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Spanning Tree Game as Prim Would Have Played∗

András Londona and András Pluhára

Abstract

In this paper, we investigate special types of Maker-Breaker games defined
on graphs. We restrict Maker’s possible moves that resembles the way that
was introduced by Espig, Frieze, Krivelevich and Pedgen [9]. Here, we require
that the subgraph induced by Maker’s edges must be connected throughout
the game. Besides the normal play, we examine the biased and accelerated
versions of these games.
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1 Introduction

In a positional game two players play on a hypergraph H = (V (H), E(H)), where
E(H) is usually referred as the family of winning sets. The players take turns in
claiming vertices of V (H) that was not claimed previously. In the Maker-Maker
version a player wins by claiming every elements of some edge A ∈ E(H) first. In
the Maker-Breaker version Maker wins by claiming all elements of an edge, while
Breaker wins if he can prevent Maker’s win. Note that a Maker-Maker game may
end in a draw, while only one of the players can win a Maker-Breaker game. The
players may take more than one elements in a turn; we call it an (H, a, b)-game if
the first player takes a and the second takes b elements. If a = b > 1 then it is an
accelerated game, otherwise we call it a biased game. For a deeper introduction to
positional games, we refer to Beck [4].

In graph games the set V (H) is usually the edge set of a fixed graph G, mainly
G = Kn, and E(H) is a graph property. That is, Maker’s goal is to build a particular
structure (e.g. a spanning tree, a K3 or a Hamiltonian cycle) within his own edges,
while Breaker tries to prevent this. For some essential results in positional games,
see e.g. [2, 3, 4]. Here we start with the classical Shannon’s switching game, which
is a Maker-Breaker game on the edge set of a connected graph G, and Maker wins
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by taking the edges of a spanning tree. The outcome of this game is characterized
by Lehman’s theorem [12] stating that Maker wins (as a second player) if and only
if the graph contains two edge-disjoint spanning trees.

Since the complete graphKn contains at least two disjoint spanning trees for n ≥
4, Shannon’s switching game is trivial in this case. To make the game interesting
for Kn, Chvátal and Erdős [7] introduced the (1 : b) biased version. The outcome
is a monotone function of b in a sense that if Maker wins for a value b, and b′ < b
then Maker also wins the (1 : b′)-game. Similarly, if Breaker wins the (1 : b)-
game, and b < b′, then Breaker wins the (1 : b′)-game as well. Therefore they
gave bounds on b0, the smallest value for which Breaker wins. This turned out to
be b0 = Θ(n/ log n), which can be considered from another viewpoint. If the two
players take their selection randomly in a (a, b)-game, then the graph consisting
of Maker’s edges will be similar to an element of G(n, p), where p = a/(a + b).
However, p = log n/n = Θ(1/(1 + b)) is the threshold for connectivity, see [6].
Hence one may say the perfect and random plays result in the same outcome. This
probabilistic intuition, or Erdős paradigm gives a deep insight to a game, and turned
out to be true for several cases [3, 4, 5], while it is also informative when it fails [1].

Epsig et al. [9] brought fresh ideas to the connectivity type of games by intro-
ducing Walker-Breaker game and PathWalker-Breaker game. Walker, being located
on a vertex x, may claim an edge e = (x, y) if e has not been taken by Breaker
before. Upon doing this, his location is changed to y. PathWalker is even more
restricted; he is allowed to visit a vertex only once. For Breaker’s moves, there are
no restrictions. Walker and PathWalker wants to visit as many vertices of G as
possible. It was shown that Walker (and even PathWalker) reaches at least n − 2
vertices of Kn for large n. In the 1 : b-game the number of vertices that can be
visited by PathWalker falls into the interval [n − c1 log n, n − c2 log n], where the
values of c2 < c1 depend on only b.

In this study, motivated by the previous approach and some classic problems,
we define new versions of Shannon’s switching game. These are Maker-Breaker
games where Maker’s goal is to build a connected spanning subgraph of a graph
G such that in any moment of the game the subgraph consisting of Maker’s edges
is connected. We call this type of game the PrimMaker-Breaker game, referring
to the execution of Prim’s algorithm. Note that Prim’s algorithm [16] finds a
(minimal) spanning tree in a weighted undirected graph by keeping the subgraph
of the already selected edges connected, in contrast to Kruskal’s algorithm [11],
which does not have this property. As a first step, we give a characterization for
the (1 : 1) unbiased game ( i.e. each player takes one edge per one turn). Let Hn

be the graph that we get from Kn−2,2 by joining the two vertices in its two-element
color class, see Figure 1.

Theorem 1. Playing the PrimMaker-Breaker game on a graph G with n vertices,
PrimMaker wins as a first player if and only if G contains Hn as a subgraph.

It is interesting that in both directions of the proof of Theorem 1, the actual winner
may utilize a pairing strategy. Breaker’s strategy can be adapted to a (1 : b)-game
on Kn, and it shows that Breaker wins if b > 1, in contrast to the probabilistic in-
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tuition which predicts b0 = Ω(n/ log n). As it was observed before, the acceleration
of games has surprising effects [14], and it may restore the probabilistic intuition
destroyed by a pairing strategy in the (1 : 1)-game [1]. Here we can witness, in
magnitude, a perfect restoration of that intuition.

