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Integrated Vehicle Scheduling and
Vehicle Assignment

Jozsef Békési? Balazs David¢ and Miklés Krész®

Abstract

The vehicle scheduling problem has been extensively studied in the past
decades. Yet, most models and methods given in the literature consider only
a theoretical scenario where vehicles just have to service the timetabled trips
of the input. However, schedules created this way cannot be used in real
life, as they should also consider constraints such as refueling, parking, and
maintenance, which are all connected to the vehicle servicing the trips. In
this paper, we give a set partitioning model for the multi-depot integrated
vehicle scheduling and vehicle assignment problem. This model can also be
used as a general framework, which can integrate multiple activities based
on the rules or regulation of the different possible input scenarios. We give a
column generation-based solution method, and demonstrate its efficiency on
randomly generated test instances, which treat the refueling of vehicles with
two different fuel types as the vehicle-specific activity.

Keywords: vehicle scheduling, vehicle assignment, integrated model, alter-
native fuel, refueling, maintenance

1 Introduction

The vehicle scheduling problem (VSP) is one of the most basic optimization prob-
lems arising in public transportation. It has been fairly well researched over the
past few decades, but state-of-the-art models and methods mostly treat the prob-
lem as a mathematical one. The usual models and solution methods given for the
VSP are interesting from a theoretical point of view, but many of the solutions
cannot be applied directly in real life. They mainly focus on assigning timetabled
trips to the vehicles of the company. However, there are other constraints that need
to be considered while creating a vehicle schedule.

The vehicle schedules of a transportation company are not just virtual sets
of tasks that have to be executed in the given sequence, but they also have a real
vehicle (or at least a vehicle brand/type) assigned to the schedule as well. Knowing
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the vehicle responsible for the execution of the trips also means that there are special
needs that have to be taken into account while the vehicle is in service. For instance,
it can run out of fuel, and has to be refueled, or spends too much time in service,
and has to be sent for short maintenance during the day. While similar constraints
are important from the perspective of a real-life application, they are not widely
studied in the literature. We will refer to these requirements as vehicle-specific
activities. More application-oriented approaches for the VSP started appearing
with the rise of electric and alternative-fuel vehicles. These are both cheap and
environmentally friendly to operate. However, their major drawback is that they
can only run a limited distance, so refueling events have to be considered when
creating their schedules [19].

While refueling is an important constraint that has to be included in a VSP
model, other vehicle-specific activities should also be considered, such as parking
and maintenance [15, 7]. Constraints like these receive significantly less attention
than refueling. In this paper, we present a set partitioning model for the integrated
vehicle scheduling and assignment problem with vehicle-specific activities. If such
activities are included in a vehicle schedule, they also determine different tasks
that the vehicle has to execute besides its timetable trips. This results in a vehicle
assignment combined with scheduling. Our goal is to give a general framework
where most vehicle-specific activities can be integrated, and provide a flexible model
where many of these application-oriented constraints can be readily included. While
there may exist other models and methods that deal with these problems separately,
to our knowledge such activities have not been considered together in the same
problem before.

We give a column generation-based solution method for this model, and demon-
strate its efficiency on randomly generated test instances. To showcase the model,
we use refueling as the vehicle-specific activity for these instances, and also study
the concept of multiple fuel types, which is also rarely considered in the literature.

2 Vehicle scheduling and vehicle-specific activities

For the introduction of the VSP, we will follow our terminology from [10]. The
input of the VSP is a set V of vehicles and set T of timetabled trips. Every trip
has a departure and arrival time, a starting and ending location, and the distance
that they cover. Trips also have a set of vehicles that are able to service them. A
(t,t") pair of trips are compatible if a vehicle can service both trips with respect to
the running time and distance between the arrival location of ¢ and the departure
location of t/. Traveling between two locations without servicing a timetabled trip
is called a deadhead trip. Deadheads also have a starting and ending location,
distance and duration in time.

