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Abstract

The notion that antipatterns have a detrimental effect on source code
maintainability is widely accepted, but there is relatively little objective ev-
idence to support it. We seek to investigate this issue by analyzing the con-
nection between antipatterns and maintainability in an empirical study of
Firefox, an open source browser application developed in C++.

After extracting antipattern instances and maintainability information
from 45 revisions, we looked for correlations to uncover a connection between
the two concepts. We found statistically significant negative values for both
Pearson and Spearman correlations, most of which were under -0.65. These
values suggest there are strong, inverse relationships, thereby supporting our
initial assumption that the more antipatterns the source code contains, the
harder it is to maintain.

Lastly, we combined these data into a table applicable for machine learning
experiments, which we conducted using Weka [10] and several of its classifier
algorithms. All five regression types we tried had correlation coefficients over
0.77 and used mostly negative weights for the antipattern predictors in the
models we constructed.

In conclusion, we can say that this empirical study is another step towards
objectively demonstrating that antipatterns have an adverse effect on software
maintainability.

Keywords: static analysis, source code metrics, antipatterns, maintainabil-
ity, correlation, machine learning

1 Introduction

In the area of source code analysis, there are many topics that are intensively
studied. One of them is pattern recognition. Antipatterns are common solutions
to frequently occurring problems which are supposed to incur decidedly negative
consequences. However, even for the most widespread and universally accepted
antipatterns, there is no substantial objective evidence that confirms their detri-
mental effects. To address this, we propose an empirical study intended to improve
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our understanding of the connection between antipatterns and source code main-
tainability.

As our subject systems, we selected 45 evenly distributed sample revisions taken
from the master and electrolysis branches of Firefox between 2009 and 2010 –
approximately one revision every two weeks. These revisions provided the basis
for both antipattern detection and maintainability assessment. We extracted the
occurrences of 9 different antipattern types and summed the number of matches by
type. We also divided these sums by the total number of logical lines of the subject
system for each revision to create new, system-level antipattern density predictor
metrics.

Next, we computed corresponding maintainability values using a C++ specific
quality model that calculates increasingly more abstract source code characteris-
tics by performing a weighted aggregation of lower level metrics according to the
ISO/IEC 25010 standard [14]. Its final result is a number between 0 and 1, which
indicates the maintainability of the source code. Moreover, we adapted versions of
the independent Maintainability Index [5] to get a secondary quality indicator.

With these data available, we attempted to answer the following two research
questions:

• RQ1: How does the number of antipatterns in a given system cor-
relate with its maintainability?

• RQ2: Can the antipattern instances of a system be used to predict
its maintainability?

The paper is structured as follows. In Section 2, we list some related work, then
in Section 3 we elaborate on our methodology. In Section 4, we discuss the results
we obtained, then in Section 5 we overview some factors that might threaten the
validity of these results. Lastly, in Section 6 we draw some pertinent conclusions
and outline our plans for future work.

2 Related Work

Maintainability Trying to quantify complex software systems with a single ma-
intainability index is not a new idea. Peercy [20] attempted to characterize subject
systems using questionnaires as early as 1981. This, however, was a manual and
mostly subjective effort.

Automatic source code analysis and metric extraction later led to metric-based
maintainability models. One of the earlier – and more well-known – ones is the
Maintainability Index metric (MI) published by Coleman et al. [5], which is a
predefined formula that uses specific source code metrics to provide its result. Since
it is still widely used to this day, we also included it in our investigations.

With the publication of the ISO/IEC 9126 framework [13], the expected struc-
ture and aspects of quality (and maintainability) models were more formally de-
fined. It prescribes how to perform a weighted aggregation of objective, low-level
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source code characteristics so it can obtain increasingly abstract values, thereby
providing a high-level overview of the whole system. This aggregation is simply
visualized by a graph whose leaf nodes are the source code metrics and the most
abstract characteristic (in our case, the maintainability) is the root node. An ex-
ample of this approach in practice is given by Antonellis et al. [2]. Similar to our
approach, they also use expert opinion-based graph weighting, but they achieve it
by using a technique called Analytical Hierarchical Processing. They conclude that
this method helps domain experts to find connections between individual metrics
and global maintainability as well as identify problematic areas.

