
Acta Cybernetica 23 (2017) 503–512.

Storing the Quantum Fourier Operator in the

QuIDD Data Structure∗

Katalin Friedl
a
and László Kabódi

a

Abstract

Quantum algorithms can be simulated using classical computers, but the
typical time complexity of the simulation is exponential. There are some data
structures which can speed up this simulation to make it possible to test these
algorithms on classical computers using more than a few qubits. One of them
is QuIDD by Viamontes et al., which is an extension of the Algebraic Decision
Diagram.

In this paper, we examine the matrix of Fourier operator and its QuIDD
representation. To utilize the structure of the operator we propose two order-
ings (reversed column variables and even-odd order), both resulting in smaller
data structure than the standard one. After that, we propose a new method
of storing the Fourier operator, using a weighted decision diagram that fur-
ther reduces its size. It should be the topic of subsequent research whether
the basic operations can be performed efficiently on this weighted structure.

Keywords: quantum algorithms, quantum Fourier operator, QuIDD

1 Introduction

Simulating quantum algorithms on a classical computer is a hard problem because
of an exponential slow down. A quantum operator on n qubits can be represented
on a classical computer by a 2n × 2n matrix, so operations have exponential time
and space complexity. In some cases, this can be decreased by having a good data
structure. The Quantum Information Decision Diagram proposed by Viamontes,
Markov, and Hayes [8] can store certain quantum operators in polynomial space,
and compute some operations in polynomial time. They also have a quantum circuit
simulator called QuIDDPro that employs their data structure [7]. Viamontes et al.
[8] illustrated the use of the data structure on Grover’s search [5]. In [4], using
the different groupings of the operators, we gave an improved bound on the overall
complexity of the simulation.

∗This study is partially supported by the National Research, Development and Innovation
Office (NKFIH), by the OTKA-108947 grant.

aBudapest University of Technology and Economics, Department of Computer Science and
Information Theory E-mail: {friedl, kabodil}@cs.bme.hu

DOI: 10.14232/actacyb.23.2.2017.5



504 Katalin Friedl and László Kabódi

In this study, we focus on one of the most important quantum operators, namely
the quantum Fourier operator. Using the structure of the operator, we present two
natural reorderings of the columns that make the QuIDD representation of the
operator smaller. Also, we propose a modification of the data structure to further
reduce the number of nodes.

Although the motivation of this study is the efficient simulation of quantum
algorithms, the problem itself is not limited to this area. The size of Ordered
Binary Decision Diagrams (OBDDs) is an intensively researched topic. It has been
proven that finding the optimal ordering for a Boolean function is NP-hard [3], but
heuristics are useful, because in many areas (e.g. verification, model checking and
computer aided design [9]) the size of the OBDD determines the performance of the
applications. In some applications the width of the diagram is an important factor,
but in this study we only concentrate on the number of nodes. It is known that the
difference between the sizes for two orderings may be exponential, as in the case
of the most significant bit of binary addition [2]. Our goal here is to analyze the
efficiency of some orderings based on the structure of the operator.

Section 2 provides a description of the QuIDD data structure. After, Section
3 compares the number of nodes in the standard and modified orderings. Then
Section 4 presents an idea of how to modify the data structure by weights to use
significantly less nodes to store the operator. Lastly, in Section 5 we draw some
pertinent conclusions and make a suggestion for future study.

2 The QuIDD data structure

The QuIDD data structure was specifically developed for quantum simulations [8].
For completeness, here we describe this data structure in details, based on [8, 4].

2.1 Binary Decision Diagram

For the representation of a Boolean function, the Binary Decision Diagram (BDD)
is a popular tool [6]. It is a rooted directed acyclic graph, where every non-leaf node
has exactly two child nodes. Each node is labelled with a variable of the function
and the edges represent the 0 and 1 value of that variable. The value of the function
is obtained by traversing the tree from its root following the edge representing the
value of the variable. The value of a leaf is the value of the function. In the Ordered
BDD the variables follow each other in a preset order. One of the problems of this
representation is that it needs 2n leaves and 2n−1 internal nodes to store a function
with n variables. The Reduced Order BDD (ROBDD) introduces reduction rules
to achieve the following properties:

1. There are no nodes v and v′ such that the subgraphs rooted at v and v′ are
isomorphic.

2. There is no internal node with both its edges pointing to the same node.



Storing the Quantum Fourier Operator in the QuIDD Data Structure 505

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 1 1 1 1

x2

x3 x3

x1 x1 x1 x1

0 1 0 1 0 1 1 1

Figure 1: The BDD of function f using orderings x1, x2, x3 and x2, x3, x1. The
solid lines represents the 1 edges, the dashed lines the 0 edges.

x1

x2

x30

0 1

1

x2

x3

x1

10

1

Figure 2: The ROBDD of the same function using the same orderings.