The VSP gives an assignment between the timetabled trips and the vehicles
in such a way that every trip is executed exactly once, and trips assigned to the
same vehicle are pairwise compatible. As mentioned before, trips can determine
the set of vehicles that can execute them, and this is achieved through the concept
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of depots. Vehicles may belong to depots. These are determined by the features
of the trips; namely, certain trips might be served only by vehicles that satisfy
given constraints (e.g. is the vehicle wheelchair accessible, does the vehicle have
air conditioning, or a given passenger capacity?). Such constraints are important,
and are centered around the services you want to provide to passengers taking the
given trip (e.g. people with a wheelchair should have no problem getting on any
bus along the route of this trip), or a regulation connected to the trip (e.g. every
bus covering a trip that is longer than a given distance must have air conditioning),

These depots are usually determined by a combination of two features; namely
the type of vehicle (e.g. with/without air conditioning, solo, or articulated), and its
starting location at the beginning of the day. When we talk about vehicles belonging
to the same depot in this paper, we mean vehicles sharing the same vehicle type
and having the same starting/ending geographical location at the beginning/end
of the day. If the problem has at least two depots, every trip is also assigned a
depot-compatibility vector that corresponds to the depots that can execute it.

Besides depots, vehicle characteristics will also be addressed. These also repre-
sent different attributes of the vehicles, but only those that do not have an influence
on servicing trips. For example, the fuel type of the vehicle may be such a char-
acteristic; vehicles belonging to the same depot can run on different fuels, but can
still service the same trips.

The total cost of the problem usually consists of a one-time daily cost for each
vehicle in service, and an operational cost proportional to the distance traveled by
these vehicles. Both of these costs may be different depending on the depot of the
vehicle. The result of the VSP is a daily vehicle schedule, which consists of vehicle
blocks. A vehicle block is basically a sequence of tasks that are executed by the
same vehicle.

If the problem has only one depot, it is called the single depot vehicle scheduling
problem (SDVSP), and it can be solved in polynomial time. A formulation for the
SDVSP is presented in [4]. A problem with at least two depots is referred to as a
multiple depot vehicle scheduling problem (MDVSP). The MDVSP was introduced
by Bodin et al. in [5], and its NP-hardness was shown by Bertossi et al. [3]. There
are several different models and solution methods available for the problem, and
Bunte et al. provide a good overview of these in [8].

Solution methods based on the basic concepts of the SDVSP and MDVSP can-
not be applied directly in practice, as they only deal with covering all timetabled
trips. In real life, however, vehicles have to execute several types of activities dur-
ing the day. These come from different vehicle-specific needs (parking, refueling,
maintenance, etc.), and they usually have to be executed after a vehicle has cov-
ered a certain distance (refueling, maintenance), or spent a certain amount of time
without performing any activities (parking). In all of these cases, the total length
of certain consecutive activities is limited, and vehicle-specific events have to be
scheduled after such work pieces.

In general, extensions of the VSP that have either a time or distance constraint
on the length of the vehicle blocks are called the Vehicle Scheduling Problem with
Time/Route Constraints [13, 8]. These alone cannot satisfy the constraints for
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vehicle-specific activities, as they limit the total length of the flow representing a
block, while activities only need a limit for certain parts of this flow. However,
most problems that consider the above vehicle-specific activities are special cases
of this group.

In this paper, we introduce a set partitioning-based model for the integrated
vehicle scheduling problem with vehicle-specific activities. The purpose of this
model is to provide a general framework capable of producing vehicle schedules
that can be used in practice. Most papers dealing with the VSP do not consider
vehicle-specific activities, although they are really important real-life constraints for
vehicles. One such activity that has gained increasing popularity in recent years is
the scheduling of alternative fuel (natural gas, hybrid) or electric vehicles.

