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Abstract

In the online coloring problem the vertices are revealed one by one to an
online algorithm, which has to color them immediately as they appear. The
advice complexity attempts to measure how much knowledge of the future
is neccessary to achieve a given competitive ratio. Here, we examine col-
oring of bipartite graphs, proper and the conflict-free coloring of k-uniform
hypergraphs and we provide lower and upper bounds for the number of bits
of advice to achieve the optimal cost. For bipartite graphs the upper bound
n − 2 is tight. For the proper coloring, n − 2k bits are necessary and n − 2
bits are sufficient, while for the conflict-free coloring case n− 2 bits of advice
are neccessary and sufficient to color optimally if k > 3.

1 Introduction

In this study we consider online vertex coloring. An online (hyper)graph is a
structure H< = (H,<), where H is a (hyper)graph and < is a linear ordering
of its vertices. We call a vertex the first, second,. . ., and ending vertex of an edge
according to the ordering <. An online (hyper)graph coloring algorithm has to color
the i-th vertex only knowing the sub(hyper)graph Hi = (Vi, Ei) where Vi contains
the first i vertices and Ei contains the edges of the (hyper)graph, which are subsets
of Vi. This means that the online algorithm receives information about the edges
only when the last vertex of the edge arrives. We will use the well-known greedy
algorithm FF (First Fit) to color the accepted vertices of the online (hyper)graphs.
FF uses the smallest color for each vertex which does not violate the rule of the
coloring. The online graph was first defined in [12], while the online hypergraph
was first defined in [1].

We evaluate the efficiency of the online algorithms by the competitive ratio (see
[5, 15]), where the online algorithm is compared to the optimal offline algorithm.
We say that an online algorithm is c-competitive if its cost is at most c times larger
than the optimal cost.
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Online graph coloring has been investigated in several studies, and one can find
many details on the problem in the survey paper [16]. Halldórson and Szegedy
in [13] showed that any online algorithm for graph coloring has a competitive ra-
tio of Ω(n/ log2 n). Some results are proved about algorithm FF. In [12] it is
shown that this algorithm is the best possible on trees. In [18], an online al-
gorithm is presented which colors k-colorable graphs on n vertices with at most
O(n log(2k−3) n/ log(2k−4) n) colors. The best known lower bound for the number
of online colors for k-colorable graph on n vertices Ω(logk−1 n) [21]. In [17] an
online algorithm is presented which colors k-colorable graphs on n vertices with at
most O(n1−1/k!) colors.

The term advice complexity for online algorithms was introduced by the authors
of [10]. The major question is the following: How many bits of advice are necessary
and sufficient to obtain a competitive ratio c? This includes determining the number
of bits to be optimal. The results of the following two sections are in the tape model
which was introduced in [7]. In this model, the online algorithm may read an infinite
advice tape written by the oracle and the advice complexity is simply the number
of bits read. For more information about advice complexity, see the survey paper
[6].

Mikkelsen showed in [19] that an O(n1−ε)-competitive online vertex-coloring
algorithm must read Ω(n log n) bits of advice.

Forǐsek et al showed in [11] that dn/2e − 1 bits of advice are needed to color
optimally any online paths on n vertices, and this bound is tight.

Bianchi et al proved in [4] the following theorems for bipartite graphs.

Theorem 1 ([4]). Any deterministic online algorithm needs at least n − 3 bits of
advice to color optimally every bipartite online graph on n vertices.

Theorem 2 ([4]). There exists an online algorithm which uses at most n− 2 bits
of advice to color optimally every bipartite online graph on n vertices if n > 2.

The advice complexity of 3-colorable graphs, 3-colorable chordal graphs and
maximal outerplanar graphs were investigated in [20].

In the next section, we will improve this lower bound in Theorem 1 and provide a
tight bound for the number of bits of advice for coloring bipartite graphs optimally.
In section 3, we include the results on the advice complexity of proper and conflict-
free coloring of two-colorable hypergraphs in the tape model. Then the last section,
we will discuss the models of helper mode and answerer mode suggested by [10].

2 Bipartite graphs

In this section, we shall prove that n − 2 bits of advice are neccessary to color
bipartite graphs on n vertices optimally. This result is tight because of Theorem 2.

The following observation will be useful.

Observation 3. Suppose that G< and H< are two bipartite online graphs such that
Gi = Hi = (Vi, ∅) for some i > 0 and a deterministic online algorithm A colors



On the Advice Complexity of Coloring Bipartite Graphs . . . 931

optimally both of them, and it uses advice word wG to color Gi and a different
advice word wH to color Hi. Then wG is not the prefix of wH and vice versa.

Theorem 4. Any deterministic online algorithm needs at least n− 2 bits of advice
to color every bipartite online graph on n vertices optimally.