Another example of the ISO/IEC 9126 framework in action is the probabilistic
quality model published by Bakota et al. [3]. It also aggregates low-level metrics
to arrive at the more abstract maintainability but instead of concrete “goodness
values”, it makes use of “goodness functions”, and the leaf nodes of the dependency
graph are treated as random variables. These goodness functions are built by
analyzing a benchmark containing over 100 subject systems.

Our main approach uses the ISO/IEC 25010 [14] standard (a successor to
ISO/IEC 9126) combined with the source code normalization method presented
in [21]. While the model built there was meant for parallelization, not maintain-
ability, the same principles apply. This notion is elaborated on in Section 3.3.

Antipatterns The two antipattern detection strategies closest to our own were
published by Marinescu [18] and Moha et al. [19]. These studies both use source
code metrics and threshold analysis and they both feature externally parametrized
antipattern rules – but in these cases, the structure of the pattern is also cus-
tomizable. Moreover, Moha et al. also utilize non-metric based, structural or even
lexical cues which, although they cannot be so easily customized, have also been
incorporated into our approach.

If preexisting benchmarks with known antipattern occurrences are available,
machine learning becomes a viable option. Khomh et al. [15] built on the method-
ology of Moha et al. by making the decisions among parts of a complex ruleset
more fuzzy with Bayesian networks. Another example was published by Maiga
et al. [17], where they used Support Vector Machines to train models based on
source code metrics to recognize antipattern instances. Here, however, we build
machine learning models just to analyze the connection between the precomputed
antipatterns and the maintainability of a given system.

In yet another approach, Stoianov and Şora [23] reduced pattern recognition
to the resolution of logical predicates using Prolog. While this may seem radically
different, there are similarities with our technique if we treat our metric thresholds
and structural checks as the predicates and the programmatic source code traversal
as Prolog’s internal resolution process.

The Connections between Antipatterns and Maintainability As we men-
tioned earlier, little research has been done so far on finding an explicit connection
between antipatterns and maintainability. One of these is our previous study [4],
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where the two concepts were inversely related, while antipatterns were proportion-
ately related to program faults (or bugs). Another is an investigation by Fontana
and Maggioni [8] where they assume the connection and use antipatterns as well
as source code metrics to evaluate software quality. Yet another is an empirical
study by Yamashita and Moonen [25] where, after the refactoring of 4 Java sys-
tems, they conclude that antipatterns could provide experts and developers with
more insights into maintainability than source code metrics or subjective judgment
alone; however, a combined approach is suggested.

If we broaden our search from maintainability to include other concepts, an-
tipatterns have been linked (among others) to:

• Comprehension by Abbes et al. [1], who concluded that, although single in-
stances can be managed, multiple antipattern occurrences could have a sig-
nificant impact and should be avoided,

• Class change- and fault-proneness by Khomh et al. [16], who concluded that
classes participating in antipatterns are more change- and fault-prone, and

• Unit testing effort by Sabane et al. [22], who concluded that antipattern
classes require substantially more test cases and should be tested with addi-
tional care.

On the other hand, if we just focus on maintainability, it has been positively
linked to design patterns by Hegedűs et al. [11], refactorings by Szőke et al. [24],
and version history metrics by Faragó et al. [6].

3 Methodology

The sequence of steps we took in order to answer our research questions is depicted
in Figure 1.

The grey circles represent the different artifacts that exist between the steps of
the process, while the white rectangles – which are explored in their own subsections
– are the steps themselves.

3.1 Analysis

The analysis was conducted using a shell script that enumerated the 45 Firefox revi-
sions, checked out the corresponding repositories (if not yet available) and updated
them to the correct commit before initiating a build sequence. The core of the
analysis was performed using the SourceMeter tool [7] developed at the Software
Engineering Department of the University of Szeged.

It should be mentioned here that apart from the simple build script of make -f

client.mk, our custom analysis configuration contained filters to skip the results
of every command that matched the word “conftest” (a so-called hard filter) and to
later skip any source code elements whose source code path information matched
the filters described in Listing 1 (a so-called soft filter). These filters were obtained
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Figure 1: The methodology step sequence

via manual analysis of the Firefox repositories, pinpointing irrelevant or 3rd party
code.

