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The Metric Dimension of Two-Dimensional

Extended Meshes

Ron Adara and Leah Epsteinb

Abstract

We consider two-dimensional grids with diagonals, also called extended

meshes or meshes. Such a graph consists of vertices of the form (i, j) for

1 ≤ i ≤ m and 1 ≤ j ≤ n, for given m,n ≥ 2. Two vertices are defined

to be adjacent if the `∞ distance between their vectors is equal to 1. A

landmark set is a subset of vertices L ⊆ V , such that for any distinct pair of

vertices u, v ∈ V , there exists a vertex of L with different distances to u and

v. We analyze the metric dimension and show how to obtain a landmark set

of minimum cardinality.

Keywords: metric dimension, mesh graph, grid graph, landmark set, resolv-

ing set

1 Introduction

Consider an undirected graph G = (V,E). For u, v ∈ V , let d(u, v) denote the

edge distance between these two vertices. A vertex x ∈ V separates u and v if

d(x, u) 6= d(x, v), and in this case, x is also called a separating vertex for u and v.

A landmark set (LS) is a subset L ⊆ V such that for any pair of vertices u 6= v, L

has at least one vertex y that separates u and v. The vertices of a landmark set L

are often referred to as landmarks. In the algorithmic metric dimension problem,

the goal is to find a landmark set L of minimum cardinality. The cardinality of a

minimum cardinality landmark set of G is called the metric dimension of G. In

a variant of the metric dimension problem (called the weighted metric dimension

problem) the goal is to find a landmark set L of minimum cost, where there is a

non-negative cost function on G’s vertices.
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A two-dimensional extended mesh (or just mesh) Mm,n (for integer parameters

m and n) has |V | = m · n vertices of the form (i, j), where 1 ≤ i ≤ m and

1 ≤ j ≤ n. For vertices (i1, j1), (i2, j2), let ((i1, j1), (i2, j2)) ∈ E if (and only if)

max{|i1 − i2|, |j1 − j2|} = 1. The resulting distance between two vertices is the `∞
distance between their vectors, that is, d((i1, j1), (i2, j2)) = max{|i1− i2|, |j1− j2|}.
This distance also called the chessboard distance. In accordance with the way we

have defined the edges of the graph, it is the edge distance of Mm,n.

We number the rows of the mesh from top to bottom, and the columns from

left to right. The rows are called R1, R2, . . ., Rm (Ri is also called row i), and the

columns are called C1, C2, . . ., Cm (Cj is also called column j). The jth vertex of

row i is denoted by (i, j).

A graph related to the two-dimensional mesh is the two-dimensional lattice,

Gm,n, where there is an edge between vertices (i1, j1), (i2, j2), if (and only if)

|i1 − i2|+ |j1 − j2| = 1, and the resulting distance between two vertices is the `1
distance between their vectors, that is, d((i1, j1), (i2, j2)) = |i1 − i2|+ |j1 − j2|.
This distance also called the city block distance.

Former results involving mesh graph and lattice graph (both are also called grid

graphs) can be found in [15, 14, 16, 13, 2, 1].

We survey some known results on mesh graphs. In the case m = 1 and n > 1

(or n = 1 and m > 1), Gm,n is a path, and its metric dimension is known to be 1

[14]. In the case m = n = 1, the graph has a single vertex, so the metric dimension

is zero by definition. In [15], it was shown that for a two-dimensional lattice the

metric dimension is always 2 (for n ≥ m ≥ 2), and for a two-dimensional mesh and

m = n ≥ 2, the metric dimension is 3. In our previous work on two-dimensional

lattice with a cost function on its vertices [1], we described a polynomial time

algorithm for solving the weighted metric dimension problem.

In this work, we will extend the result in [15], and calculate the metric dimension

of a two-dimensional mesh, for all values of m,n ≥ 2,m 6= n. The metric dimension

of Mm,n, denoted by MD(Mm,n) is the minimum cardinality of any LS for Mm,n.

In this work our main goal is to prove the following theorem.

Theorem 1. The metric dimension of a mesh Mm,n with n > m ≥ 2 satisfies

MD(Mm,n) = d n−1m−1e+ 1.