Vehicle scheduling for alternative fuel vehicles (AF-VSP) is hard because of the
limited distance they can cover. Vehicles have to be refueled during their daily
blocks, and there are usually very few special refueling stations, with a limited
number of refueling pumps. Because of this, location problems for refueling sta-
tions are also important [17]. Li presented a flow network-based model for both
alternative fuel and electric vehicles in [18]. Here, a single depot VSP is consid-
ered with a single fuel type, and a single refueling station at the depot. Several
column generation-based solution techniques are presented on instances with up
to 947 trips. Adler studied the problem with multiple depots in [1, 2]. He used a
set partitioning model for alternative fuel vehicle scheduling, and also used column
generation to solve instances with up to 50 trips. Larger instances are solved by
applying heuristic methods.

Electric vehicle scheduling (E-VSP) has also been getting a lot of attention
recently. Both the above-mentioned paper by Li [18] and the dissertation of Adler
[1] present models and solution methods for the E-VSP. Their solution approaches
are similar to those that were used for the AF-VSP. They mainly deal with battery
swapping, and their solution approaches are also based on column generation. A
time-space network-based model that allows the charging of the vehicles is given in
Reuer et al. [23]. In [25], multiple models are presented for the E-VSP that consider
battery charge. The solution is once again obtained using a column generation
approach.

Another important vehicle-specific activity is the assignment of small main-
tenance tasks to vehicles during their daily blocks. According to Haghani and
Shafahi [15], they can be of three types: daily, preventive and emergency main-
tenance. Daily inspections can be built into a vehicle schedule at the beginning
or the end of the blocks, while emergency maintenance is only issued as part of a
disruption management process when something unexpected happens to a vehicle.
However, preventive maintenance has to be executed by vehicles after a set dis-
tance or time interval. Such maintenance activities were examined for rolling stock
rotations by Borndorfer et al. in [7], while Haghani et al. also gave a model for
inserting preventive maintenance into existing bus schedules in [15].

It can be seen that none of the above papers deal with multiple vehicle-specific
activities. Moreover, the vehicle-specific activities that they study usually consider
a single vehicle characteristic (e.g. vehicles will all have the same fuel type, or
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require the same type of maintenance). In this paper, we introduce the multiple
depot integrated vehicle scheduling and assignment problem with vehicle-specific
tasks. This model acts as a general framework, where multiple activities with time
or distance constraints can be included depending on the requirements of the spe-
cific problem. The model can provide feasible solutions with these constraints,
while also taking capacity constraints into account. While all the above-mentioned
papers solve the vehicle scheduling problems with a single specific vehicle activ-
ity, our goal was to provide a general model that can handle multiple activities
simultaneously.

We will define the integrated vehicle scheduling and assignment problem with
vehicle-specific activities (VSAP-VS) in the following way. Let the input of the
problem be a set T of timetabled trips, set D of depots and set V of vehicles.
These concepts here are exactly the same as those introduced for the VSP at the
beginning of this section; namely, trips have a departure and arrival time, a starting
and ending location, and the vehicles can also be assigned to depots in the same way.
Trips also determine the set of depots that are able to serve them by considering
the features of the vehicles in the given depot.

In addition to the input given for the VSP, there are n different vehicle-specific
activities represented by set R. These activities are connected to vehicle charac-
teristics rather than depots (e.g. refueling vehicles with natural gas and preventive
maintenance of hybrid vehicles), and certain activities can only be carried out by
given vehicles. Let set R; C R denote the possible tasks belonging to activity
j. Similar to timetabled trips, task r € R; has a starting and ending time, and
departure and arrival locations (although these two are usually the same, as activ-
ities like parking or refueling are stationary). In order to model the capacities of
the particular activities, they can only carried out in fixed, discrete time intervals
instead of continuous availability. Each activity has its own set of rules and reg-
ulations, but these are usually connected to a set timespan or distance limit. For
instance, a vehicle cannot travel more than a given distance without carrying out
a refueling task, or it has to begin a parking task if it remains idle for more than
a given amount of time. Compatibility between trips and activities can also be
defined in a similar way to the VSP. Consider a pair of tasks a,a’ € T'U R, which
are compatible if:

