|3|Σ|2) time. Analogously, we
compute ρ�

B in polynomial time.

4 Deterministic top-down tree automata and their
minimization

In this section first we recall the concept of a deterministic top-down tree automaton
(DTTA for short) from [4]. Then we give a polynomial time algorithm minimizing a
state-separated DTTA. The size of a DTTA is the sum of the sizes of the bimachines
associated with its states, hence we minimize it by minimizing the number of its
states and the number of the states of the bimachines associated with its states.

4.1 Basic concepts

A deterministic top-down tree automaton (DTTA for short) is a system

A =
(
Q,Σ, fin, (Bq | q ∈ Q), F

)
,

where
• Q is a finite set (states),
• Σ is an alphabet (input alphabet),
• fin : Σ→ Q is the initial function,

390 Zoltán Fülöp and Sándor Vágvölgyi

• Bq = (Σ, Q,S�
q ,S�

q , fq) is a bimachine for every q ∈ Q with semi-automata
S�
q = (S�

q ,Σ, s
�
q,0, δ

�
q) and S�

q = (S�
q ,Σ, s

�
q,0, δ

�
q), and

• F ⊆ Q (final states).
Let ξ ∈ TΣ and q ∈ Q. A q-run of A on ξ is a mapping r : dom(ξ) → Q such

that r(ε) = q and for each node x ∈ dom(ξ) with k > 0 successors x1, x2, . . . , xk,
we have

r(x1)r(x2) · · · r(xk) = ||Br(x)||
(
ξ(x1) · · · ξ(xk)

)
.

Note that for each ξ ∈ TΣ and q ∈ Q, there is exactly one q-run of A on ξ. This
q-run r is accepting if it assigns to each leaf a final state, that is, r(x) ∈ F for every
x ∈ dom(ξ) which is a leaf. The tree language L(A, q) accepted by A in q consists
of all trees ξ such that the q-run of A on ξ is accepting. The fin(ξ(ε))-run of A on
ξ is called the run of A on ξ and the tree language L(A) accepted by A consists of
all trees ξ such that the run of A on ξ is accepting.

Two DTTA A and A′ are equivalent if L(A) = L(A′).

Remark 1. We note that the root ξ(ε) of ξ does not play any role in (accepting)
q-runs on ξ. Hence if ξ ∈ L(A, q), then ξ′ ∈ L(A, q) for each tree ξ′ obtained by
replacing the root of ξ with an arbitrary a ∈ Σ.

A state q ∈ Q is called a ∅-state if L(A, q) = ∅. We write Q = Q+ ∪Qe, where
Qe is the set of all ∅-states and Q+ = Q \Qe. Note that F ⊆ Q+.

Lemma 10. The set Q+ is effectively computable.

Proof. We define a sequence Q0, Q1, . . . of sets of states by the following algorithm:
(i) Let Q0 = F and i = 0.
(ii) Let Qi+1 = Qi ∪ {q ∈ Q | ∃(x ∈ Σ∗) : ||Bq||(x) ∈ Q∗i }.

(iii) If Qi+1 = Qi, then stop, otherwise i := i+ 1 and goto (ii).
First we note that for every i ≥ 0 and q ∈ Q we can decide whether there is an
x ∈ Σ∗ with ||Bq||(x) ∈ Q∗i . In fact, it suffices to check if ||Bq||(x) ∈ Q∗i for input
strings x with |x| ≤ Nq, where Nq is the number provided by Lemma 1 for the
bimachine Bq. Hence Qi+1 in step (ii) can be computed.

By standard arguments, we can prove the following statements:
• there is an i ≥ 0 such that Qi+1 = Qi,
• if Qi+1 = Qi, then Qi+j = Qi for every j ≥ 1, and
• if Qi+1 = Qi, then ∀(q ∈ Q) :

(
q ∈ Qi ⇐⇒ ∃(ξ ∈ TΣ) : ξ ∈ L(A, q)

)
.

Altogether we obtain that the algorithm terminates with Qi+1 = Qi and in this
case Q+ = Qi.

Next we introduce the concept of a connected DTTA. For this we define the
binary relation →A over Q as follows: for every q, q′ ∈ Q, we have q →A q′ if there
are k ≥ 1, a1 . . . ak ∈ Σ∗ such that ||Bq||(a1 . . . ak) = q1 . . . qk and q′ = qi for some
1 ≤ i ≤ k. For every q ∈ Q, we define

Tq = {q′ ∈ Q | q →∗A q′}.

The DTTA A is connected if, for every q ∈ Q, we have fin(a)→∗A q for some a ∈ Σ.

Minimization of Deterministic Top-down Tree Automata 391

Proposition 4. There is a polynomial time algorithm which computes Tq for a
given state q ∈ Q.

Proof. By Proposition 2 we may assume that Bp is connected for every p ∈ Q.
(i) Let T0 = {q} and i = 0.
(ii) Let

Ti+1 = Ti ∪ {fp(s�, a, s�) |
a ∈ Σ and ∃(p ∈ Ti) : s� ∈ S�

p , s
� ∈ S�

p }.

(iii) If Ti+1 = Ti, then stop, otherwise let i := i+ 1 and goto (ii).
It is an exercise to show that Ti+1 = Ti for some i ≥ 0 and for this i we have Tq = Ti.
The algorithm runs in O(|Q|N�|Σ|N�) time, where N� = max{|S�

p | | p ∈ Q} and
N� = max{|S�

p | | p ∈ Q}.