We will prove a tight bound of d n−1m−1e + 1 on MD(Mm,n). The lower bound

is proved via a direct analysis of all possible column landmark sets (see formal

definition on the next section), and for the upper bound we describe a specific

landmark set of Mm,n, whose cardinality is d n−1m−1e+ 1.

In the case where n−1 is divisible by m−1, the mesh contains n−1
m−1 concatenated

square sub-meshes with m rows and m columns (where every two such sub-meshes
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share a single column). In this case we will show that each square sub-mesh (with m

rows and m columns) has exactly two landmark vertices in a minimum cardinality

LS. Note that substituting m = n does not give the correct metric dimension for

m = n (which is 3 as stated above, and not 2), and this is a special case. Informally,

the reason for this property is that once Mm,n is not a square (i.e., m 6= n), given

two vertices contained in a square sub-mesh of Mm,n, they can be separated by a

vertex outside this sub-mesh, in some cases.

Interestingly, as a result of Theorem 1, one of the differences between a two-

dimensional lattice and a two-dimensional mesh, is that while the metric dimension

of two-dimensional lattice is always 2, as quoted above, the metric dimension of

two-dimensional mesh (for n > m ≥ 2) grows as a function of n.

The first articles on the metric dimension problem were by Harary and Melter

[11] and by Slater [18]. The problem is NP-hard [14] and hard to approximate [4, 9]

for general graphs, and it was studied for specific graph classes [11, 18, 14, 6, 3,

17, 7, 5, 10]. Applications can be found in [4, 11, 15, 8, 14, 6], where some of these

applications are relevant for weighted graphs (see also [10]).

2 The column metric dimension and a lower bound

In this section we define an auxiliary concept, which we use in order to provide a

lower bound on MD(Mm,n).

A Column Landmark Set (CLS) is a set L ⊆ V such that for any pair of distinct

vertices on one column, (i1, j) and (i2, j) (where i1 6= i2), there exists u ∈ L such

that d(u, (i1, j)) 6= d(u, (i2, j)). The Column Metric Dimension of a graph Mm,n is

the minimum cardinality of any CLS for it, and it is denoted by CMD(Mm,n).

Since any LS is a CLS (as all vertices are separated by some vertex of LS, this

clearly holds for pairs of vertices on the same column), we have for any mesh G

that MD(Mm,n) ≥ CMD(Mm,n). In this section we would like to prove a lower

bound on MD(Mm,n), and for that we will prove the following lemma.

Lemma 1. The column metric dimension of a mesh Mm,n with m,n ≥ 2 satisfies

CMD(Mm,n) ≥ d n−1m−1e + 1. Thus, in the case n > m, we have MD(Mm,n) ≥
d n−1m−1e+ 1.

Note that the lower bound on CMD(Mm,n) is proved for any m,n ≥ 2 and

not only for the case n > m. In what follows we consider these more general

cases. Before we prove the lemma, we state and prove several simple and useful

claims. Consider specific values m,n ≥ 2, and a specific CLS L for this graph.

Let µj be the number of elements of L in column Cj (that is µj = |Cj ∩ L|),
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and let Nj =
∑j

`=1 µj be the number of landmarks in the first j columns (i.e.,

Nj = |(C1 ∪ C2 ∪ · · · ∪ Cj) ∩ L|). We let Nj = Nn for j > n.

The goal of the first claim is to provide a lower bound on the number of land-

marks in the first few columns. We will use this claim for the last j columns as

well (this follows from symmetry).

Claim 1. Consider vertices u1 = (x1, y
′) and u2 = (x2, y

′) (on column y′). Let

v = (x, y) be a vertex that separates them, that is d(v, u1) 6= d(v, u2). Then,

|y − y′| ≤ m− 2.

Proof. Assume by contradiction that |y−y′| ≥ m−1. Then, for k = 1, 2, d(v, uk) =

max{|x − xk|, |y − y′|} = |y − y′|, as |x − xk| ≤ m − 1 while |y − y′| ≥ m − 1, so

the distances to v are determined by the columns. This contradicts d(v, u1) 6=
d(v, u2).

Claim 2. The inequality Ndm2 e ≥ 1 holds for any CLS L. Moreover, if N1 = 0,

then Nm−1 ≥ 2.