e the same vehicle v € V is able to service both of them (the depot of v is
compatible with any trips in {a,a’}),

e they both satisfy the vehicle characteristics of v (any vehicle-specific task in
{a,d’} can be carried out by v; e.g. we cannot assign battery recharging to a
vehicle running on gas), and

e vehicle v can service a’ after finishing a with respect to the running time
and distance between the arrival location of @ and the departure location
of @’ (also considering the possible deadhead trip between a and o', where
necessary).
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The aim is to provide a feasible vehicle schedule that includes both timetabled
trips and vehicle-specific activities, and tasks in any vehicle block are pairwise
compatible. The cost of such a vehicle schedule is a linear combination of three
different terms; namely, a one-time daily cost for each vehicle covering a block, a
distance proportional cost for covering timetabled trips and deadheads, and costs
of the vehicle-specific activities included in the blocks.

In the remainder of this paper, we will first introduce a mathematical model
and solution method for the VSAP-VS, then demonstrate its efficiency by solving
randomly generated test instances of different sizes and types.

3 Modeling and solution of the problem

In this section, we introduce our model for creating vehicles schedules that also
take vehicle-specific activities into account. Then we present our solution method
for it.

3.1 A set partitioning mathematical model

For each depot d € D, let By be the set of feasible b blocks that start from dt(d)
and also return there. A block is a sequence of compatible trips and activities that
can be executed by the same vehicle, and it satisfies all activity rules connected to
this vehicle. Let

B:UBd

deD

be the set of all such blocks. For each b € By, let ygl be the following binary
variable

d {1, if b € Bg block is part of the solution
W =

0, otherwise

Furthermore, let aib be the following

d 1, if b € By block contains activity edge e
a =
eb 0, otherwise

Let T denote the set of trips for the problem, and R give the set of tasks
belonging to all vehicle-specific activities. Tasks that are connected to a single
activity of a given vehicle characteristic are given by R, C R(1 < i < n), where
n is the number of all such activities. The capacity of a depot d € D is denoted
by kg4, and the maximum number of vehicles that can simultaneously perform a
vehicle-specific task r € R is given by k.. Let ¢, be the cost associated with block
b € By. Then we can formulate the problem in the following way:
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minimize Z Z eyl (1)

deD beBy
s.t.

Z Z ag’byg =1vteT (2)

deD beBg,e=(dt(t),at(t))EEq

> > alyil <k VreR (3)

deD beBg,e=(dt(r),at(r))EEq

>y <kg,Vde D (4)
beBy
yi € {0,1},Vd € D,Vb € By (5)
al, € {0,1},Yd € D,Vb € By,Ve € Ey (6)

Constraint (2) ensures that every trip is covered exactly once. Blocks simul-
taneously containing certain vehicle-specific activities are given by constraint (3),
each task r € R having a maximum capacity k.. Note that this constraint only
ensures the vehicle limits on each task, as we suppose that every block is feasible,
also meaning that they satisfy the distance and time constraints or any other rules
connected to the activities. Managing this feasibility will be addressed later on.
Finally, constraint (4) limits the capacities of each depot d € D.

3.2 A column generation approach

Due to the huge number of possible blocks (resulting in a large amount of decision
variables), the model cannot be solved directly by a MIP solver. Moreover, gener-
ating all blocks is also problematic, as the number of possible combinations is huge.
Instead of giving all the possible blocks in the model, only the most important ones
have to be generated to achieve a good quality solution.