For A we define the DTTA Ac =
(
Qc,Σ, f cin, (Bq | q ∈ Qc), F c

)
called the

connected part of A as follows:
• Qc =

⋃
(Tq | q = fin(a) for some a ∈ Σ),

• f cin(a) = fin(a) for every a ∈ Σ, and
• F c = F ∩Qc.
The following statement is obvious.

Proposition 5. Ac is connected and is equivalent to A.

By the definition of Ac and Proposition 4, we have the following result.

Proposition 6. There is a polynomial time algorithm which constructs Ac.

A congruence of A is an equivalence relation τ ⊆ Q×Q satisfying the following
two conditions:

(i) for all states p, q ∈ Q, and nonempty word a1 . . . ak ∈ Σ∗, if pτq,
||Bp||(a1 . . . ak) = p1 . . . pk, and ||Bq||(a1 . . . ak) = q1 . . . qk, then piτqi for all
1 ≤ i ≤ k,

(ii) if pτq, then p ∈ F if and only if q ∈ F .

Let τ be an equivalence relation on Q. For every q ∈ Q, we introduce the
bimachine

Bq,τ = (Σ, Q/τ,S�
q ,S�

q , fq,τ),

where fq,τ (s�, a, s�) = fq(s
�, a, s�)/τ for all s� ∈ S�

q , s
� ∈ S�

q , and a ∈ Σ.
Then, for every a1 . . . ak ∈ Σ+, we have ||Bq,τ ||(a1 . . . ak) = p1/τ . . . pk/τ , where
||Bq||(a1 . . . ak) = p1 . . . pk.

Lemma 11. Let τ be a congruence on A and p, q ∈ Q such that pτq. Then
||Bp,τ || = ||Bq,τ ||.

392 Zoltán Fülöp and Sándor Vágvölgyi

Proof. By definition ||Bp,τ ||(ε) = ε = ||Bq,τ ||(ε).
Let k ≥ 1 and a1 . . . ak ∈ Σ+. Then we have ||Bp,τ ||(a1 . . . ak) = p1/τ . . . pk/τ ,

where ||Bp||(a1 . . . ak) = p1 . . . pk and ||Bq,τ ||(a1 . . . ak) = q1/τ . . . qk/τ , where
||Bq||(a1 . . . ak) = q1 . . . qk. By (i) in the definition of a congruence of a DTTA,
we have piτqi for all 1 ≤ i ≤ k. Hence p1/τ . . . pk/τ = q1/τ . . . qk/τ . Thus
||Bp,τ ||(a1 . . . ak) = ||Bq,τ ||(a1 . . . ak).

Given a congruence τ of A, we define the factor DTTA A/τ of A determined
by τ as A/τ =

(
Q/τ,Σ, fin,τ , (Bq/τ | q/τ ∈ Q/τ), F/τ

)
, where

• fin,τ (a) = (fin(a))/τ for every a ∈ Σ,

• Bq/τ = Bq,τ for every q ∈ Q.

We note that the definition of the bimachine Bq/τ and hence that of the DTTA
A/τ is syntactically ambiguous. Indeed, for p/τ = q/τ , the bimachines Bp,τ and
Bq,τ may be different syntactically and we can pick any of them. However, our
choice has no impact on ||A/τ || because, by Lemma 11, pτq implies ||Bp,τ || = ||Bq,τ ||.
In other words, ||A/τ || is well-defined.

Throughout the paper A and A′ will denote the DTTA

• A =
(
Q,Σ, fin, (Bq | q ∈ Q), F

)
with bimachines Bq = (Σ, Q,S�

q ,S�
q , fq)

and semi-automata S�
q = (S�

q ,Σ, s
�
q,0, δ

�
q) and S�

q = (S�
q ,Σ, s

�
q,0, δ

�
q)

for every q ∈ Q, and
• A′ =

(
Q′,Σ, f ′in, (B′q | q ∈ Q′), F ′

)
with bimachines

B′q = (Σ, Q′, T �
q , T �

q , f
′
q) and semi-automata T �

q = (T�
q ,Σ, t

�
q,0, γ

�
q)

and T �
q = (T�

q ,Σ, t
�
q,0, γ

�
q) for every q ∈ Q′,

respectively.

Furthermore, let ϕ : Q → Q′ be a mapping and ϕ∗ : Q∗ → Q′
∗

its unique
extension to a monoid homomorphism. The mapping ϕ is a homomorphism from
A to A′ if
• f ′in = fin ◦ ϕ,
• ||B′ϕ(q)|| = ||Bq|| ◦ ϕ

∗ for every q ∈ Q, and

• q ∈ F ⇐⇒ ϕ(q) ∈ F ′ for every q ∈ Q.
If ϕ is a surjective homomorphism, then A′ is a homomorphic image of A. If, in
addition, ϕ is a bijection, then we say that A and A′ are isomorphic and write
A ∼= A′.

Lemma 12. If there is a homomorphism ϕ from A to A′, then
(i) L(A, q) = L(A′, ϕ(q)) for every q ∈ Q, and
(ii) L(A) = L(A′).

Proof. Let ϕ be a homomorphism from A to A′. To show (i), we prove by induction
on height(ξ) that for any q ∈ Q and ξ ∈ TΣ, ξ ∈ L(A, q) if and only if ξ ∈
L(A′, ϕ(q)).

Minimization of Deterministic Top-down Tree Automata 393

Base of induction: height(ξ) = 0, i.e., ξ = a for some a ∈ Σ. Then ξ ∈ L(A, q)
if and only if ξ ∈ L(A′, ϕ(q)). Thus the statement holds obviously.