Proof. If N1 > 0, the first part holds, so we assume N1 = 0 and prove both parts of

the claim. Consider two vertices on column 1, a1 = (bm2 c, 1) and a2 = (bm2 c+ 1, 1)

(for even values of m they are exactly in the middle of column 1, for odd values

of m they are approximately in the middle of column 1). Note that bm2 c ≥ 1 and

bm2 c+ 1 ≤ m, for m ≥ 2, so these two vertices are well defined.

Let b = (xb, yb) denote a vertex of L separating a1 and a2. We will show yb ≤
dm2 e, proving Ndm2 e ≥ 1. Assume by contradiction yb ≥ dm2 e+1. We will show that

the distance of b to a1 and a2 is defined by the difference between column indices

and therefore the distances are equal. We get d(a1, b) = max{|xb − bm2 c|, |yb − 1|}
and d(a2, b) = max{|xb−(bm2 c+1)|, |yb−1|}. Since 1 ≤ xb ≤ m, we get |xb−bm2 c| ≤
dm2 e ≤ yb − 1 and |xb − bm2 c − 1| ≤ dm2 e ≤ yb − 1, so d(a1, b) = d(a2, b) = yb − 1, a

contradiction.

Next, we analyze Nm−1 for the case N1 = 0. Since Nm−1 > 0 (as m− 1 ≥ bm2 c
for m ≥ 2), there is at least one vertex c ∈ L in this case, as we have shown.

It remains to show that there is a pair of vertices in the first m − 1 columns not

separated by c, implying |L| ≥ 2. Let c = (xc, yc) be a vertex of L such that

2 ≤ yc ≤ m − 1. Once again we consider two vertices of the first column, and

show that c does not separate them. Let a′1 = (xc, 1), i.e., the vertex of the first

column on the same row as c. If xc = 1, let a′2 = (xc + 1, 1) and otherwise

a′2 = (xc − 1, 1). Thus, a′2 is well defined, as it is either the vertex just above

a′1 or just below it (since m ≥ 2, at least one of these vertices exists). We have

d(a′1, c) = max{0, |yc − 1|} = yc − 1 and d(a′2, c) = max{1, |yc − 1|} = yc − 1, since

yc ≥ 2. Thus, as L contains a vertex separating a′1 and a′2, and by Claim 1 this
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vertex is on one of the first m− 1 columns (or of the n columns, if n < m− 1), we

get Nm−1 ≥ 2.

Claim 3. Let L be a CLS defined for Mm,n such that m,n ≥ 2 (where each element

of L is of the form (i, j)). If L∩Cn = ∅, then L is a CLS for Mm,n−1. If L∩Rm = ∅,
then L is a CLS for Mm−1,n.

Proof. Consider two vertices (i1, j1) and (i2, j2). Any shortest path between these

two vertices traverses only vertices on columns min{j1, j2}, . . ., max{j1, j2} and

rows min{i1, i2}, . . ., max{i1, i2}, that is, on columns and rows between the columns

of these vertices and rows between the rows of these vertices. This implies the

validity of the claim.

Proof. We now prove Lemma 1. We start this proof with several simple cases,

which will allow us to use induction for the remaining cases (on n+m).

Case 1. Consider the case m = 2. In this case we show CMD(Mm,n) ≥ n. To

prove this, we show that µj ≥ 1 for 1 ≤ j ≤ n. By Claim 1, the only vertices that

separate the two vertices (1, j) and (2, j) are on column j, that is, one of these two

vertices. Therefore, any CLS either contains at least one of (1, j) and (2, j).

Case 2. Consider the case n ≤ m (where m ≥ 3). In this case we show

CMD(Mm,n)) ≥ 2. If µ1 ≥ 1 and µn ≥ 1, we are done. Otherwise, at least

one of the columns C1 and Cn does not have a landmark. Assume without loss of

generality (by rotating the mesh by 180 degrees or by reflecting it across a vertical

line) that L ∩ C1 = ∅. By Claim 2, Nm−1 ≥ 2, so |L| ≥ 2.