The lines in Listing 1 are applied in the order shown, allowing or disallowing
a path based on the starting + or - character. So, for example, the first two lines
mean that everything is filtered except for any content coming from the “repos”
directory.

It should be added that the 45 Firefox revisions we selected are a subset of the
Green Mining Dataset collected by Abram Hindle [12], as it is also our intention to
relate antipatterns and software quality to energy and power consumption in the
future.
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Listing 1: The filter file for the analysis

−/
+/path/ to / repos /
−/c o n f i g /
−/ t e s t i n g /
−/bu i ld /
−/media/
−/s e c u r i t y /
−/db/
−/jpeg /
−/modules/
+/path/ to / repos / .∗/ modules/ p lug in /
+/path/ to / repos / .∗/ modules/ stat icmod /

3.2 Metric Extraction

After performing our analysis, we extracted the metrics of the global namespace,
which represent an aggregated, top-level view of the subject system. These metrics
are the following:

• HVOL (Halstead VOLume): if we let η1 denote the number of distinct
operators, η2 the distinct operands, N1 the total number of operators and N2

the total number of operands, then HV OL = N1 +N2 · log2(η1 + η2). From a
C++ perspective, we will treat unary and binary operators (both arithmetic,
increment, comparison, boolean, assignment, bitwise, shift and compound),
keywords (e.g., return, sizeof, if, else, etc.), brackets, braces, parentheses,
semicolons and pointer asterisks as operators, while the corresponding types,
names, members, constants and literals will be treated as operands. Although
this metric is usually used for single methods, it can be easily generalized to
the system level.

• TCBO (Total Coupling Between Objects): the CBO metric for a class
means the number of different classes that are directly used by the class.
Usage, among others, includes method calls, parameters, instantiations and
attribute accesses as well as returnable and throwable types. TCBO is an
aggregation of class-level CBOs to the system level, while AvgCBO (Average
CBO) is defined as the ratio TCBO/TNCL.

• TLCOM5 (Total Lack of COhesion in Methods 5): for a class, LCOM5
measures the lack of cohesion, and it is interpreted as how many coherent
classes the class could be split into. It is calculated by taking a non-directed
graph, where the nodes are the implemented local methods of the class and
there is an edge between two nodes if and only if a common attribute or
abstract method is used or a method invokes another. The value of the metric
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is the number of connected components in the graph not counting those which
contain only constructors, destructors, getters or setters. TLCOM5 is the sum
of LCOM5s, while AvgLCOM5 (Average LCOM5) is defined as the ratio
TLCOM5/TNCL.

• TRFC (Total Response set For Class): for a class, RFC is the number of
local (i.e. not inherited) methods in the class plus the number of directly
invoked other methods by its methods or attribute initializations. For the
system, TRFC is the aggregated sum of RFCs, while AvgRFC (Average
RFC) is defined as the ratio TRFC/TNCL.

• TWMC (Total Weighted Methods per Class): the WMC metric for a class
is the total of the McCC (McCabe’s Cyclomatic Complexity) metrics of its
local methods. For the system, TWMC is the sum of all WMCs, while Avg-
WMC (Average WMC) is defined as the ratio TWMC/TNCL.

• TAD (Total API Documentation): the ratio of the number of documented
public members of the system over the number of all of its public members.

• TCD (Total Comment Density): the ratio of the comment lines of the system
(TCLOC) over the sum of its comment (TCLOC) and logical lines of code
(TLLOC).

• TCLOC (Total Comment Lines Of Code): the number of comment and
documentation code lines in the system, where comment lines are lines that
have either a block or a line comment, while a documentation comment line
is a line that has (at least part of) a comment that is syntactically directly
in front of a member. Note that a single line can be both a logical line and a
comment line if it has both code and at least one comment.

• TLLOC (Total Logical Lines Of Code): the number of code lines of the
system, without the empty and purely comment lines.

• TNA (Total Number of Attributes): the number of attributes in the system.

• TNCL (Total Number of Classes): the number of classes in the system.

• TNEN (Total Number of Enums): the number of enums in the system.

• TNIN (Total Number of Interfaces): the number of interfaces in the system.
Note that although C++ lacks language support for the concept, we will treat
classes with only pure virtual methods as interfaces.

• TNM (Total Number of Methods): the number of methods in the system.