Induction step: height(ξ) = n > 0. Then ξ = a(ξ1, . . . , ξk) for some a ∈ Σ,
k ≥ 1, and ξ1, . . . , ξk ∈ TΣ. Let ai = ξ(i) for all 1 ≤ i ≤ k. Then we have

ξ ∈ L(A, q)
⇐⇒ ||Bq||(a1...ak) = q1 . . . qk and

ξi ∈ L(A, qi) for all 1 ≤ i ≤ k
⇐⇒ ||B′ϕ(q)||(a1...ak) = ϕ(q1) . . . ϕ(qk) and

ξi ∈ L(A′, ϕ(qi)) for all 1 ≤ i ≤ k
⇐⇒ ξ ∈ L(A′, ϕ(q)).

We now show (ii). Let ξ ∈ L(A), i.e., ξ ∈ L(A, fin(ξ(ε)). Then by (i), ξ ∈
L(A′, ϕ(fin(ξ(ε))). As ϕ is a homomorphism, f ′in(ξ(ε)) = ϕ(fin(ξ(ε))). Thus ξ ∈
L(A′, f ′in(ξ(ε)), which implies ξ ∈ L(A′).

Conversely, let ξ ∈ L(A′), i.e., let ξ ∈ L(A′, f ′in(ξ(ε)). As ϕ is a homomorphism,
ϕ(fin(ξ(ε))) = f ′in(ξ(ε)). Then by (i), ξ ∈ L(A, fin(ξ(ε)) which proves that ξ ∈
L(A).

Lemma 13. If τ is a congruence of A, then A/τ is a homomorphic image of A.

Proof. It is easy to check that the mapping ϕ : Q→ Q/τ defined by ϕ(q) = q/τ is
a surjective homomorphism from A to A/τ .

Lemma 14. If τ is a congruence of A, then L(A, q) = L(A/τ, q/τ) for every q ∈ Q.
Moreover, L(A) = L(A/τ).

Proof. It follows from Lemmas 12 and 13.

4.2 Minimization of DTTA

The DTTA A is called minimal if

|Q| ≤ |Q′|,
∑
q∈Q
|S�
q | ≤

∑
q∈Q′
|T�
q |, and

∑
q∈Q
|S�
q | ≤

∑
q∈Q′
|T�
q |

for any DTTA A′ which is equivalent to A. Moreover, A is state-separated if

• ||Bq||(x) ∈ Q∗+ ∪Q∗e for every q ∈ Q+ and
• ||Bq||(x) ∈ Q∗e for every q ∈ Qe

for every x ∈ Σ∗.

Lemma 15. For the DTTA A the following two statements are equivalent.

(i) A is state-separated.
(ii) If ||Bq||(x) ∈ Q∗QeQ∗, then ||Bq||(x) ∈ Q∗e for every q ∈ Q and x ∈ Σ∗.

394 Zoltán Fülöp and Sándor Vágvölgyi

Proof. It is clear that (i) implies (ii). Now assume that (ii) holds. Let x ∈ Σ∗ and
q ∈ Q. If q ∈ Qe, then obviously ||Bq||(x) ∈ Q∗QeQ∗. Hence by (ii), ||Bq||(x) ∈ Q∗e.
Now let q ∈ Q+. If ||Bq||(x) ∈ Q∗QeQ

∗, then by (ii), ||Bq||(x) ∈ Q∗e. Otherwise,
||Bq||(x) ∈ Q∗+. Hence (i) holds.

Lemma 16. The DTTA A is state-separated if and only if for all state q ∈ Q,
reachable states s� ∈ S�

q and s� ∈ S�
q , and a, b ∈ Σ,

fq(s
�, a, δ�

q (s�, b)) ∈ Qe if and only if fq(δ
�
q (s�, a), b, s�) ∈ Qe.

Proof. (⇒) Assume that A is state-separated and let q ∈ Q. Moreover, let s� ∈ S�
q

and s� ∈ S�
q be reachable states, and a, b ∈ Σ. Then there are j ≥ 0 and a1 . . . aj ∈

Σ∗ such that s�
q,0a1 . . . aj = s�, and there are k ≥ j + 3 and aj+3 . . . ak ∈ Σ∗ such

that s�
q,0ak . . . aj+3 = s�. Let aj+1 = a and aj+2 = b, and x = a1 . . . ak.

Then ||Bq||(s�
q,0,s

�
q,0)(x) = q1 . . . qk, where q1, . . . , qk are obtained as follows. Let

• t�0 t�1 . . . t�k−1t
�
k be the s�

q,0-run of S�
q on a1 . . . ak,

• t�0 t�1 . . . t�k−1t
�
k the s�

q,0-run of S�
q on the reversed input ak . . . a1, and

• let qi = fq(t
�
i−1, ai, t

�
k−i) for 1 ≤ i ≤ k.

Here t�j = s�, t�j+1 = δ�
q (s�, a), t�k−j−2 = s�, t�k−j−1 = δ�

q (s�, b),
fq(s

�, a, δ�
q (s�, b)) = qj , and fq(δ

�
q (s�, a), b, s�) = qj+1. If qj+1 ∈ Qe, then by

Lemma 15, ||Bq||(x) ∈ Q∗e. Therefore qj+2 ∈ Qe. Conversely, if qj+2 ∈ Qe, then by
Lemma 15, qj+1 ∈ Qe.