We are left with the case n > m ≥ 3. We say that a gap (with respect to a

CLS L) is a sequence of m− 1 columns that do not contain elements of L, that is,

there is an index 1 ≤ k ≤ n −m + 2 such that {Ck, Ck+1, . . . , Ck+m−2} ∩ L = ∅.
The cases k = 1 and k = n −m + 2 are not possible due to Claim 2, as the first

m − 1 columns have at least one element of L, and symmetrically, the last m − 1

columns have at least one element of L. Thus, k satisfies 2 ≤ k ≤ n−m + 1, and

in particular, a gap is possible only if n ≥ m+ 1 (since all cases where n ≤ m were

already considered, a gap is defined for all remaining cases).

We use the first two cases as the induction base, and prove the remaining cases

via induction.
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Case 3. There is a gap in L. Let k (2 ≤ k ≤ n − m + 1) be such that

{Ck, Ck+1, . . . , Ck+m−2}∩L = ∅, that is, all elements of L are on columns C1, C2 . . . ,

Ck−1, Ck+m−1, . . . , Cn. Let L1 = {C1, C2, . . . , Ck} ∩ L and let L2 = {Ck+m−2,

Ck+m−1, . . . , Cn} ∩ L (so L = L1 ∪ L2 and L1 ∩ L2 = ∅ since m ≥ 3). We claim

that L1 is a CLS for the sub-mesh of k columns and m rows consisting of the first

k ≥ 2 columns. Since L is a CLS, for every pair of distinct vertices v1 and v2 on

one of the first k columns, there is a vertex of L separating them. By Claim 1, such

a vertex is not on columns k + m − 1, . . . , n. As columns k, k + 1, . . . , k + m − 2

have no elements of L, there is an element of L separating v1 and v2 on one of the

columns 1, 2, . . . , k−1, that is, it is an element of L1. Thus, L1 is a CLS for a mesh

of k columns and m rows. Analogously, it is possible to prove that L2 is a CLS for

a mesh of n −m + 3 − k ≥ 2 columns and m rows. Using induction, and as the

numbers of columns of L1 and L2 are k and n −m − k + 3, respectively (with m

rows), we find |L| = |L1|+ |L2| ≥ d k−1
m−1e+1+d (n−m+3−k)−1

m−1 e+1 ≥ 2+dn−m+1
m−1 e =

d n
m−1e+ 1 ≥ d n−1m−1e+ 1, which holds by properties of rounding up.

We are left with the case where there is no gap in L. For an integer c ≥ 0,

let hc = m + (m − 1)c and h′c = m − 1 + (m − 1)c = hc − 1. Note that by their

definitions it holds that m ≤ hc and m − 1 ≤ h′c for any value of c. We claim

that in this case, if hc ≤ n, we have Nhc
≥ c + 2, and additionally, if h′c ≤ n

and N1 = 0 hold, Nh′c
≥ c + 2. This is proved by induction on c. For c = 0,

if N1 = 0, by Claim 2, Nm ≥ Nm−1 ≥ 2. Otherwise, N1 ≥ 1, and since there

are no gaps, at least one of the columns C2, C3, . . . , Cm has an element of L, so

Nm ≥ 2. The inductive step is proved in a similar manner. If Nhc−1
≥ c + 1 for

some integer c ≥ 1, as there is no gap, there is at least one element of L on columns

hc−1 +1, hc−1 +2, . . . , hc−1 +m−1. Since hc−1 = m+(m−1)(c−1) = 1+(m−1)c

we get that hc−1 + m − 1 = hc, and as a result Nhc ≥ Nhc−1 + 1 ≥ c + 2. If

Nh′c−1
≥ c+ 1 for some c ≥ 1, as there is no gap, there is at least one element of L

on columns h′c−1 + 1, h′c−1 + 2, . . . , h′c−1 +m− 1. Since h′c−1 = hc−1− 1 = (m− 1)c

we get that h′c−1 +m−1 = hc−1−1 = h′c, and as a result Nh′c
≥ Nh′c−1

+ 1 ≥ c+ 2.

Case 4. There is an element of L on the first column or on the last column (or

both). Without loss of generality (by possibly rotating the mesh by 180 degrees) we

assume L∩Cn 6= ∅, i.e., µn > 0. Let c = d n−1m−1e−2, where c ≥ 0 as n > m. Consider

columns 1, 2, . . . ,m+ (m− 1)c, where (m− 1)c+m < (m− 1) · ( n−1
m−1 − 1) +m = n.