Theorem 2. Playing the (2 : b) PrimMaker-Breaker game on Kn, Maker wins if
b < n/(8 log n), and Breaker wins if b > n/ lnn.

2 Background

The following result is not just one of the most important results in the theory
of hypergraph games, but it can be used very effectively to decide the winner of
biased hypergraph games. The case a = b = 1 was proved by Erdős and Selfridge
in [8], and the general form was proved by Beck in [2].

Theorem 3. If ∑
A∈E(H)

(1 + b)−|A|/a < 1,

then Breaker has a winning strategy in the (H, a, b) game.

However, several times not Theorem 3 but its proof techniques and corollaries
are used.

For the sake of a better understanding and introducing some notations, we give
a sketch of the proof of case b = 1, and all elements of E(H) have the same size, a
more detailed proof can be found in [14].

The uniform case with b = 1. For any A ∈ V (H) let Ak(M) and Ak(B) be the
number of elements in A, after Maker’s kth move, selected by Maker and Breaker,
respectively. Now, for an A ∈ E(H)

wk(A) =

{
λAk(M) if Ak(B) = 0
0 otherwise,

where λ = 21/a. For any x ∈ V (H) let wk(x) =
∑

x∈A wk(A). The numbers wk(A)
and wk(x) are called the weight of A and x (in the kth step), respectively.

In the kth step Breaker chooses an unselected element yk ∈ V (H) of maximum
weight. Setting wk =

∑
A∈E(H) wk(A), called the potential, one gets wk ≥ wk+1,

k ≥ 0.
In particular, w1 ≤ (λa − 1)|E(H)| + |E(H)| ≤ 2|E(H)|. Since b = 1 and the

elements of E(H) are of the same size, the inequality
∑

A∈E(H) 2−|A|/a < 1/2 leads

to the inequality 2|E(H)| < 2|A|/a. Let us suppose that Maker wins the game in
the kth step. This would imply that wk ≥ λ|A| = 2|A|/a, contradicting the mono-
tonicity of the potential. �

An edge A ∈ E(H) is active if Breaker has not taken any of its elements.
Conversely, A ∈ E(H) is blocked if Breaker has already taken an element of it.
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Since wk ≤ w1 ≤ 2|E(H)| for all k, we have a bound on the “fill-in” of an active
edge. Note that this bound holds for the non-uniform hypergraphs as well.

Corollary 1. [14] Playing the Maker-Breaker (H, a, 1) game, Breaker may arrange
that whenever A is active, i.e. Ak(B) = 0, then Ak(M) ≤ a+ a log2 |E(H)|.

Proof of Corollary 1. Just take the logarithm of the inequality λAk(I) = wk(A) ≤
wk ≤ w1 ≤ 2|E(H)| that holds for any active edge A ∈ E(H). �

3 Proofs

Proof of Theorem 1. First we show if a graph G on n vertices contains the
subgraph Hn, then PrimMaker wins the game as a first player. PrimMaker might
restrict his moves to the edges of Hn as follows. His first move is the edge e = (u, v),
the edge added to Kn−2,2, see Figure 1. The other edges of Hn are paired such
that f, g ∈ E(Hn) \ {e} is a pair if they are incident and their common endpoint
lies in V (Hn) \ {u, v}. PrimMaker plays according to this pairing; more precisely,
in every turn, he takes one element of a pair. This keeps his subgraph connected
and results in a spanning tree in the (n− 1)st move.

In the other direction, let us assume that G does not contain Hn, and Prim-
Maker’s first move is an edge e = (u, v). Then there must be a vertex x ∈
V (G) \ {u, v}, such that |N(x)∩{u, v}| ≤ 1. Now Breaker might also use a pairing
strategy: whenever PrimMaker connects a new vertex y to his subgraph, i.e. takes
an edge (z, y), where z had been visited earlier, Breaker takes the edge (y, x) if
(y, x) ∈ E(G), and moves arbitrarily otherwise. Obviously, PrimMaker can never
connect the vertex x to his subgraph. �

Note that we have proved a little more than was stated in Theorem 1. By
winning PrimMaker builds a subgraph of diameter not more than three, which
type of games was explored in [1].

Proof of Theorem 2. PrimMaker’s win. First, we describe the winning strat-
egy, and then show its feasibility. PrimMaker plays an equivalent auxiliary game,
called the positive minimum degree game (see Hefetz et al. [10]), with the additional
requirement that his subgraph should be connected during the game.

r r
r r r p p p r1 w n − 2

u v r r
r r r p p p r1 w n − 2

u v

Figure 1: The graph Hn and a possible Maker’s subgraph.
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PrimMaker tries to get edges incident to each vertices as quickly as possible.
More precisely, he can guarantee an edge incident to the vertex x, before Breaker
takes, say, n/4 edges incident to x. This can be achieved by an appropriate weight
function method used several times before [13, 14, 15].