(⇐) By Lemma 15 it is sufficient to show that ||Bq||(x) ∈ Q∗QeQ
∗ implies

||Bq||(x) ∈ Q∗e for every q ∈ Q and x ∈ Σ∗.
Let x = a1 . . . ak, k ≥ 1, be arbitrary, and let ||Bq||(s�

q,0,s
�
q,0)(x) be as in the first

part of the proof. Assume that qi ∈ Qe for some 1 ≤ i ≤ k. If i < k, then by our
assumption, qi+1 = qe as well. Iterating this reasoning, we get that qj = qe for each
i ≤ j ≤ k. If i > 1, then by our assumption, qi−1 = qe as well. As before, we get
that qj = qe for each 1 ≤ j ≤ i. Hence qi = qe for each 1 ≤ i ≤ k.

Lemma 17. It is decidable whether A is state-separated or not.

Proof. The sets Q+ and Qe = Q \Q+ are effectively computable (cf. Lemma 10).
Then, by direct inspection of A, we can decide whether the condition of Lemma 16
holds.

In the rest of this section we assume that A and A′ are state-separated
with Q = Q+ ∪Qe and Q′ = Q′+ ∪Q′e, respectively. In fact, our mini-
mization algorithm works only for state-separated DTTA.

We introduce the equivalence relation τA ⊆ Q×Q as follows: for all p, q ∈ Q,

let pτAq if and only if L(A, p) = L(A, q).

The DTTA A is reduced if τA is the identity relation.

Lemma 18. Let q ∈ Q and q′ ∈ Q′ such that L(A, q) = L(A′, q′). Moreover,
let k ≥ 1, a1 . . . ak ∈ Σ∗, and let ||Bq||(a1 . . . ak) = q1 . . . qk and ||Bq′ ||(a1 . . . ak) =
q′1 . . . q

′
k. Then L(A, qi) = L(A′, q′i) for all i = 1, . . . , k.

Minimization of Deterministic Top-down Tree Automata 395

Proof. Since L(A, q) = L(A′, q′), we have either (1) q ∈ Qe and q′ ∈ Q′e or (2)
q ∈ Q+ and q′ ∈ Q′+. Let us recall that A and A′ are state-separated.

In case (1) we have q1 . . . qk ∈ Q∗e and q′1 . . . q
′
k ∈ Q′∗e , hence the statement holds.

In case (2) either (2a) q1 . . . qk ∈ Q∗e and q′1 . . . q
′
k ∈ Q′∗e or (2b) q1 . . . qk ∈ Q∗+

and q′1 . . . q
′
k ∈ Q′∗+. (The other two cases are excluded because L(A, q) = L(A′, q′).)

In case (2a) the statement again holds, so let us assume that (2b) holds. Ar-
guing by contradiction, assume that L(A, qi) 6= L(A′, q′i) for some 1 ≤ i ≤ k.
Then there exists a tree ξ ∈ (L(A, qi) \L(A′, q′i))∪ (L(A′, q′i) \ (L(A, qi)) and there
are trees ηj ∈ L(A, qj) and θj ∈ L(A′, q′j) for each j = 1, . . . , i−1, i+1, . . . k. Hence
a(η1, . . . , ηi−1, ξ, ηi+1, . . . , ηk) ∈ (L(A, q)\L(A′, q′)) or a(θ1, . . . , θi−1, ξ, θi+1, . . . , θk)
∈ (L(A′, q′) \ (L(A, q)). Thus L(A, q) 6= L(A′, q′), which is a contradiction.

Lemma 19. The relation τA is a congruence of A.

Proof. Let p, q ∈ Q such that pτAq. For showing property (i), let a1 . . . ak ∈ Σ∗

with ||Bp||(a1 . . . ak) = p1 . . . pk and ||Bq||(a1 . . . ak) = q1 . . . qk. Then by Lemma
18 with A = A′, we have L(A, pi) = L(A, qi) for all i = 1, . . . , k. Hence by the
definition of τA, piτAqi for every 1 ≤ i ≤ k.

Finally, we show that (ii) holds by contradiction as follows: if p ∈ F and q 6∈ F ,
then a ∈ (L(A, p) \ L(A, q)) for every a ∈ Σ which contradicts to pτAq.

Lemma 20. The DTTA A/τA is reduced.

Proof. Assume that L(A/τA, p/τA) = L(A/τA, q/τA) for some p, q ∈ Q. Then by
Lemma 14 and Lemma 19, L(A, p) = L(A/τA, p/τA) = L(A/τA, q/τA) = L(A, q).
Hence pτAq, i.e., p/τA = q/τA.

Theorem 2. Assume that A and A′ are connected and reduced. Then

L(A) = L(A′) if and only if A ∼= A′.

Proof. We prove the implication from left to right, because the proof of the other
direction is obvious. Assume that L(A) = L(A′). Let us define the relation ϕ ⊆
Q × Q′ as follows: ϕ = {(q, q′) | L(A, q) = L(A′, q′)}. For convenience, we divide
the proof in five steps.

(i) We show that for each q ∈ Q, there exists q′ ∈ Q′ such that (q, q′) ∈ ϕ, i.e.,
the domain of ϕ is Q. As A is connected, we have

fin(a)→A q1 →A · · · →A qn = q

for some a ∈ Σ, n ≥ 0, and q1, . . . , qn ∈ Q. If n = 0, then q = fin(a). Since
L(A) = L(A′), we have L(A, fin(a)) = L(A′, f ′in(a)), hence (q, f ′in(a)) ∈ ϕ. If
n ≥ 1, then by Lemma 18 there exists q′1, . . . , q

′
n ∈ Q′ such that

f ′in(a)→A′ q′1 →A′ · · · →A′ q′n

and L(A, qi) = L(A′, q′i) for each i = 1, . . . , n. Thus (q, q′n) ∈ ϕ.

