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Regional Multicriteria and Multimodal Route

Planning System for Public Transportation:

A Case Study∗

József Békésia

Abstract

Nowadays, the use of computer-based route planners is popular among
private and public transportation passengers. A large range of websites and
GPS navigation devices provide such services for their users. Here, we present
an algorithm used by a route planning system which operates on a complete
public transport network of two regions from two countries, namely Hungary
and Serbia. The algorithm can handle the pedestrian traffic between stops
not too far from each other. It can take into account individual user prefer-
ences like walking distances and modes of transport. The graph representing
the transport network was very large, but with the help of some speed-up
techniques, we managed to create an effective search algorithm that is able
to handle user requirements.
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1 Introduction

Nowadays, the use of computer-based route planners is widespread among passen-
gers. Individual passengers have a large choice of websites and GPS navigation
devices. Generally speaking, with these kind of systems the available road network
is modeled by a graph. The vertices of the graph represent the points of contact of
the roads, while the edges represent the road sections connecting the points. If we
assign the length of the road section to the edges, we get a weighted graph. We can
use the well-known Dijkstra algorithm to calculate the shortest distance between
two points. The efficiency of the Dijkstra algorithm is quite good, but the size of the
graphs describing real-world road networks can be very large, especially in the case
of a larger geographical area like the road network of a continent. As passengers
generally expect an almost immediate response to their searches, even the Dijkstra
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algorithm with polynomial running time is not good enough for large graphs. Over
the last two decades, many potential speed-ups have been investigated to address
the problem. More details about this can be found in [6].

Routing services are available not only for private passengers, but for passengers
travelling by public transportation as well. In this case, usually the road network
does not need to be described by the graph. The reason for this is that the route is
pre-determined, or the journey is often not on a conventional road network but on a
bound track (e.g. rail) or in the air, or even on water. The nodes of public transport
routing graphs generally represent the vehicle stops, and the edges provide travel
possibilities between stops. The weight of the edges may represent the travel time,
but as different users may look at travel from different aspects, other models should
be considered. Public transport networks may generally be larger than those of road
networks, given that travel is time-dependent, and handling this is also required in
the model. Therefore, in this case, the opportunities for speeding-up searches are
particularly important, and they have also been widely investigated. Some of the
speed-up options available on road graphs can be used here, but not those that use
the special features of road networks. For more details on models and speed-up
options, see [4, 11].

In practice, it is usual for public transportation companies to provide route
planners for their own service area. This usually includes the services of the com-
pany or other companies closely related to that city, region or country. In most
cases, however, these services provide only route planning for one kind of journey;
for example, a route planner of a rail company can be searched for rail routes, while
route planners of bus companies can be used for bus routes. In the case of local
transport, it is common that there are search engines that cover different modes
of transport in a given city, such as buses, trams and metro, trains, but they are
usually not intended for long-distance transport. So, for instance, if a passenger
wants to get from a point in a city to a point in another city, using local and then
several long-distance modes of transport, he or she usually will not find a search
engine that offers such a travel option, not even in a country or in a region. And
the graphs of road networks can handle the same problem for larger areas such as
continents. This suggests that finding a route to public transport is a more difficult
issue than planning private trips.

In this paper, we present a route planning system and its search algorithm,
where the latter operates on a complete public transport network of two regions
from two countries, namely Hungary and Serbia. The databases on which the
model is based include long-distance trains, buses and complete local transport
of the major cities. The databases are based on timetables taken from service
providers operating in the regions. The system can also model the pedestrian
traffic between stops not too far from each other. It can take into account individual
user preferences, like walking distances, modes of transport, and properties of the
objective function. The graph representing the transport network was very large,
but with the help of some speed-up techniques, we managed to create an effective
search algorithm that is able to handle user requirements.

The algorithm was developed under the EU-funded Hungary-Serbia Interreg-
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IPA CBC Program as part of a complex route planning application. This study
presents the most common methods used in the search algorithm, as well as the
experiences and results obtained during the practical running.

2 Preliminaries and literature review

Next, we will summarize the key results of public transport route algorithms de-
scribed in the literature. We will mainly refer to the technology used by the method
we use, and in the following discuss the topic in more detail [6, 12].