Thus, as hc ≤ n− 1, we have |L| ≥ Nhc
+ µn ≥ c+ 3 = d n−1m−1e+ 1.

We are left with the case where µ1 = 0 and µn = 0.

Case 5. The number of columns is sufficiently large, that is, n ≥ 2m. Let c =

b n
m−1c − 2, where c ≥ 0 as n > m. Consider columns 1, 2, . . . ,m − 1 + (m − 1)c,
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where m − 1 + (m − 1)c = (m − 1)(c + 1) ≤ (m − 1) · ( n
m−1 − 1) = n − m + 1.

By Claim 2, the last m − 1 columns have at least two elements of L. Thus, |L| ≥
Nh′c

+ 2 ≥ c+ 4 = b n
m−1c+ 2 ≥ d n

m−1e+ 1 ≥ d n−1m−1e+ 1.

We are left with the case where n satisfies 3 ≤ n ≤ 2m− 1.

Case 6. The number of columns satisfies m + 2 ≤ n ≤ 2m − 1. Since Cn has

no elements of L, using Claim 3, L is a CLS for the sub-mesh consisting of first

n− 1 ≥ m+ 1 columns and m rows, and by induction, |L| ≥ 3.

Case 7. The number of columns satisfies n = m+ 1, and at least one row out of

R1 and Rm has no element of L (i.e., at least one of the following holds: R1∩L = ∅,
Rm ∩L = ∅). In this case, using Claim 3, L is a CLS for a mesh of m− 1 rows and

n columns. Since n = (m− 1) + 2, using induction we have |L| ≥ 3.

We are left with the case where n = m + 1, |L ∩ R1| ≥ 1 and |L ∩ Rm| ≥ 1.

Notice that the case where |L| ≥ 3 satisfies the demand since |L| ≥ d m
m−1e+ 1 = 3.

The last case to consider is n = m+1, |L| ≤ 2, so |L∩R1| = 1 and |L∩Rm| = 1,

and no other row has an element of L. We show that this scenario is not possible.

Case 8. Let L = {(1, y1), (m, y2)}. Since C1 and Cn have no elements of L, we

have 2 ≤ y1, y2 ≤ n − 1. By Claim 2, L has at least one element on columns

C1, C2, . . . , Cdm2 e and symmetrically at least one element on columns Cbm2 c+2, . . . ,

Cm+1. As dm2 e < b
m
2 c+ 2, we find that one of y1, y2 is in {1, 2, . . . , dm2 e}, and the

other is in {bm2 c+ 2, . . . ,m+ 1}. Without loss of generality, by possibly reflecting

the mesh across a vertical line, assume that y1 ≤ dm2 e and y2 ≥ bm2 c+ 2. Moreover,

by possibly rotating the mesh by 180 degrees, we assume that y1 is at least as far

from the first column as y2 is to the last column, that is, y1−1 ≥ n−y2 = m+1−y2.

Consider the vertices v1 = (y1 − 1, 1) and v2 = (y1, 1). Note that v1 is well

defined since y1 ≥ 2. If L is a CLS, these two vertices are separated by (1, y1)

or by (m, y2). We have d((1, y1), v1) = d(1, y1), v2) = y1 − 1, so (1, y1) does not

separate v1 and v2. We also have d((m, y2), v1) = max{m − y1 + 1, y2 − 1} and

d((m, y2), v1) = max{m− y1, y2 − 1}. Since y2 − 1 ≥ m− y1 + 1 > m− y1, we get

d((m, y2), v1) = d((m, y2), v2) = y2 − 1, so v1 and v2 are not separated by a vertex

of L, a contradiction.

3 An upper bound

Given Mm,n with n ≥ m ≥ 2, we define a set L ⊆ V and show that its cardinality is

according to Theorem 1 (i.e., d n−1m−1e+ 1), and that it is a landmark set (from now
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on we only consider LS not CLS like in the previous section). Let f = b n−1m−1c+ 1.