396 Zoltán Fülöp and Sándor Vágvölgyi

(ii) We show that ϕ is a mapping. For any q ∈ Q and q′1, q
′
2 ∈ Q′, if (q, q′1) ∈ ϕ

and (q, q′2) ∈ ϕ, then L(A′, q′1) = L(A, q) = L(A′, q′2), and hence q′1 = q′2.
(iii) We show that ϕ is injective. For any q1, q2 ∈ Q and q′ ∈ Q′, if ϕ(q1) = q′

and ϕ(q2) = q′, then L(A, q1) = L(A, q′) = L(A, q2), and hence q1 = q2.
(iv) We show that ϕ is surjective. Repeating the argument used in (i) with the

roles of A and A′ reversed we see that for every q′ ∈ Q′ there exists a q ∈ Q such
that L(A, q) = L(A′, q′).

(v) We show that ϕ is a homomorphism.
First we show that f ′in = fin ◦ ϕ. As L(A) = L(A′), we have L(A, fin(a)) =

L(A′, f ′in(a)) for each a ∈ Σ. Hence, by the definition of ϕ, ϕ(fin(a)) = f ′in(a) for
each a ∈ Σ. Thus we have f ′in = fin ◦ ϕ.

Second, we show that ||B′ϕ(q)|| = ||Bq||◦ϕ
∗ for every q ∈ Q. Let q ∈ Q, q′ ∈ Q′ and

a1 . . . ak ∈ Σ∗, k ≥ 1, with ||Bq||(a1 . . . ak) = q1 . . . qk and ||Bq′ ||(a1 . . . ak) = q′1 . . . q
′
k.

Then by Lemma 18, ϕ(qi) = q′i for each i = 1, . . . , k. Hence ||B′ϕ(q)|| = ||Bq|| ◦ ϕ
∗ for

every q ∈ Q.
Third, we show that q ∈ F ⇐⇒ ϕ(q) ∈ F ′ for every q ∈ Q. We proceed by

contradiction. Assume that q ∈ F and ϕ(q) 6∈ F for some q ∈ Q. Then for each
a ∈ Σ, a ∈ L(A, q) and a 6∈ L(A, ϕ(q)). This is a contradiction. The case q 6∈ F
and ϕ(q) ∈ F is analogous to the previous case. Thus A and A′ are isomorphic.

By Theorem 2, we have the following result.

Corollary 1. Assume that A and A′ are connected. Then L(A) = L(A′) if and
only if A/τA ∼= A′/τA′ .

Proof. Assume that L(A) = L(A′). Then by Lemmas 14 and 19, we have L(A/τA) =
L(A) = L(A′) = L(A′/τA′). By Lemma 20, A/τA and A′/τA′ are connected and
reduced. Hence, by Theorem 2 we obtain A/τA ∼= A′/τA′ .

Conversely, assume that A/τA ∼= A′/τA′ . Then by Lemmas 14 and 19, we have
L(A) = L(A/τA) = L(A′/τA′) = L(A′).

Lemma 21. Let ϕ : Q → Q′ be a homomorphism from A to A′. Moreover,
assume that Bq is connected for each q ∈ Q and B′q′ is connected and reduced for
each q′ ∈ Q′. For every q ∈ Q and q′ ∈ Q′ with ϕ(q) = q′, the bimachine B′q′ is a
homomorphic image of Bq.

Proof. Let q ∈ Q and q′ ∈ Q′ with ϕ(q) = q′. First we show that T �
q′ is a

homomorphic image of S�
q . For this, let us define the relation ψ�

q,q′ ⊆ S�
q × T�

q′ by

ψ�
q,q′ = {(s�

q,0x, t
�
q′,0x) | x ∈ Σ∗}.

We note that the domain of ψ�
q,q′ is S�

q because Bq is connected. Next we show
by contradiction that ψ�

q,q′ is a mapping. For this, let us assume that there are
x, y ∈ Σ∗ such that s�

q,0x = s�
q,0y and t�q′,0x 6= t�q′,0y. Since B′q′ is reduced, there are

u, z ∈ Σ∗ such that ||B′q′ ||(t�q′,0x,t�q′,0z)(u) 6= ||B′q′ ||(t�q′,0y,t�q′,0z)(u), i.e.,

||B′q′ ||(t�
q′,0x,t

�
q′,0)(uz

−1) 6= ||B′q′ ||(t�
q′,0y,t

�
q′,0)(uz

−1).

Minimization of Deterministic Top-down Tree Automata 397

On the other hand, by ||Bq|| ◦ ϕ∗ = ||B′q′ ||, we have

ϕ∗(||Bq||(xuz−1)) = ||B′q′ ||(xuz−1) and ϕ∗(||Bq||(yuz−1)) = ||B′q′ ||(yuz−1).

Thus

ϕ∗(||Bq||(s�
q,0x,s

�
q,0)(uz

−1)) = ||B′q′ ||(t�
q′,0x,t

�
q′,0)(uz

−1) and

ϕ∗(||Bq||(s�
q,0y,s

�
q,0)(uz

−1)) = ||B′q′ ||(t�
q′,0y,t

�
q′,0)(uz

−1).

Hence ϕ∗(||Bq||(s�
q,0x,s

�
q,0)(uz

−1)) 6= ϕ∗(||Bq||(s�
q,0y,s

�
q,0)(uz

−1)) and thus

||Bq||(s�
q,0x,s

�
q,0)(uz

−1) 6= ||Bq||(s�
q,0y,s

�
q,0)(uz

−1). This is a contradiction by our as-
sumption s�

q,0x = s�
q,0y.