To illustrate the difference between the two structures, figures 1 and 2 show the
BDD and ROBDD representations of the function

f(x1, x2, x3) = (x1 ∨ x2 ∨ ¬x3)∧

∧ (x1 ∨ ¬x2 ∨ x3)∧

∧ (x1 ∨ x2 ∨ x3)

with two variable orderings. As can be seen, the ROBDD can use significantly
fewer nodes than the BDD and its size depends on the ordering.

Although a typical ROBDD is no longer a tree, the words root, leaf are still
used for the corresponding nodes.

2.2 Quantum Information Decision Diagram

The QuIDD is a variant of the Algebraic Decision Diagram (ADD) [1], which is
based on ROBDD. It is designed to store a matrix with complex elements. The
leaves in the QuIDD are pointers to an array, which stores the values of nodes.
These values may be real-valued or complex-valued.



506 Katalin Friedl and László Kabódi

When a matrix is stored, the variables of QuIDD correspond to the bits of the
binary representation of rows and columns of the matrix. The variableRi represents
the i-th bit of the row numbers, and Cj represents the j-th bit of the column
numbers. The numbering starts with 0, the 0th bit being the most significant one.
The ordering of the variables is: rows and columns interleaved. This ordering is
helpful if the matrices have some block structure, as usually happens when they
are constructed from smaller matrices by tensor products.

The number of leaves is the same as the number of different values in the matrix.
Let the size of a QuIDD be the number of its non-leaf nodes.

1

2

1

2

1

2

1

2

1

2
−

1

2

1

2
−

1

2

1

2

1

2
−

1

2
−

1

2

1

2
−

1

2
−

1

2

1

2





































C0

R0

C1 C1

R1 R1

0 1

✵ ✶

−

1

2

1

2

Figure 3: The Hadamard matrix acting on two qubits, and its QuIDD representa-
tion.

Example. On the diagram of figure 3, for the third (11) element of the second
(10) row, one has to choose the 1 edge (solid line) at C0, at R0, and also at C1,
while the last step is the 0 edge at R1. The 0 at the leaf leads to the value − 1

2
.

The 0th column of the matrix is constant so we can follow the dashed edge from
C0 to C1 and to the leaf, where the 1 means that the value of the element is 1

2
.

Notice that on this path there is no need for Ri nodes, because the value does not
depend on the row.

In the following examples, for simplicity, a leaf contains the corresponding ele-
ment of the matrix instead of a pointer to that element.

This data structure not only stores matrices, but computations can also be
performed in this form. The basic operations of two matrices can be calculated
in polynomial time and the result has a polynomial size. Namely, if there are two
matrices with sizes a and b then their sum has size O(ab), their product O((ab)2),
and their tensor product O(ab).



Storing the Quantum Fourier Operator in the QuIDD Data Structure 507

3 Storing the quantum Fourier operator using the

QuIDD data structure

First, we examine the quantum Fourier operator using the standard QuIDD order-
ing. Unfortunately, in this way the recursive structure of the Fourier operator is
not used. Then two other orderings are considered resulting in smaller sizes.

Proposition 1. Without the reduction rules, the size of the Fourier operator is

22n − 1 and it has 2n leaves.

3.1 Standard ordering

Recall that the standard ordering is C0, R0, C1, R1, . . . , Cn−1, Rn−1.
Notice that every node in the structure corresponds to some contiguous sub-

matrix formed by some neighboring rows and some neighboring columns of the
matrix.

Proposition 2. A node Ci describes a submatrix of size 2n−i× 2n−i. This subma-

trix can be obtained by fixing the first i bits of the row number and column number.

A submatrix of node Ri is similar, but there the first i bits of the row number

and the first i − 1 bits of the column number are fixed. This submatrix has size

2n−i+1 × 2n−i.

C0

R0

C1

1

R1

1 ω

C1

1

R1

ω2 ω3

R0

C1

R1

1 ω3

R1

1 ω2

C1

R1

ω2 ω

Figure 4: The Fourier operator of 2 qubits using the standard ordering.

Theorem 1. Using the standard ordering, the size of the Fourier operator is
5

6
· 22n − 4

3
.