For 1 ≤ k ≤ f , if k is odd, let zk = (1, 1 + (k − 1)(m − 1)), and if k is even, let

zk = (m, 1+(k−1)(m−1)). Note that 1+(f−1)(m−1) ≤ 1+ n−1
m−1 ·(m−1) = n, so

z1, z2, . . . , zf are well-defined. That is, there is an element of L every m−1 columns,

starting with the first column. The rows of these elements alternate between 1 and

m. If 1 + (f − 1)(m − 1) = n, that is, n − 1 is divisible by m − 1, vertex zf
is on column n, moreover, in this case, d n−1m−1e = b n−1m−1c, and we have defined L

completely. If 1 + (f − 1)(m− 1) < n, that is, n− 1 is not divisible by m− 1, we

have d n−1m−1e = b n−1m−1c + 1, and we define zf+1 = (1, n) if f is even (and f + 1 is

odd), and otherwise we let zf+1 = (m,n).

Let f ′ = d n−1m−1e + 1. The elements of L are z1, . . . , zf ′ (no matter whether

f ′ > f or f ′ = f). Figure 1 shows an example of the set L for a mesh with m = 5

and n = 12.

(1,1)

(5,5)

(1,9)

(5,12)

Figure 1: An example of the set L = {(1, 1), (5, 5), (1, 9), (5, 12)} described in the

above explanation, for a mesh with 5 rows and 12 columns.

Claim 4. Consider the case n ≥ 2m − 1, and consider two vertices v1 = (x1, y1)

and v2 = (x2, y2). If neither z1 nor zf ′ separates v1 and v2, then v1 and v2 are on

the same column (that is, y1 = y2).

Proof. Assume by contradiction that y1 6= y2 and assume without loss of generality

that y1 < y2. If y2 ≥ m + 1, we have d(v2, z1) = max{x2 − 1, y2 − 1}. Since

x2 − 1 ≤ m− 1 while y2 − 1 ≥ m, we have d(v1, z1) = d(v2, z1) = y2 − 1 where the

first equality holds as z1 does not separate v1 and v2. Next, by y2−1 = d(v1, z1) and

d(v1, z1) = max{x1−1, y1−1}, and since x1−1 ≤ m−1, we get d(v1, z1) = y1−1.

Thus y1 = y2 in this case, a contradiction.

If y2 ≤ m, we get y1 ≤ m−1, and the proof is symmetric for the distances from

z2 instead of z1 (by rotating the mesh and possibly reflecting it across a horizontal
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line); the distance of v1 to z2 is at least m, and since v2 has the same distance, the

maximum value of the distance is achieved by the second term also for v2 and they

are on one column.

Claim 5. Consider two vertices u1 = (1, 1) and u2 = (m, q), such that 2 ≤ q ≤ n

and q ≤ m. Consider also two distinct vertices v1 = (x1, y) and v2 = (x2, y) (on

one column), where 1 ≤ x1 < x2 ≤ m and 1 ≤ y ≤ q. Then, at least one of u1 and

u2 separates v1 and v2.

Proof. If x1 ≥ y, we have x2 ≥ y + 1. Thus, for i = 1, 2, d(vi, u1) = max{xi −
1, y − 1} = xi − 1, and since x1 − 1 6= x2 − 1, we find that u1 separates v1 and v2.

Otherwise, x1 < y holds, and we show that u2 separates v1 and v2. So d(v1, u2) =

max{m − x1, q − y}, and since q ≤ m, −y < −x1, we find d(v1, u2) = m − x1.

On the other hand, d(v2, u2) = max{m − x2, q − y}, where m − x2 < m − x1 (as

x1 < x2) and q − y < m − x1, so d(v2, u2) = max{m − x2, q − y} < d(v1, u2), and

therefore u2 separates v1 and v2.

Corollary 1. Consider two vertices u1 = (1, 1) and u1 = (m, q), such that 2 ≤
q ≤ n and q ≥ m. Consider two distinct vertices v1 = (x, y2) and v2 = (x, y2) (on

one row), where 1 ≤ y1 < y2 ≤ q and 1 ≤ x ≤ m. Then, at least one of u1 and u2
separates v1 and v2.

The corollary holds by rotating the mesh by 90 degrees.

Claim 6. Consider two distinct vertices v1 = (x1, y) and v2 = (x2, y) (on one

column). Let zs = (xs, ys) and zs+1 = (xs+1, ys+1) be such that ys ≤ y ≤ ys+1.

Then, at least one of zs and zs+1 separates v1 and v2.