In order to utilize Corollary 1, we associate an auxiliary hypergraph game with
the PrimMaker-Breaker game. For each vertex x ∈ V (Kn), let the Ax ∈ E(H) be
the set of ordered pairs 〈x, y〉, where y ∈ V (Kn)\x. That is, Ax∩Ay = ∅ for x 6= y
and |Ax| = n − 1 for all x ∈ V (Kn). When Maker takes the edge (x,w) in the
graph game, it results in taking both 〈x, y〉 and 〈y, x〉 in the hypergraph game. Of
course Breaker’s one move means taking 2b ordered pairs. Note that PrimMaker
intends to play as Breaker in this auxiliary game.

Let us assume that PrimMaker can imitate the greedy strategy of Corollary 1
in the (H, 1, 2b) game. Note that in order to do so, PrimMaker does not have to
take the pair (edge) 〈x, y〉 of the largest weight, as taking any pair from the largest
weight hyperedge has the same effect on the potential function wk.

Extending the notation of Corollary 1, we may say that a vertex x is blocked if
Ax is blocked, i.e. PrimMaker has an edge that is incident to x. We shall prove
by induction on the steps of the game that an arbitrary vertex can be blocked at
each step. The induction hypothesis holds in the first step, and assuming it holds
up to the kth step, we can use the bound of Corollary 1. This tells us that Breaker
can take at most b+ b log2 n ≤ n/4 edges that are incident to an unblocked vertex
x. Note that we can also assume that PrimMaker’s edges form a tree Ti after the
ith step, and i ≤ n/2. Indeed, in the process of blocking we never need to create
cycles, so |V (Ti)| = 2i+ 1 if the game is not already over.

Let Tk be PrimMaker’s graph and Uk be the set of unconnected (unblocked)
vertices by PrimMaker after the kth round, respectively. Assume that the blocking
strategy requires one to block (connect) the vertex x ∈ Uk in the (k+ 1)th step. If
there is an unoccupied edge e = (x, y), y ∈ Tk, then we take it. Similarly, if there
are unoccupied edges e = (x, y) and f = (y, z), z ∈ Tk then we take those, and x is
blocked.

Assume on the contrary that there is a vertex x ∈ Uk that cannot be blocked
by PrimMaker in the (k + 1)st step; that is, in the subgraph of unoccupied edges
there are no paths of length at most two from x to Tk. According to the induction
hypothesis, we know that Breaker has taken fewer than n/4 edges incident to x.
The other endpoints of these edges cannot be in Tk and actually all the edges
between these endpoints and the vertices of Tk are taken by Breaker. The number
of these edges is at least (n−1−n/4)(2k+1) < 3nk/2, since k ≤ n/2. After round
k, Breaker has claimed bk edges, therefore we should have 3nk/2 ≤ bk, which
contradicts the choice of b.

Breaker’s win. This direction could be deduced from the results of Chvátal and
Erdős, the only difference being that they examine (1 : b)-game. For the sake of
completeness, we sketch their proof. Breaker distributes his moves evenly. First,
he puts an edge incident to all vertices, which needs no more than n/(2b) rounds.
During that time PrimMaker may achieve a positive degree of at most n/b vertices;
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these are dead for Breaker, while the others are active. Let us call the sequence of
rounds a phase if Breaker gets a new incident edge to each (active) vertices. Breaker
repeats the process above, getting a second, third, etc. edge incident to the edges
that were all active at the beginning of the phase. Breaker loses the n(1−1/b)i ≥ 1
fraction of active vertices, so the ith phase is feasible if n(1 − 1/b)i ≥ 1. That is,
Breaker can reach the nth phase if b > n/ lnn. But by doing so, Breaker isolates a
vertex. �

4 Further problems

One could investigate PrimMaker-Breaker versions of any graph games, when
Maker’s present strategies involves disconnected edges. Sometimes the restriction
of Breaker’s move, introducing the notion of PrimBreaker seems to be a good idea.

Another possible way of defining a new game is to consider the game on a
random graph, first investigated by Stojaković and Szabó [17]. For example if
V (Hp) = E(G), where G ∈ G(n, p) and the winning sets are the spanning trees of
G. It was shown by Stojaković and Szabó that the probabilistic intuition applies to
many of the random games, especially when there is a pH such that if p > pH then
Maker, and if p < pH then Breaker wins almost surely. The value of pH should be
close the threshold value of the connectivity of G(n, p).

Needless to say, the PrimMaker-Breaker version of the random Shannon’s
switching game again defies random intuition. It would be interesting to see whether
the (2 : 2) PrimMaker-Breaker version restores it. The proof method of Theorem 2
gives only pH ≤ c log n/

√
n, although pH ≤ c log n/n would be desirable. However,

one might argue that (2 : 2) acceleration is not enough, and (3 : 3), or even more
is needed. Another possible line is to define the PrimMaker-PrimBreaker version
where the restriction of Breaker brings pH closer to the c log n/n bound.
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