• TNPKG (Total Number of PacKaGes): the number of namespaces in the
system. Note that the word “package” here refers to a generalized object-
oriented container concept which, in C++, directly maps to namespaces.
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• TNOS (Total Number Of Statements): the number of statements in the
system.

It should be mentioned that the SourceMeter tool [7] did not have native support
for some of the system-level metrics, including the Total and Average versions of
CBO, WMC, LCOM5 and RFC, along with the aggregated Halstead Volume. The
implementation of these computations was performed specifically for this study.

3.3 Metric Normalization

The metrics we have calculated so far may be viewed as complete from the per-
spective of the subject systems, but they cannot be related. They are, in a sense,
absolute metric values and we have no way to tell, for instance, what an average
WMC of 49.6 or a comment density of .31 means compared to each other. For
this reason, it is desirable to normalize each metric value to the [0, 1] interval using
empirical cumulative distribution functions (or ECDFs). This method produces
relative numeric values which indicate the ratio of how many of the available data
points are smaller than a certain metric. These values are relative because they
depend on the context they were evaluated in.

Let (v1, v2, . . . , vn) be independent and identically distributed random variables

with a common distribution function. The empirical distribution function is F̂ (x) =
1
n

∑n
i=1 I(vi ≤ x), where I is the indicator function; namely, I(vi ≤ x) = 1 if vi ≤ x

and 0 otherwise. For example, the empirical distribution function of variables 1, 1,
1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 8, 9, 13, and 15 can be seen in Figure 2.

Figure 2: An example Empirical Cumulative Distribution Function [21]

Note that these normalized metrics will be greater for greater absolute inputs
and smaller for smaller ones. However, the majority of our examined metrics are
“the smaller the better”, hence to facilitate a simpler mental model where values
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closer to 1 mean better quality, we decided to invert this relation. The exceptions
to this inversion – or, the “the bigger the better” metrics – are all documentation-
related, namely TAD, TCD and TCLOC.

3.4 Antipatterns

For the automatic recognition of antipattern instances, we used our previously
published static source code analyzer tool [4]. It currently recognizes the 9 types
of antipatterns listed below. They are described in greater detail by Fowler and
Beck [9], and here we will just provide a short informal definition and explain how
we interpreted them in the context of our model.

Each antipattern implementation can define one or more externally configurable
parameters, mostly used for easily adjustable metric thresholds. These are denoted
by a starting $ sign and their default values are listed in Table 1. Several of the
object-oriented source code metrics referenced below coincide with the extracted
metrics described in Section 3.2, while others are briefly explained in place.

• Feature Envy (FE): A class is said to be envious of another class if it is
more concerned with the attributes of that other class than those of its own.
It is interpreted as a method that accesses at least $MinAccess attributes,
and at least $MinForeign% of those belong to another class.

• Lazy Class (LC): A lazy class is one that does not do “much”, just dele-
gates its requests to other connected classes – i.e., a non-complex class with
numerous connections. It is interpreted as a class whose CBO metric is at
least $MinCBO, but its WMC metric is no more than $MaxWMC.

• Large Class Code (LCC): Simply put, a class that is “too big” – i.e.,
it probably encapsulates not just one concept or it does too much. It is
interpreted as a class whose LLOC metric is at least $MinLLOC.

• Large Class Data (LCD): A class that encapsulates too many attributes,
some of which might be extracted – along with the methods that more closely
correspond to them – into smaller classes and might be a part of the original
class through aggregation or association. It is interpreted as a class whose
NA metric is at least $MinNA.

• Long Function (LF): Similar to LCC, if a method is too long, it probably
has parts that could (or should) be separated into their own logical entities,
thereby making the whole system more comprehensible. It is interpreted
as a method where the LLOC, NOS or McCC metric exceeds $MinLLOC,
$MinNOS or $MinMcCC, respectively.

• Long Parameter List (LPL): The long parameter list is one of the most
recognized and accepted “bad code smells” in code. It is interpreted as a
function (or method) whose number of parameters is at least $MinParams.
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• Refused Bequest (RB): If a class refuses to use its inherited members – es-
pecially if they are marked “protected,” through which the parent states that
descendants should most likely use it – then it is a sign that inheritance might
not be the appropriate method of implementation reuse. It is interpreted as
a class that inherits at least one protected member that is not accessed by
any locally defined method or attribute.