Column generation [11, 20] is a classical method that is usually applied to such
problems, relaxing the integer constraints of the variables. This relaxed problem
is also known as the master problem. The usual steps taken during the solution
process are the following;:

1. Create an initial solution. The resulting schedule will provide the starting set
of columns.

2. Solve the relaxed problem (master problem) on the actual set of columns,
store the lower bound, and duals.

3. Solve a pricing problem in order to look for new columns that have a negative
reduced cost.

4. Add the new columns to the master problem, and erase any old columns that
are obsolete, and have a large cost.
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5. Check the termination criteria. If none apply, go to step 2.

6. Create the final schedule based on the current columns of the problem.

Creating the final vehicle schedule in step 6 can be achieved by solving the
resulting problem as an IP using a solver. A solver can also be used in step 2 for
the solution of the master problem LP. The process can terminate in step 5 if a
given iteration count is reached, or the solution has not improved significantly in
the past few iterations. The most important part of the algorithm is the solution
of the pricing problem in step 3.

3.3 Initial solution

Next, we present our heuristic for creating an initial solution for the column gen-
eration process. Its pseudo code can be seen in Algorithm 1.

The input of the algorithm is the set T" of trips and set V' of vehicles. The
process iterates over the input trips in ascending order of their departure times,
and assigns the current trip to an existing block with the cheapest cost. If there is
no block where the trip can be inserted, then a new block is created for the trip.
The vehicle chosen for this block is the one with the smallest cost that can execute
the trip. After each trip assignment, the current block is checked to see whether
its assigned vehicle has to undergo a task belonging to any of its vehicle-specific
activities.

The function checkActivity(A,b) checks block b to see if it could execute any
of the remaining trips without violating the rules of activity A. If any of the rules
are violated, b is sent to carry out the given activity, and is assigned the cheapest
compatible task. If the activity was connected to a resource (e.g. distance or time),
this is also replenished for the vehicle servicing the block.

As an example, we present a function for managing refueling activities in Algo-
rithm 2. Vehicles are sent for refueling tasks if their remaining distance (denoted
by remDist) does not allow them to head out for any trip, service it, and then
head back to any location. For this, we count the distance of two deadheads as
mazDeadhead Time (with the maximal possible distance), and the distance of the
trip as maxzTrip Time (taking the maximal remaining trip distance into account). If
refueling is needed, the vehicle is assigned to the next available possibility with the
cheapest cost. After the refueling task is completed, the remaining distance that
the vehicle can cover is again set to its maximum value.

When the initial solution is created, its blocks are used as the starting columns
of the relaxed master problem.

3.4 Pricing problem

After solving the master problem, information about its duals is used to create new
columns that can improve its current objective. Each such column corresponds to a
legal vehicle block. These blocks are created with the use of a generation network.
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Algorithm 1 Initial vehicle schedules with activities.
Funct buildSchedule(T, V)

1: Let the set of blocks be B := {}

2: Order T by ascending trip departure times

3: for (t€T) do

4:  Let f := b € B with the cheapest insertion cost for ¢

5. if f =10 then

6: f = v €V that can serve t with the smallest cost
7 Assign t to f

8 B := BU{f}

9: else

10: Assign t to f

11:  end if

12:  for all activities R; C R do
13: checkAtivity(R;, f)

14: end for

15: end for

16: return B
Funct checkActivity (A4, b)

1: P := all available tasks in A for b
d := resource (time/distance) needed for b to serve any trip ¢
v := is an activity rule violated servicing any trip ¢?
if d > remainingResource(b) or v = true then
p := cheapest compatible task from P
Assign p to b
remainingResource(b) := MAX
else if v = true then
p := cheapest compatible task from P
10:  Assignptobd
11: end if

»

© P PR W

Algorithm 2 Function for checking refueling activities.
Funct checkFuel(b)

1: R := all available refueling times for b

2: d := 2 - maxDeadheadlime + maxTripTime

3: if d > remDist(b) then

4: 1 := cheapest compatible refueling possibility for b
5:  Assign r to b

6:  remTime(b) := MAX

7: end if

This network provides the basis of the pricing problem, and it is used to build
vehicle blocks with a negative cost that also satisfy all the above-mentioned vehicle-



792 Jozsef Békési, Balazs David, and Miklés Krész

specific activities. This basically means that after a vehicle has consumed enough
of a given resource, the appropriate events for its vehicle-specific needs also have
to be scheduled. This will be done by solving a resource-constrained shortest path
problem.