Since B′q′ is connected, the mapping ψ�
q,q′ is surjective. Finally we show that

ψ�
q,q′ is a homomorphism. Obviously, ψ�

q,q′(s
�
q,0) = t�q′,0. Moreover, for every x ∈ Σ∗

and a ∈ Σ, we have

ψ�
q,q′(δ

�
q,0(s�

q,0x, a)) = ψ�
q,q′(s

�
q,0xa) = t�q′,0xa = γ�

q′,0(t�q′,0x, a) = γ�
q′,0(ψ�

q,q′(s
�
q,0x), a).

Analogously, we can define the relation ψ�
q,q′ ⊆ S�

q × T�
q′ and show that it is a

homomorphism from S�
q onto T �

q′ . Hence B′q′ is a homomorphic image of Bq via
(ψ�
q,q′ , ψ

�
q,q′).

Lemma 22. Assume that A′ is a homomorphic image of A, that Bq is connected
for each q ∈ Q, and that B′q′ is connected and reduced for each q′ ∈ Q′. Then

|Q′| ≤ |Q|,
∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�
q |, and

∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�
q |.

Proof. Let ϕ : Q → Q′ be a surjective homomorphism from A to A′. By Lemma
21, for every q ∈ Q, the bimachine B′ϕ(q) is a homomorphic image of Bq. Thus, by

Lemma 3, |T�
ϕ(q)| ≤ |S

�
q | and |T�

ϕ(q)| ≤ |S
�
q | for every q ∈ Q. Consequently, as ϕ is

a surjective mapping, the statement of the lemma holds.

Lemma 23. Assume that A′ is a homomorphic image of A and that B′q′ is con-
nected and reduced for each q′ ∈ Q′. Then

|Q′| ≤ |Q|,
∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�
q |, and

∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�
q |.

Proof. Let Bcq be the connected part of Bq for each q ∈ Q. As mentioned, the

bimachine Bcq is equivalent to Bq for each q ∈ Q. Hence the DTTA
(
Q,Σ, f, (Bcq |

q ∈ Q), F) is equivalent to A and, obviously,∑
q∈Q
|S�c
q | ≤

∑
q∈Q
|S�
q |, and

∑
q∈Q
|S�c
q | ≤

∑
q∈Q
|S�
q |.

398 Zoltán Fülöp and Sándor Vágvölgyi

Moreover, A′ is a homomorphic image of
(
Q,Σ, f, (Bcq | q ∈ Q), F). Hence by

Lemma 22,

|Q′| ≤ |Q|,
∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�c
q |, and

∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�c
q |.

These and the above inequalities imply the lemma.

Lemma 24. Assume that A is connected and consider A/τA =
(
Q/τA,Σ, fin,τA ,

(Bq/τA | q/τA ∈ Q/τA), F/τA
)
. For each q/τA ∈ Q/τA, let Bcq/τA be the connected

part of Bq/τA and let

M =
(
Q/τA,Σ, fin,τA , (Bcq/τA/ρBcq/τA | q/τA ∈ Q/τA), F/τA

)
.

Then M is a minimal DTTA and equivalent to A.

Proof. Let L(A) = L(A′). By Propositions 4 and 5, we may assume that A′ is
connected. Then, by Corollary 1, A′/τA′ ∼= A/τA. Hence, by Lemmas 4 and 19,
there is a surjective homomorphism ϕ : Q′ → Q/τA from A′ to A/τA. Therefore,
ϕ is a surjective homomorphism from A′ to M. Consequently, by Lemma 23,
• |Q/τA| ≤ |Q′|,
•
∑
q/τA∈Q/τA |S

�c
q/τA

/ρBc
q/τA
| ≤

∑
q∈Q′ |T�

q |, and

•
∑
q/τA∈Q/τA |S

�c
q/τA

/ρBc
q/τA
| ≤

∑
q∈Q′ |T�

q |.
Therefore,M is a minimal DTTA. By Lemma 14, A/τA is equivalent to A. Hence,
by Lemma 5, M is equivalent to A as well.

In the rest of the paper we give an algorithm which computes the minimal
DTTA which is equivalent to A. For this we will need the concept of the direct
product of bimachines. The direct product of the semi-automata S and T is the
semi-automaton S×T = (S×T,Σ, (s0, t0), δ′′), where δ′′((s, t), a) = (δ(s, a), δ′(t, a))
for every (s, t) ∈ S × T and a ∈ Σ. The direct product of the bimachines B and B′
is the bimachine

B × B′ = (Σ,Γ× Γ,S� × T �,S� × T �, f ′′),

where f ′′((s�, t�), a, (s�, t�)) = (f(s�, a, s�), f ′(t�, a, t�)) for all (s�, t�) ∈ S� ×
T�, (s�, t�) ∈ S� × T�, and a ∈ Σ.

To give an algorithm which computes the minimal automaton equivalent to A,
we define the relation τn ⊆ Q×Q for every n ≥ 0, by induction on n.

Base of induction: For each p, q ∈ Q, let pτ0q if and only if (p ∈ F ⇐⇒ q ∈ F).

Induction step: Let n ≥ 0 and assume that we have defined τn. For each
p, q ∈ Q, let pτn+1q if and only if

• pτnq and

Minimization of Deterministic Top-down Tree Automata 399

• for the bimachine Bp×Bq = (Σ, Q×Q,S�
p ×S�

q ,S�
p ×S�

q , f(p,q)) and for any
reachable pair ((s�, t�), (s�, t�)) in Bp × Bq and a ∈ Σ, if
f(p,q)((s

�, t�), a, (s�, t�)) = (r1, r2), then we have r1τnr2.