• Shotgun Surgery (SHS): Following the “Locality of Change” principle, if
a method needs to be modified then it should not cause a demand for many
other – especially remote – modifications, otherwise one of those can easily be
missed leading to bugs. It is interpreted as a method whose NII (Number of
Incoming Invocations, i.e., the number of the different methods or attribute
initializations where this method is called) metric is at least $MinNII.

• Temporary Field (TF): If an attribute only “makes sense” to a small per-
centage of the container class then it – and its closely related methods –
should be decoupled. It is interpreted as an attribute that is only referenced
by at most $RefMax% of the members of its container class.

It should be mentioned that in addition to these single antipatterns, we collected
a “SUM” value, which is – not surprisingly – defined as the sum of all types of
antipatterns in the given subject system. Also, we calculated densities for each
absolute antipattern listed above, meaning that for every “AP” antipattern there
is an “AP DENS” metric available, computed as the ratio AP/TLLOC.

Table 1: Antipattern default thresholds

Antipattern Parameter Value
FE MinAccess 5
FE MinForeign% 80%
LC MinCBO 5
LC MaxWMC 10
LCC MinLLOC 500
LCD MinNA 30
LF MinLLOC 80
LF MinNOS 80
LF MinMcCC 10
LPL MinParams 7
SHS MinNII 10
TF RefMax% 10%
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3.5 Maintainability Models

In order to assess the maintainability of the systems we analyzed, we created an
expert opinion-based maintainability model according to the ISO/IEC 25010 stan-
dard [14]. The standard states that Maintainability should be the weighted aggre-
gation of 5 subcharacteristics, these being Analysability, Modifiability, Testability,
Modularity, and Reusability. The weights of how they are to be aggregated – and
how they themselves are computed from source code metrics – were derived from
the results of a poll.

First, the 10 experts – each of whom is an academic or industrial professional
with at least 5 years of experience in software engineering – had to distribute 100
points among the source code metrics (listed in Section 3.2) for each subcharacteris-
tic, to express how much they think that metric affects the given subcharacteristic.
The results of this step are summarized in Table 2.

Table 2: The results of the subcharacteristic votes

ID Analysa
bilit

y

M
odifiabilit

y

Test
abilit

y

M
odularit

y

Reu
sa

bilit
y

HVOL 25 26.6 25.7 11 13
AvgCBO 22 29.6 24.5 43 33
AvgLCOM5 6.5 4.7 7.4 8.5 7.5
AvgRFC 1.5 3 3.3 15 7.5
AvgWMC 10 10 10.8 5.5 9
TAD 7.3 7 2.5 3.3 7.9
TCBO 1 1.3 3.6 0 1
TCD 4.1 1.5 1.5 0 2
TCLOC 0.3 0.5 0 0 4.5
TRFC 0 0.5 1 0.5 0.5
TWMC 1 1 0 0 0
TLLOC 14.5 9.2 8.5 0 2.4
TNA 0 0 0.2 0 0
TNCL 5 3 5 0 0
TNM 1.4 1.3 3.1 0 0
TNOS 0 0 1 0 0
TNPA 0 0 0 0 1.4
TNPCL 0 0 0 4.6 2.4
TNPEN 0 0 0 0.4 1.3
TNPIN 0 0 0 5.7 3.5
TNPKG 0.4 0.8 0 0 0.2
TNPM 0 0 1.9 2.5 2.9



482 Dénes Bán

Next, they had to distribute another 100 points among the subcharacteristics
themselves, expressing how much each of them affects the overall Maintainability.
The results of this step are summarized in Table 3.

Table 3: The results of the Maintainability votes

Subcharacteristic Maintainability
Analysability 28.5
Modifiability 26.5
Testability 14.2
Modularity 17.1
Reusability 13.7

Given these weights – and later dividing by 100 – we were able to obtain system-
level Maintainability values for each of the given subject revisions in the [0, 1]
interval.