508 Katalin Friedl and László Kabódi

Proof. Let ω be a primitive 2nth root of unity. In the Fourier transform the ele-
ments in the ith column are 1

2n
· ωk·i, where k is the row number. When i is odd,

all the different 2n powers of ω appear. Since in neighboring rows the difference
between the exponents in the same column is i, there are no two identical contigu-
ous submatrices of size at least 2 × 2. This means that in QuIDD, identical nodes
can appear only at the bottom. At the bottom, a node Rn−1 corresponds to a 2×1
contiguous submatrix. From the above reasoning, these are different submatrices
when the column index i is odd. Similarly, they are different when they come from
different columns.

Let i = 2r · a where r ≥ 1 and a is odd. In this case the column is periodical
with length of 2n−r. Because an Rn−1 node stores two elements, one column uses
2n−r−1 nodes.

For a fixed r there are 2n−r−1 possible a’s. So at the bottom of the tree, the

even columns use
n−1∑

r=1

2n−r−1 · 2n−r−1 =
n−2∑

s=0

4s = 4
n−1

−1

3
= 1

3
(·22n−2 − 1) nodes.

The odd columns are all different, hence they use 22n−2 nodes.
Since all 2 × 2 submatrices are different, the tree is complete up to the last

level, this upper part having 22n−1 − 1 nodes. Adding it all up, we get 22n−1 − 1+
1

3
22n−2 − 1

3
+ 22n−2 = 5

6
22n − 4

3
.

3.2 Different orderings

The study of Viamontes et al. [8] uses the standard ordering, but in general, the
data structure works when all the matrices use the same ordering, which is not
necessarily the standard one.

In the even numbered columns of the Fourier transform, the first 2n−1 rows
are the same as the remaining ones. Moreover, they are the same as the Fourier
operator of n− 1 qubits. The following orderings are based on this observation.

Let us reverse the ordering of the column variables. In this ordering, we first
check the last bit of the column, then the first bit of the row, and so on. Using the
previous notation the ordering of the variables is Cn−1, R0, Cn−2, R1, . . . , C0, Rn−1.
Figure 5 shows the structure for n = 2.

Theorem 2. Using the reverse ordering of the column variables, the size of the

quantum Fourier operator is 2

3
· 22n −

2

3
.

Proof. Let Fk denote the size of the Fourier operator of k qubits in the data struc-
ture. The subtree reached by the 0 edge from the root corresponds to the Fourier
operator of n − 1 qubits, and the subtree reached by the 1 edge from the root is
a complete binary tree. Using this the recursion Fn = 1 + Fn−1 + 22n−1 − 1 is

obtained. Unfolding this yields Fn = 22n−1 + 22n−3 + . . . + 2 = 2
2n+1

−2

3
; that is,

2

3
· 22n −

2

3
.

Notice that this is approximately 4

5
of the size of the standard ordering.



Storing the Quantum Fourier Operator in the QuIDD Data Structure 509

C1

C0

1 R1

1 ω2

R0

C0

R1

1 ω

R1

1 ω3

C0

R1

ω2 ω3

R1

ω2 ω

Figure 5: The Fourier operator of 2 qubits, with the column ordering reversed.

Without modifying the software of QuIDDPro, this reordering can be realized
if instead of the Fourier operator F one uses the modified F ′ = P · F matrix,
where P is the permutation matrix which reverses the binary form of the number
of the columns. This is the same as the reversed QuIDD representation of the
Fourier operator. However, there is a problem with this, namely the size of the
permutation matrix P is large with this ordering.

There is another approach where we can find a good permutation matrix of
small size. We know that the even numbered columns can be used to reduce the
size of the QuIDD representation, so we need to collect them in the first half of the
matrix. One solution to this problem is a permutation matrix P ′, which changes
the order of columns to 0, 2, 4, . . . , 2n − 2, 1, 3, . . . , 2n − 1. This way, we do not get
the Fourier operator of n − 1 qubits as a submatrix, but we still can exploit the
fact that the 0 side of the first variable in the QuIDD representation is one level
smaller, for symmetry reasons. Notice that for the Fourier operator of 2 qubits,
this representation and the previous one are the same.

Intuitively, this means that we only have to store 3 of the 2n−1 × 2n−1 subma-
trices, so the number of nodes will be around 3

4
· 22n.