We use a time-space generation network similar to the one presented by [24],
and a separate network is created and solved for every pair of depot and activity
type. Each network is given by the possible tasks that can be assigned to the
vehicles, namely timetabled trips, deadhead trips and other vehicle-specific events.
The nodes of the network correspond to the arrival and departure time of these
tasks on their given time-lines. The edges of the network can either correspond to
their respective tasks, or be waiting edges on the time-lines.

Formally, let G = (N, E) represent a general duty generation network. Such
a network is created for each combination of depot d and activity a, resulting
in networks H? = (N2, E?). The nodes in N? are the following: depot_source,
depot_sink, trip_start, trip_end, activity_start, activity_end. Edges in Eg connect
these nodes; trip_start and trip_end nodes belonging to the same trip are connected
by trip edges, activity_start and activity_end nodes belonging to the same activity
are connected by activity edges. Any end node is connected to the start nodes of
other tasks; deadhead edges connect those in different locations, while waiting edges
run between nodes in the same location. The only exception to this is activities.
Namely, the end node of an activity task is not connected to the start node of
the same activity type, as there is no point in executing two similar vehicle-specific
activities after each other. Block_start edges connect the depot_source node to every
trip_start node, and every trip_end node is connected to the depot_sink node with
block_end edges.

An example of such a network can be seen in Figure 1. Here, refueling is the
vehicle-specific activity of the network, and it is performed in 20-minute tasks.

To ensure feasibility with respect to vehicle-specific events, so-called resources
are also associated with each vehicle on the network. A single resource is allocated
for each vehicle-specific activity, which calculates the time/distance (depending
on the resource) covered by the vehicles with the help of a resource extension
function. These will filter out blocks whose total consumed resources violate any
of the vehicle-specific requirements. Tasks belonging to the activity replenish the
appropriate resource capacity of the executing vehicle.

As described in [24], negative reduced cost vehicle blocks are generated on these
networks using a dynamic programming approach presented in [12]. Blocks with the
lowest negative reduced cost are added to the master problem from each generation
network.

3.5 Creating the final schedule

After the column generation steps have terminated, the resulting master problem
only gives us a solution for the LP-relaxed scheduling problem. To obtain a final
integer solution, a second phase is usually executed. This can be done in several
ways.
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One approach is to use Lagrangian relaxation [16], as in the case of integrated
vehicle and crew scheduling problems, where the linking constraints between vehicle
and crew are an ideal candidate to be relaxed.

Another possibility is to embed the column generation process in a branch-
and-bound framework that searches for the optimal integer solution [6, 21]. This
method is also referred to as branch-and-price.

Integer solutions can also be obtained by the use of truncated column generation,
which was used for the MDVSP by Pepin et al. [22]. After the column generation
has terminated, this approach attempts to obtain an integer solution of the master
problem by performing a rounding/variable fixing heuristic that fixes the values of
fractional variables.

Our approach is similar to truncated column generation, but instead of using a
heuristic approach to round the variables of our problem, we simply re-introduce
the integrality constraint to our master problem, and solve it using an IP solver. A
similar approach to this was also applied in [14]. To control the time of the solution
process, we also set a time limit for the solver.

4 Test results

We tested our method on random input generated based on [9]. Both single and
multiple-depot test cases were created in different sizes; namely 50, 250, 500, 1000,
1500 and 2000 trips. While the model we presented can be used as a general
framework for handling different vehicle-specific activities, we chose refueling to
showcase our test instances, as this is the most widely studied vehicle activity.
However, while papers in the literature usually deal with only a single fuel type
for a problem, our test instances use two different fuel types. Moreover, we allow
vehicles belonging to the same depot to have different types of fuel, which is rarely
considered in other studies.