In addition, as mentioned in Section 1, we computed the two “traditional”
Maintainability Index metrics [5], interpreting them using our static source code
metrics as:

MI = 171− 5.2 · ln(HV OL)− 0.23 · TWMC − 16.2 · ln(TLLOC)

and

MI2 = 171− 5.2 · log2(HV OL)− 0.23 · TWMC

− 16.2 · log2(TLLOC) + 50 · sin(
√

2.4 · TCD)

We also calculated their modified counterparts (MI* and MI2*), where we
changed the Total WMC values to their corresponding averages. We did so to scale
each part of the sum to the same magnitude because complexity (WMC) is the
only component not inside a logarithm or sine and the TWMC values dominated
every other term of the formulas.

3.6 Correlations and Machine Learning

Correlation is a statistical relationship between two sets of data denoting the
strength of their dependence. Its values can range from +1 (strong relationship)
to -1 (strong inverse relationship). We tested both Pearson’s (which expresses
linear dependence) and Spearman’s correlation (which is a Pearson’s correlation
performed on the rankings of the original data).

Regression analysis is another statistical approach for estimating the relation-
ships among variables. It seeks to predict how the typical value of the dependent
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variable changes when any one of the independent variables change. It achieves this
by providing an estimate for the dependent variable from a continuous interval. Its
most important performance measure is its correlation coefficient, expressing how
well the predicted values follow the tendency of the real value of the dependent
variable.

In our current case, the dependent variable was one of the maintainability met-
rics (our ISO/IEC 25010-based Maintainability or one of the previously mentioned
MI versions), while the independent variables were the counts and densities of the
different antipattern types.

In this empirical study, we evaluated each of the following regression types:
linear regression, multilayer perceptron, reduced error pruning tree, M5P tree and
sequential minimal optimization regression.

4 Results

After all these preliminaries, we are now ready to address our two research ques-
tions.

4.1 Correlation Results

To address RQ1, we decided to calculate the Pearson and Spearman correlations
between each antipattern and maintainability measure pair, summarized in Table 4
and Table 5, respectively. Note that a single star suffix (*) means that the corre-
lation is statistically significant at the .05 level, while a double star (**) means a
significance at the .01 level. Also, to help in quickly parsing these tables, any cell
where the correlation coefficient is either positive or non-significant was marked in
a light gray background, and a darker gray when it is significantly positive (the
worst case from our perspective).

As these tables clearly show, most antipattern-maintainability pairs have a
strong, significant inverse connection. There are a few marked correlations, mainly
for Modularity and Reusability, but even in these cases the non-significant val-
ues are still negative, while the positive values are non-significant and weak. We
highlight the correlations between the SUM and SUM DENS antipatterns and our
final Maintainability measure as these represent most closely the overall effects of
antipatterns on maintainability. The corresponding values are -.658 and -.692 for
Pearson, and -.704 and -.678 for Spearman correlation, respectively. Thus, in re-
sponse to the first research question we conclude – based on these empirical findings
– that there is a strong, inverse relationship between the number of antipatterns
in a system and its maintainability. This supports our initial assumption that the
more antipatterns the source code contains, the harder it is to maintain.
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4.2 Machine Learning Results

To answer RQ2, we compiled ten tables applicable for machine learning experi-
ments – one for each maintainability measure. These contained every antipattern
type as predictors and the values for their chosen maintainability measures as tar-
gets for prediction. We then ran these tables through all five regression techniques
mentioned in Section 3.6 to see how well they worked in practice. The resulting
models were later tested with a 10-fold cross-validation, and the corresponding
correlation coefficients are shown in Table 6.

Table 6: Correlation coefficients of the machine learning models

Linea
r Reg

.

M
LP

REPTre
e

M
5P

SM
O

Reg
.

MI .9991 .9969 .9079 .9983 .9993
MI* .9825 .9968 .8695 .9727 .9971
MI2 .9991 .9969 .9635 .9983 .9993
MI2* .9864 .9689 .9033 .9799 .9858
Analysability .8210 .9085 .7632 .9097 .9151
Modifiability .8082 .9223 .7286 .8138 .8348
Testability .8637 .9547 .8564 .8874 .8903
Modularity .9082 .8915 .7461 .7589 .8757
Reusability .8247 .8927 .6777 .6222 .8455
Maintainability .8513 .9318 .7619 .8179 .8556

The high values of these coefficients suggest an affirmative answer to our sec-
ond research question: antipatterns can be valuable predictors for maintainability
assessment. The models we built weight the antipattern predictors with mostly
negative values, but there are numerous positive instances as well. Further analysis
of the structure of the models in the case of the Maintainability target revealed
that some antipatterns consistently appear with negative weights more often than
others. Moreover, this ordering of importance largely coincides with the above
correlation magnitudes.