Lemma 25. For each n ≥ 0, τn is an equivalence relation.

Proof. We proceed by induction on n.
Base of induction: n = 0. By definition, τ0 is an equivalence relation.
Induction step: We assume that the lemma holds for n ≥ 0, and show that it

also holds for n + 1. By definition and the induction hypothesis, τn+1 is reflexive
and symmetric. We will show that τn+1 is transitive. To this end, let p, q, r ∈ Q,
and assume that pτn+1q and qτn+1r. Since pτn+1q and qτn+1r, we have pτnq
and qτnr. By the induction hypothesis, pτnr. All is left to show is that for the
bimachine Bp×Br = (Σ, Q×Q,S�

p ×S�
r ,S�

p ×S�
r , f(p,r)) and for any reachable pair

((s�, t�), (s�, t�)) in Bp × Br and a ∈ Σ, if f(p,r)((s
�, t�), a, (s�, t�)) = (p′, r′),

then we have p′τnr
′. To this end, take a word w = a1 . . . ak ∈ Σ∗, k ≥ 1, such that

• (s�
0 , t

�
0)(s�

1 , t
�
1) . . . (s�

k−1, t
�
k−1)(s�

k , t
�
k) is the run of S�

p × S�
r on a1 . . . ak,

• (s�
0 , t

�
0)(s�

1 , t
�
1) . . . (s�

k−1, t
�
k−1)(s�

k , t
�
k) is the run of S�

p × S�
r on ak . . . a1,

• ((s�, t�), a, (s�, t�)) = ((s�
j−1, t

�
j−1), aj , (s

�
k−jt

�
k−j)) for some 1 ≤ j ≤ k and

• (pi, ri) = f(p,r)((s
�
i−1, t

�
i−1), ai, (s

�
k−i, t

�
k−i)) for 1 ≤ i ≤ k.

Then ||Bp × Br||(w) = (p1, r1) . . . (pk, rk) and (p′, r′) = (pj , rj).
Let y�

0 y
�
1 . . . y�

k−1y
�
k be the run of S�

q on a1 . . . ak, and y�
0 y

�
1 . . . y�

k−1y
�
k the run

of S�
q on the reversed input ak . . . a1, and let qi = f(y�

i−1, ai, y
�
k−i) for 1 ≤ i ≤ k.

Then ||Bq||(w) = q1 . . . qk and ||Bp×Bq||(w) = (p1, q1) . . . (pk, qk) and ||Bq×Br||(w) =
(q1, r1) . . . (qk, rk). Since pτn+1q and qτn+1r, we have pjτnqj and qjτnrj . By the
induction hypothesis, τn is an equivalence relation, hence pjτnrj . Since (p′, r′) =
(pj , rj), we have p′τnr

′. Therefore pτn+1r, and hence τn+1 is transitive.

Obviously, we have
τ0 ⊇ τ1 ⊇ τ2 ⊇ · · ·

and thus there is an integer n0 ≥ 0 such that τn0
= τn0+1. Moreover, we can prove

that τn0 = τn0+1 implies τn0+1 = τn0+2 = · · · for every n0 ≥ 0.

Lemma 26. For all n, l ≥ 0, p, q ∈ Q, ξ ∈ TΣ with height(ξ) ≥ l, x ∈ dom(ξ) with
|x| = l, p-run rp of A on ξ and q-run rq of A on ξ, if pτn+lq, then rp(x)τnrq(x).

Proof. We proceed by induction on l. If l = 0, then p = rp(x) and q = rq(x). By
our assumption pτn+0q, we have rp(x)τnrq(x).

Induction step: We assume that the lemma holds for l ≥ 0, and show that it
also holds for l+ 1. To this end, let ξ ∈ TΣ with ξ = a(ξ1 . . . ξk), height(ξ) ≥ l+ 1,
and let x = iy, where 0 ≤ i ≤ k, |x| = l + 1 and hence |y| = l, and assume that
pτn+l+1q. Consider an arbitrary p-run rp of A on ξ and an arbitrary q-run rq of A
on ξ. If rp(i) = p′ and rq(i) = q′, then by the definition of τn+l+1, p′τn+lq

′. Hence,
by the induction hypothesis, for the p′-run rp′ of A on ξi and for the q′-run rq′ of
A on ξi, we have rp′(y)τnrq′(y). Observe that rp′(y) = rp(x) and rq′(y) = rq(x).
Consequently, rp(x)τnrq(x).

400 Zoltán Fülöp and Sándor Vágvölgyi

Lemma 27. Let n0 be the least integer with τn0 = τn0+1. Then τn0 = τA.

Proof. First we show that τn0
⊆ τA. Let pτn0

q. Then pτn0+lq for each l ≥ 0, hence
by Lemma 26, for all l ≥ 0, ξ ∈ TΣ with height(ξ) ≥ l, x ∈ dom(ξ) with |x| = l,
p-run rp of A on ξ and q-run rq of A on ξ, we have rp(x)τnrq(x). By the inclusion
τ0 ⊇ τn0 , we have rp(x)τ0rq(x). Hence, by the definition of ρ0, we have (rp(x) ∈ F
if and only if rq(x) ∈ F). Since l ≥ 0, ξ ∈ TΣ, and x ∈ dom(ξ) are arbitrary,
L(A, p) = L(A, q).

We now show that τA ⊆ τn0
. To this end we show that for all p, q ∈ Q, n ≥ 0,

if (p, q) 6∈ τn, then (p, q) 6∈ τA. We proceed by induction on n.
Base of induction: n = 0. If (p, q) 6∈ τ0, then (p ∈ F if and only if q 6∈ F).