A total of 24 test cases were solved both for the single- and multiple depot
problems; we generated 4 instances for each problem size. The ILOG CPLEX
solver was used during the solution process, with a limit set on its running time:
i.e. the limit on the column generation phase was 7.5 hours, while the IP phase
ran for 3 hours in the single depot case, and 5 hours in the multi-depot case. This
gave a total maximum running time of 10.5 hours (37800 seconds) for single depot
problems, and 12.5 hours (45000 seconds) for multi-depot problems. These limits
have to be included if we consider the practical aspects of such a solution method,
as planners should have an estimate on the required running time if they want to
have a feasible solution.

The following types of data are presented for our results: the number of vehicle
blocks given by the initial heuristic (initial blocks), the final number of blocks given
by the resulting IP (IP blocks), the final optimality gap (%) given by CPLEX, and
the solution time of the instance.

Table 1 shows results obtained for the single depot test instances. It can be seen
that good quality solutions are achieved for all 24 problems, the optimality gap is
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Table 1: Single depot test instances.

Instance Trips lI)rll(l)tclE; IP blocks gal\sl(l()% ) T(lf)le
input_01 16 16 0.00% 95
input_02 50 16 10 0.00% 80
input_03 16 11 0.00% 86
input_04 16 16 0.00% 85
input_05 58 71 0.01% 258
input_06 950 56 56 0.00% 335
input_07 58 58 0.01% 329
input_08 56 69 0.00% 257
input_09 99 131 0.08% 4938
input_10 500 107 104 0.43% 5473
input_11 103 107 0.49% 5527
input_12 96 137 0.18% 5014
input_-13 184 290 1.51% 11228
input_14 1000 183 231 2.16% 19808
input_15 187 219 2.03% 19361
input_16 185 288 1.54% 11073
input_17 260 611 0.01% 21028
input_18 1500 268 529 3.56% 21629
input_19 264 612 0.01% 18488
input_20 262 595 2.05% 21612
input_21 374 731 2.70% 21643
input_22 92000 364 663 0.76% 21615
input_23 358 383 0.00% 18105
input_24 358 593 0.01% 21007

generally under 1% (with only a single instance being above 3%, and six instances
lying between 1% and 3%). The maximum runtime limit was exceeded only by
the 1500 and 2000 trip instances. One notable feature of all single depot results is
that the IP solution of the problem uses significantly more buses than the initial
heuristic. The reason for this can be found by examining the different cost factors
of the input. Most of the vehicles generated for the input instances ended up having
a relatively low daily cost, and a more significant distance proportional cost factor.
Because of this, the IP solution attempted to minimize the distance traveled by its
vehicles (which meant trying to schedule as few deadhead trips as possible). The
initial heuristic is essentially a greedy assignment of trips to vehicles, which does
not take the distance traveled into account, and only introduces new vehicles to
the schedules if it really has to.

Overall, the solutions we obtained for a single depot and two fuel types look
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favorable, even for larger instances. The maximum problem size presented by the
test results for similar problems in other papers in the literature rarely exceed
1000 trips, while we obtained good quality solutions for several instances with 1500
and 2000 trips as well, taking into account vehicles with two different refueling
constraints.

Table 2: Multiple depot test instances.