Proof. Without loss of generality it is sufficient to consider the sub-graph of the

mesh consisting of columns ys, ys +1, . . . , ys+1 and all rows. The property holds by

Claim 5, as no shortest path between two vertices in this sub-mesh traverses any

vertex outside it, and by possibly reflecting the mesh across a vertical line.

Corollary 2. In the case n ≥ 2m− 1, the set L is a landmark set.

Proof. By Claim 4, for every pair of vertices on different columns, L contains a ver-

tex separating them. By Claim 6, every pair of vertices on one column is separated

as well, by choosing an appropriate value of s, which is possible for any y since L

has an element on C1 and an element on Cn.

We are left with the case where n satisfies m+ 1 ≤ n ≤ 2m− 2 (in particular,

n ≥ 3). In this case, L = {z1 = (1, 1), z2 = (m,m), z3 = (1, n)}.
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Claim 7. Consider two distinct vertices v1 = (x1, y1) and v2 = (x2, y2), in the

case where n ∈ {m+ 1,m+ 2, . . . , 2m− 2}. At least one of the vertices z1 and z3
separates v1 and v2.

Proof. Assume that z1 does not separate v1 and v2. We have d(vi, z1) = max{xi−
1, yi − 1}.

If x1 = x2, we have y1 6= y2. By max{x1−1, y1−1} = max{x2−1, y2−1} we find

that it cannot be the case that d(vi, z1) = yi − 1 for i = 1, 2. Thus, we can assume

without loss of generality that d(v1, z1) = x1 − 1 > y1 − 1. We claim that x2 ≥ y2
holds. Indeed, d(v2, z1) = d(v1, z1) = x1 − 1 = x2 − 1, so x2 − 1 ≥ y2 − 1. Thus,

as x1 = x2 ≤ m, we have y1 < m and y2 ≤ m, and by Corollary 1, z2 = (m,m)

separates v1 and v2.

If y1 = y2, by Claim 6, one of z1, z2, and z3 separates v1 and v2.

We are left with the case x1 6= x2 and y1 6= y2. By the definition of distances,

we cannot have that d(vi, z1) = xi − 1 holds for i = 1, 2 or that d(vi, z1) = yi − 1

holds for i = 1, 2, so we have either d(v1, z1) = y1 − 1 and d(v2, z1) = x2 − 1 (and

x1 < y1, x2 > y2) or we have d(v1, z1) = x1−1 and d(v2, z1) = y2−1 (and x1 > y1,

x2 < y2). Without loss of generality (by possibly swapping the roles of v1 and v2)

we assume that d(v1, z1) = y1 − 1 and d(v2, z1) = x2 − 1 holds, so y1 = x2, and

x1 < y1, x2 > y2.

Consider the distances to z3. We find d(v1, z3) = max{x1 − 1, n − y1} and

d(v2, z3) = max{x2−1, n−y2}. Assume that d(v1, z3) = x1−1 holds. If d(v2, z3) =

x2 − 1, we are done by x1 6= x2. Otherwise d(v2, z3) = n − y2, and we have

x1 − 1 > n − y1 and x2 − 1 < n − y2. We get n − y2 > x2 − 1 = y1 − 1 > x1 − 1.

Assume that d(v1, z3) = n−y1 holds. If d(v2, z3) = n−y2, we are done by y1 6= y2.

Otherwise d(v2, z3) = x2− 1, and we have x1− 1 < n− y1 and x2− 1 > n− y2. We

get x2 − 1 > n− y2 > n− x2 = n− y1, so z3 separates v1 and v2 in all remaining

cases.

4 Conclusion

In section 2 we have proved a lower bound of d n−1m−1e + 1 on the column metric

dimension of Mm,n, for all values of m,n ≥ 2, implying the lower bound for the

metric dimension for n > m ≥ 2. In section 3 we have proved an upper bound of

d n−1m−1e+1 on the metric dimension of Mm,n, for all values of n > m ≥ 2, by defining

a suitable landmark set. As mentioned in Section 1, the case of m = n is a special

case where MD(Mm,n) = 3 [15], which was known prior to our work, and we do

not analyze this case. Our main result (Theorem 1) is proved by combining the

lower bound and upper bound. Using the last remark we get a full characterization

of the metric dimension of (two-dimensional) meshes.
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