The simplest modelling of public transport networks can be achieved using the
so-called Station Graph [15]. In this case, the graph’s nodes represent the stops
and edges only exist between two stops if one of the stops can be reached directly
from the other. Generally speaking, the Station Graph is a relatively small graph,
since each stop has exactly one node and there is at most one edge between any two
stops. However, this graph contains limited information as it does not represent
the time of the routes at all. Hence it is not suitable for precise route planning, and
it can only provide a poor estimate for the length of the trip or for the minimum
required transfers.

The Time-Dependent model may be regarded as an extension of the Station
Graph [5], in which the edges may have multiple weights. During a route search,
the current weight is calculated using the given time, taking into account the bus
lines departing from the stop. In this case, the size of the graph does not increase,
but the determination of the weight requires more complex calculations, which may
slow down the search. The model has often been studied on railway networks and
has been developed, for instance, for the correct modelling of transfers [13].

The most common model used is the Time-Expanded model [14]. Here, the
starting and arrival times of the vehicles are represented by special nodes. The
nodes belonging to a station can be sorted by time and the waiting can be repre-
sented by edges. Trips between the different stations can be expressed by edges
between the appropriate departure and arrival times. Therefore the model can
handle transfers, and pedestrian traffic between two specific stops can also be mod-
elled. Initially, due to the large size of the graph, searches in this model were not
sufficiently fast, but due to technological developments and improvements, we can
now consider it a competitive method [6].

While the aim of search engines is normally to find the shortest route between
departures and arrivals, this is not always the case for public transport networks.
Passengers may wiew things from different aspects; some may want to minimize
the number of passes against the earliest arrival, while others may want to keep
their travel costs as low as possible. What is more, we usually choose one mode of
transport on the route; for example, like that for a motorist or pedestrian. With
public transport, someone may want to use a variety of vehicles or does not even
have the opportunity to reach the goal otherwise; for example, he or she needs
to combine buses and railways, and has to reach the stop on foot. Hence special
models have also been developed for public transport networks. This is why besides
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the classical earliest arrival problem, [14] multiobjective optimization methods were
applied [11].

The research work of recent years has focused mainly on developing complex
multiobjective, multimodal route-planning algorithms [3, 9], which include appro-
priate speed-up techniques [8] and they can be applied in practice [1].

3 Modeling

All three types of graphs described above were used to model our transport network.
Only the Station Graph and the Time-Dependent Ggraph built on it were stored
permanently in the memory. The number of edges of the Time-Dependent Graph
was already quite large as there were seven different timetable versions in use during
that period. This meant that searches for different days and periods were subject
to different schedules. For example, the Sunday schedule was different from the
weekday one. In the Time-Dependent Graph there were different edges for the
different lines, and the departure and arrival times of the lines were stored in
separate structures. It also included possible walking routes. And the Station
graph and the Time Dependent graph did not have any direct search, but only had
roles in the preprocessing of searches. In the actual search, the Dijkstra algorithm
was implemented on a Time Expanded Graph. The current Time Expanded Graph
was not stored permanently in memory as the many different timetable versions
dynamically changed it. The generation of the current graph was always related to
the actual query.

Table 1: Sizes of the graphs

Graph type Number of nodes Number of edges
Station 12014 416163
Time Dependent 12014 6786662
Time Expanded ≈ 562000 ≈ 4616000

Table 1 lists the sizes of different graphs.

Figure 1 depicts the modelling of a line with the Station Graph.

Figure 2 shows a part of the Time Expanded Graph. The horizontally positioned
nodes are part of a stop’s timeline, and the pink nodes represent the departure
times, the green ones represent the arrival times. The orange edges are the waiting
edges of the timeline. The black edges model the lines between the stops, while the
red edges show the walking options. The departure timeline is in the upper line, the
arrival is in the lowest one. Thickly marked paths indicate the travel possibilities
chosen by the system.
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Figure 1: The Station Graph of a line

4 Search algorithm

After producing the Time Expanded Graph and weighing the edges appropriately,
with the help of the Dijsktra algorithm we can find the shortest path. In our
case, we came up against a difficulty caused by the search dependence of the Time
Expanded Graph. Its structure was influenced by the time specified in the search
and by the modes of transport that the user wanted to use, or by other parameters
such as the maximum allowed walking distance. Despite the large size of the graph,
its generation was relatively fast, but after including the search time, in some cases
we could not achieve the desired speed with this method. In addition, the structure
of the entire graph resulted in excessive memory usage during a search, which was
a real problem, because multiple clients wanted to use the services of the server
simultaneously.