4.3 Lessons Learned

The most obvious lesson learned, based on these results, is the measurable detri-
mental effect of antipatterns on maintainability. Moreover, the conclusion we drew
from the correspondence between correlation values and negative model weights is
that there could also be an order of importance among the antipatterns studied
here.

The most important ones to avoid appear to be Long Functions, Large Class
Codes and Shotgun Surgeries. The frequently suggested refactorings for the first
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two antipatterns are “Extract Method” and “Extract Class”, respectively. As for
Shotgun Surgery, the main goal is to reduce coupling by moving or extracting
methods or fields, or even identifying a common superclass.

Refused Bequests and Temporary Fields seem less dangerous. The former can
be fixed with “Replace Inheritance with Delegation” or by extracting an even more
abstract superclass to house just the common members, while the latter is often
corrected with “Extract Class” – which can coincide with extracting a method
object.

And finally, Long Parameter Lists, Feature Envies, Lazy Classes and Large Class
Data instances can be more easily tolerated. However, these can also be eliminated
using techniques given in [9]. Long Parameter Lists have “Preserve Whole Object”
or “Introduce Parameter Object”; Feature Envy has “Move Method” or “Extract
Method”; Lazy Classes may vanish if their functionality is inlined or their connec-
tions are introduced to each other without the middle man; and lastly, Large Class
Data can be solved – again – with “Extract Class”.

The key point of these observations is that developers should concern themselves
more forcefully with the organization of source code, and not just its behavior, since
the work they put in in advance seems to lead to an easier maintenance phase, while
the performance overhead introduced by the extra classes and methods is negligible.

5 Threats to Validity

There are a few aspects that might possibly threaten the validity of our results. One
is that the antipattern matches might not be correct. While finding antipattern
instances is far from being a solved problem, we tried to acquire reliable statistics by
implementing widely recognized antipatterns with usual/recommended threshold
values and previously published tooling support.

Imprecise maintainability scores could also skew our results. To combat this, we
decided to utilize static, independent source code metrics and expert opinion-based
weight determination, all the while adhering to the guidelines of an international
standard.

To ensure that the connections we uncover were not just coincidental, we only
included statistically significant correlations in this study. The connections could
also be attributed to the fact that both the maintainability scores and the antipat-
tern instances are – at least partially – based on the same static source code metrics.
Despite the overlap, there are important differences, because the two concepts do
not rely on the same aggregation level of metrics (method/class or system level)
and antipatterns heavily incorporate other structural cues as well. We would also
argue that the results could be meaningful even if the base set of metrics were
identical, given that the mapping of concepts to metrics is plausible.

Lastly, the generalizability of these findings could be largely affected by the
number of subject systems analyzed. Although a benchmark made from 45 versions
of such a huge and complex software system can hardly be regarded as small, we
intend to include more revisions and different applications as well.
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6 Conclusions and Future Work

In this study, we analyzed 45 revisions of Firefox and calculated static source code
metrics for each of them. Using these metrics, specific threshold parameters and
structural information, we matched 9 types of antipatterns and their respective den-
sities in each revision. Also utilizing these metrics, we calculated maintainability
values based on the ISO/IEC 25010 software quality framework. After correlat-
ing these two sets of data, we found statistically significant inverse relationships,
which we consider another step towards objectively demonstrating that antipat-
terns have an adverse effect on software maintainability. Moreover, our machine
learning experiments indicated that regression techniques can attain high precision
in predicting maintainability from antipattern information alone, suggesting that
antipatterns can be valuable besides – or even instead of – static source code metrics
in software maintainability assessment.

A possible next step for this investigation might be to analyze more Firefox
revisions or include other C++ subject systems in another empirical study. Also,
our selected Firefox revisions have runtime, power consumption and energy effi-
ciency measurements as part of the Green Mining Dataset [12], and this provides
us with the chance to relate antipatterns or maintainability to those concepts, too.
We plan to calculate maintainability values at the class level as well (instead of at
the system level), thereby – hopefully – gaining a more fine-grained view of how
antipattern and non-antipattern classes relate to maintainability.
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