Instance Trips lIorll(l)tclli IP blocks gal\l/)H(P()% ) T(lér)le
input_1 26 9 0.00% 10
input_2 50 25 8 0.00% 16
input_3 10 9 0.01% 26
input_4 9 9 0.00% 13
input_b 51 32 8.06% 19028
input_6 950 46 34 6.42% 19301
input_7 47 35 7.30% 19253
input_8 45 35 6.49% 18998
input_9 84 64 11.43% 22801
input-10 500 100 63 10.84% 23184
input_11 81 57  12.73% 24836
input_12 86 58  12.48% 24452
input_13 181 135 15.29% 45067
input_14 1000 164 122 23.59% 45045
input_15 177 124 21.65% 45087
input_16 182 124 23.48% 45064
input_17 281 216 25.11% 45081
input_18 1500 270 217 26.64% 45033
input_19 291 221 27.02% 45024
input_20 284 222 27.59% 45112
input_21 366 320 26.35% 45113
input_22 92000 376 329  26.10% 45160
input_23 378 336 26.19% 45119
input_24 335 313 27.60% 45061

Table 2 gives the test results for the multi-depot test cases. Here we used
vehicles belonging to two different depots, and we also considered two fuel types
(both depots had a mix of vehicles with both fuel types). This results in a more
complicated problem (multiple depots, two fuel types, instances with a large number
of trips) than those that are usually examined in the literature.

The results for small, 50-trip instances look promising, as we also found near
optimal solutions in a short time. However, these were the only cases where both
the column generation phase and the IP phase terminated well before its time limit.
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Even for the 250 trip instances, the IP solution process was aborted prematurely
as it ran out of time. For the 250 and 500 trip instances, the column generation
process terminated with no more columns to generate, but it also ran out of time
for the larger input.

The effect of reaching the time limit can clearly be seen in the results. While
the average gap given by the solver was 9.47% for the 250- and 500-trip instances,
where the column generation finished without any problems, the three remaining
instance sets (with 1000, 1500 and 2000 trips), where both the column generation
and IP solution phases were aborted because they exceeded the time limit, had an
average gap of 24.72%. While these results might not seem particularly promising,
the quality of the solution obtained only depends on the time allocated for the two
phases. Based on the single depot, and small multi-depot results, the model will
provide better quality solutions, but the time limit has to be increased significantly.
However, this would invalidate the very reason that we introduced the time limit
in the first place; namely, to ensure that the results are useful in practice, which
means that they have to be produced in a reasonable time.

5 Conclusions and future work

In this paper, we presented a general framework for the integrated vehicle schedul-
ing and assignment that also takes into account tasks for vehicle-specific activities.
This framework provides a daily vehicle schedule that also includes the special needs
of the vehicles executing it; activities such as refueling and parking are considered
in the resulting vehicle blocks. We presented a set partitioning-based mathemat-
ical model for the problem, where most vehicle-specific activities can easily be
integrated based on the desired constraints. This model is then solved using a col-
umn generation approach. We demonstrated the efficiency of the proposed model
on randomly generated test instances, using refueling to showcase vehicle-specific
activities.

Instances with one and two depots were both generated, and all of them had
two fuel types with different constraints (also allowing the possibility that the same
depot can contain vehicles with different fuel types). A time limit was set on both
phases of the solution process to guarantee that a feasible result could be achieved
in a reasonable time. Test runs for a single depot and two fuel types resulted in
good quality solutions, as did the smaller-sized multi-depot ones. The results for
the larger multi-depot instances had a bigger optimality gap, but this was due to
one or both of the phases terminating because of the time limit set. Based on the
results of the other test cases, these gaps should also be smaller if more time is
provided for finding the solution.

While the results are promising, there is still room for improvement of the pro-
cess. Implementing a proper branch-and-price framework could result in a better
quality solution. Because of the limited running time, a truncated column gen-
eration approach with a rounding heuristic as the second phase should also be
considered. Another way of reducing the solution time might be the parallelization
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of the column generation process. Implementing these approaches and comparing
their results should be the next phase of this work.

The model we created is a general, flexible framework that can handle multiple
vehicle activities. Although we presented problems with two different fuel types as
our test cases, we did not generate instances with two or more completely differ-
ent activity types. Our future research work will also include experimenting with
different vehicle constraints connected to these activities.
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