To overcome the problems listed above, we performed a preprocessing step be-
fore producing the Time Expanded Graph and the search. The aim was to deter-
mine the nodes which include some of the shortest paths corresponding to the user
parameters and the objective function. The method is similar to the TRANSIT
algorithms described in the literature [1, 2, 9]. In the end, the Time Expanded
Graph contained far fewer nodes, and it led to a significant speed-up of the search.

The purpose of the preprocessing was to determine the nodes that lie on the
shortest paths from the source to the target. Here, we used the Station Graph
for the prepocessing part. Our aim was to determine all the nodes that lie on the
maximum k-length paths between the source and destination. In this case, the
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Figure 2: Part of the Time Expanded Graph

parameter k means the maximum number of transfers that can be made during
the journey. Here, we used a modified version of the depth first search algorithm
that did not take into account the nodes farther from the source than the desired
length. Given that in some cases the execution of the procedure might take longer,
the value of the parameter k and the execution time were also limited in the search.
Experience has shown that these heuristics worked well in practice so, in almost
every case, the Time Expanded Graph built on these nodes contained the shortest
path of the entire graph. For a more detailed analysis of this, see Section 6.

5 The objective function

In general, different objective functions are used for public transport route planning.
One of the most common is the earliest arrival, but it does not always fully meet the
user’s preferences. Finding different Pareto optima is also a common problem. We
used an objective function that included a weighted sum of different goals. And the
weights were determined based on information provided by the users, using preset
patterns.
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The weight of a travel edge is the following: trwr + fr, where tr is the time of
travel, wr is the actual weight of the journeys, and fr is the additive factor for the
travel cost.

The weight of a waiting edge is the following: tiwi, where ti is the waiting time,
and wi is the actual weight of the waiting.

The weight of a pedestrian edge is the following: tawa +fa, where ta is the time
of walking, wa is the actual weight of the walking, and fa is the additive factor for
pedestrian cost.

In the search, there were three options available to the users regarding the
search query. These three options are the fastest route, the minimum number of
connections and the minimum walking distance. And the parameters of the weights
for each goal are given in Table 2.

Table 2: Parameters of the weights

Options wr fr wi wa fa
Fastest 1 30 0.8 1.5 30
Less transfer 1 1000 0.8 1.5 10
Less walking 1 30 0.8 30 1000

6 Results and analysis

We investigated the proportion of the investigated instances such that the reduced
graph contained all nodes of the shortest path. This ensured that the search on
the reduced Time Expanded Graph would give an optimal solution. In the pre-
processing heuristics we modified two parameters. One was the previously men-
tioned k parameter, while the other was the search time. For the possible values of
k, we selected s+1 and s+2, where s is the shortest path between two points in the
Station Graph.

Here, we used two types of test queries. They both contained 1000 queries, one
of which concerned questions regarding local traffic (T1) and the other concerned
long-distance traffic (T2). In the table below, we summarize how efficient the pre-
processing heuristics was for the two types of test data, for different values of k.
In the table out of the 1000 questions we see how many times the reduced-size
Time Expanded Graph gave a solution that differed from the optimum, which we
calculated using the complete Time Expanded Graph.

Tables 4 and 5 contain the average and maximum search times in milliseconds
on the above-mentioned query lists for the reduced and for the complete Time
Expanded Graphs. The notations used for the columns are the following:
RB: Reduced graph build time
RS: Reduced graph search time
RC (=RB+RS): Reduced graph complete search time
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Table 3: Non-optimality statistics of the prepocessing heuristics

Input type k = s + 1 k = s + 2
T1 13 0
T2 54 11

FB: Full graph build time

FS: Full graph search time

FC (=FB+FS): Full graph complete search time

Table 4: Average running times in milliseconds

RB RS RC FB FS FC
T1, k = s + 1 308 18 327

5327 166 5493
T1, k = s + 2 1394 406 1801
T2, k = s + 1 256 55 312

5427 1137 6564
T2, k = s + 2 1186 316 1502

Table 5: Maximal running times in milliseconds

RB RS RC FB FS FC
T1, k = s + 1 1478 446 1529

5744 4130 9502
T1, k = s + 2 4959 2458 5453
T2, k = s + 1 2491 788 3279

6290 10216 15650
T2, k = s + 2 3119 3938 6469

7 Conclusions

We presented an algorithm used by a route planning system for a complete public
transport network of two regions from Hungary and Serbia. The graph representing
the transport network was very large, but with the help of some speed-up tech-
niques, we managed to create an effective search algorithm that is able to handle
user requirements.
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