Hence L(A, p) 6= L(A, q) and thus pτAq does not hold.
Induction step. Assume that pτn+1q does not hold. Then pτnq does not hold or

pτnq and there is a word z ∈ Σ∗ such that ||Bp||(z) = p1 . . . pk and ||Bq||(z) = q1 . . . qk
and (pi, qi) 6∈ τn for some 1 ≤ i ≤ k. In the first case, by the induction hypothesis,
(p, q) 6∈ τA. In the second case, L(A, pi) \ L(A, qi) 6= ∅ or L(A, qi) \ L(A, pi) 6= ∅.
If L(A, pi) \ L(A, qi) 6= ∅, then let ξi ∈ (L(A, pi) \ L(A, qi)), otherwise let ξi ∈
L(A, pi). If L(A, qi) \L(A, pi) 6= ∅, then let ζi ∈ (L(A, qi) \L(A, pi)), otherwise let
ζi ∈ L(A, qi). For each 1 ≤ j ≤ k with j 6= i, let ξj ∈ L(A, pj) and ζj ∈ L(A, qj).
Then let ξ = a(ξ1 . . . ξk) and ζ = a(ζ1 . . . ζk). Consequently, ξ ∈ (L(A, p) \L(A, q))
or ζ ∈ (L(A, q) \ L(A, p)). Hence L(A, p) 6= L(A, q) and thus pτAq does not
hold.

Proposition 7. There is a polynomial time algorithm which constructs A/τA for
a given A.

Proof. We compute τ1 in O(|Q|2) time. For every 1 < n ≤ n0, the relation τn can
be computed in O(|Q|2(N�)2|Σ|(N�)2) time, where N� = max{|S�

p | | p ∈ Q} and
N� = max{|S�

p | | p ∈ Q}. Since there are at most |Q| steps, the relation τn0
can

be computed in O(|Q|3(N�)2|Σ|(N�)2) time.

Theorem 3. There is a polynomial time algorithm which constructs for A an
equivalent minimal DTTA.

Proof. By Propositions 6, 7, 2, and 3, respectively, we compute the following se-
quence of DTTAs in polynomial time.

1) The connected part Ac =
(
Qc,Σ, fcin, (Bq | q ∈ Qc), F c

)
of A.

2) The congruence τAc and the DTTA

Ac/τAc =
(
Qc/τAc ,Σ, f

c
in,τcA

, (Bq/τAc | q/τAc ∈ Q
c/τAc), F

c/τAc
)
.

3) For each q/τAc ∈ Qc/τAc , the connected part Bcq/τAc of Bq/τAc .

4) The DTTA(
Qc/τAc ,Σ, f

c
in,τAc

, (Bcq/τAc/ρBcq/τAc | q/τAc ∈ Q
c/τAc), F

c/τAc
)
.

By Lemma 24, the latter one is a minimal DTTA which is equivalent to A.

Minimization of Deterministic Top-down Tree Automata 401

References

[1] Björklund J. and Cleophas L. A Taxonomy of Minimisation Algorithms for
Deterministic Tree Automata. Journal of Universal Computer Science vol.
22(2): 180–196, 2016.

[2] Brüggemann-Klein A., Murata M., and Wood D., Regular tree and regular
hedge languages over unranked trees. Technical Report HKUST-TCSC-2001-0,
The Hong Kong University of Science and Technology, Hong Kong, China,
2001.

[3] Comon H., Dauchet M., Gilleron R., Löding C., Jacquemard F., Lugiez D.,
Tison S., and Tommasi M. Tree Automata Techniques and Applications.
http://www.grappa.univ-lille3.fr/tata, 2007.

[4] Cristau J., Löding C., and Thomas W. Deterministic Automata on Unranked
Trees. In Liskiewicz M. and Reischuk R. editors, Fundamentals of Computation
Theory, 15th International Symposium, FCT 2005, Proceedings, Lecture Notes
in Computer Science 3623, pages 68–79. Springer-Verlag, Berlin, 2005.

[5] Gécseg F. and Steinby M. Minimal ascending tree automata. Acta Cybernetica
4(1): 37–44, 1978.

[6] Jiang T. and Ravikumar B. Minimal NFA problems are hard. SIAM Journal
on Computing 22(6): 1117–1141, 1993.

[7] Martens W. and Niehren J. On the minimization of XML Schemas and tree
automata for unranked trees. Journal of Computer and Systems Sciences 73(4):
550–583, 2007.

[8] Martens W., Neven F., and Schwentick T. Deterministic Top-down Tree Au-
tomata: Past, Present, and Future. In Flum J., Grädel E, and Wilke T. editors,
Logic and Automata – History and Perspectives, pages 505–530. Amsterdam
University Press, 2008.

[9] Martens W., Neven F., Schwentick T., and Bex G. J. Expressiveness and
complexity of XML Schema, Journal ACM Transactions on Database Systems
(TODS) 31(3): 770–813, 2006.

[10] Neven F. Automata theory for XML researchers. ACM Sigmod Record 31(3):
39–46, 2002.

[11] Piao X. and Salomaa K. Operational State Complexity of Deterministic Un-
ranked Tree Automata, In McQuillan I. and Pighizzini G. editors, Proceedings
Twelfth Annual Workshop on Descriptional Complexity of Formal Systems,
DCFS 2010, Electronic Proceedings in Theoretical Computer Science 31: 149–
158, 2010.

[12] Piao X. and Salomaa K. Lower bounds for the size of deterministic unranked
tree automata, Theoretical Computer Science 454: 231–239, 2012.