Theorem 3. The size of the Fourier operator using this even-odd ordering is
17

24
· 22n −

4

3

Proof. The two subtrees of the root behaves differently. The 1 side is a complete
binary tree with 2n−1 levels. Because it contains the odd columns of the operator,
it cannot be compressed, and it uses 22n−1 − 1 nodes.

The 0 side contains the even columns. Here, only the 2n−1 × 2n−1 submatrix
has to be stored, because the upper and lower halves of the 2n × 2n−1 submatrix
are the same. By Theorem 1, this subtree uses 5

6
22n−2 − 4

3
nodes.



510 Katalin Friedl and László Kabódi

Adding up the subtrees plus the root node, we get the desired 17

24
· 22n −

4

3
.

This representation is somewhat larger than the previous one, but it is still
smaller than the size of the standard ordering, and the permutation matrix P ′ that
is used to transform F can be stored efficiently.

4 Modifying the QuIDD data structure

Another way of exploiting the inner structure of the Fourier operator is to change
the data structure slightly. Let us allow weights on the edges. Let the value of an
element be the product of the weights on the path to the leaf and the element in
the leaf. Using this model, if two subgraphs differ only by a constant multiplier, it
is enough if we store only one of them.

This method can be combined, for example, with the reversed column ordering.

C1

C0

1

1

R1

1

1

R0

C0

R1

1

1

R1

1

1

1

1 ω2

1 ω2

1 ω 1 ω3

1

Figure 6: The Fourier operator of 2 qubits, column ordering reversed, using the
weighted diagram.

Proposition 3. The size of the Fourier operator using the weighted diagram and

the reversed column ordering is 3 · 2n − n.

Proof. A recursion to calculate the number of the nodes is Fn = Fn−1 + 1 + 2n −

1 + 2n−1 − 1, because the 0 side of the root is Fn−1, and the 1 side consists of two
complete binary trees – one for the rows, and one for the columns. This means
that Fn = 3 · 2n − n.

In this representation, it is sufficient to have only one leaf because the different
values can be stored in the edge leading to the leaf.



Storing the Quantum Fourier Operator in the QuIDD Data Structure 511

Unfortunately, the operations described in [8] do not work on these diagrams.
It would be interesting to investigate whether one could modify these operations
so that they work on the weighted model.

5 Conclusions

While finding the optimal ordering of an ordered decision diagram is NP-hard,
one can try to use the inherent structure of the matrix to improve the standard
representation. The Fourier operator has an inner structure that can be seen after
reordering its columns, and this reordering in the QuIDD data structure reduced
the size by about 20%. A different, but more readily applicable reordering gave a
reduction of about 15%.

An even bigger decrease in the size of the diagram came from allowing weighted
edges. This change reduces the size of the data structure from Θ(22n) to Θ(2n)
in the case of an Fourier operator of n qubits. The standard operations of [8] do
not work on this diagram, so future research is necessary to decide if this weighted
version can be directly used in simulations of quantum algorithms.

References

[1] Bahar, R Iris, Frohm, Erica A, Gaona, Charles M, Hachtel, Gary D, Macii,
Enrico, Pardo, Abelardo, and Somenzi, Fabio. Algebric Decision Diagrams and
their applications. Formal methods in system design, 10(2-3):171–206, 1997.

[2] Bollig, Beate. On the minimization of (complete) Ordered Binary Decision
Diagrams. Theory of Computing Systems, pages 1–28, 2014.

[3] Bollig, Beate and Wegener, Ingo. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers, 45(9):993–1002, 1996.

[4] Friedl, Katalin and Kabódi, László. An idea to improve QuIDD based quan-
tum simulations. Periodica Polytechnica. Electrical Engineering and Computer

Science, 59(2):48, 2015.

[5] Grover, Lov K. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM Symposium on Theory of Com-

puting, pages 212–219. ACM, 1996.

[6] Jukna, Stasys. Boolean Function Complexity: Advances and Frontiers, vol-
ume 27. Springer Science & Business Media, 2012.

[7] Viamontes, George F., Markov, Igor L., and Hayes, John P.
QuIDDPro: High-performance quantum circuit simulation.
http://vlsicad.eecs.umich.edu/Quantum/qp/.



512 Katalin Friedl and László Kabódi

[8] Viamontes, George F, Markov, Igor L, and Hayes, John P. Improving gate-level
simulation of quantum circuits. Quantum Information Processing, 2(5):347–380,
2003.

[9] Wegener, Ingo. Branching Programs and Binary Decision Diagrams: Theory

and Applications. SIAM, 2000.