Proof. For a contradiction, assume that there exists a deterministic online algo-
rithm A that colors optimally every bipartite graph G on at least 3 vertices using
at most |V (G)| − 3 bits of advice. Next, consider the class of G of the following
online graphs and set m > 0. For each w ∈ {0, 1}m, define G<w in the following way.
If w consists of m 1s, then the set of the vertices of Gw = G1 is V = {v1, . . . , vm+2}
and the set of the edges is E = {vivm+2 | 1 ≤ i ≤ m + 1}. Otherwise, the set of
the vertices is

V = U0 ∪ U1 ∪ {vm+2, vm+3},

where

• ui = vi+1 ∈ U0 if 1 ≤ i ≤ m and the ith bit of w is 0,

• v1 ∈ U1, and ui = vi+1 ∈ U1 if 1 ≤ i ≤ m and the ith bit of w is 1.

Observe that now U0 6= ∅ and U1 6= ∅.
The set of the edges is E = E0 ∪E1 ∪{vm+2vm+3}, where Ei = {uvm+i+2 | u ∈

Ui}.
Next, consider the set of the advice words used for the coloring of the first m+1

vertices of the elements of G by A and denote it by S. Observe that if s, s′ ∈ S
advice words used for coloring v1, . . . , vm+1 then s 6= s′, moreover s is not the prefix
of s′, and vice versa, because these vertices form an independent set in each graph
in G and A is deterministic. Also, it is easy to see that |S| have to be 2m, and the
length of each element of S is at most m and there is at least one s ∈ S, the advice
word for G1, with length less than m because of the initial assumption. But this
is a contradiction by Observation 3 and the pigeonhole principle.

3 2-colorable hypergraphs

A coloring of a hypergraph is an assignment of positive integers to the vertices of the
hypergraph such that every edge satisfy some property. We consider two different
versions of coloring. In proper hypergraph coloring each edge must contain vertices
that have different colors. In conflict free (we will use the abbreviation cf) coloring
each edge must contain a unique vertex which has a color different from the other
vertices of the edge.

The online proper coloring of hypergraphs first was studied in [14], where it
was proven that no online algorithm exists for 2-colorable k-uniform hypergraphs
which can color them with fewer than dn/(k − 1)e colors, and it was proved that
algorithm FF colors these hypergraphs with this many colors.

The online cf-coloring of hypergraph was defined in [8], where the authors ex-
amined the case where the input is a set of n points on the line, and R is the set
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of the intervals of the line. They presented an algorithm which applies at most
O(log2(n)) colors and they also proved a matching lower bound. The online cf-
coloring of intervals was further studied in [2], where several coloring models were
defined and compared. The online cf-coloring of other more general hypergraphs
were studied in [3] and [9].

Now, we will present some results on k-uniform hypergraphs where k > 2 inte-
ger.

We need the definition of ∨-repeatable problem from [19].

Definition 1 ([19]). Let P be an online minimization problem such that for every
fixed P-input, there is only a finite number of valid outputs.

Let r ∈ N. For each 1 ≤ i ≤ r, let Ii be a finite set of P-inputs such that the
followig holds: If σ1, . . . , σr are such that σi ∈ Ii for 1 ≤ i ≤ r, then σ = σ1 . . . σr,
where σ obtained by concatenating the requests of the r inputs, is a valid P-input
and let Ir = I1 × . . .× Ir = {σ1 . . . σr|σi ∈ Ii, 1 ≤ i ≤ r}.

For each 1 ≤ i ≤ r, let costi be a function which maps an output γ for an input
σ ∈ Ir to a non-negative real number costi(γ, σ). We say that costi is the ith round
cost function.

Let I be the set of all possible request sequence for P. Define P∗∨ to be the online
problem with input I∗ = {σ = (σ1 . . . σr)|r ≥ 1, σi ∈ I}. An algorithm for P∗∨ must
produce an output γ∗ = (γ1, . . . , γr) where γi = (yi, . . . , yni) is a valid sequence of
answers for the P-input σi = (x1, . . . , xni

) ∈ I. The cost of the output γ∗ is cost
(γ∗, σ∗) = max{costP(γ1, σ1), . . . , costP(γr, σr)} where costP(γi, σi) is the cost of
the P-output γi with respect to the P-input σi.

The optimal offline algorithm for P∗∨ is denoted by OPT∗∨.
Let k ≥ 0. We say that P is strictly ∨-repetable with parameter k if there exists

a mapping g : I∗ → I with the following properties:

V1 For every σ∗ ∈ I∗, |g(σ∗)| ≤ |σ∗|+ k · r, where r is the number of rounds in
σ∗.

V2 For every deterministic P-algorithm ALG, there is a deterministic
P∗∨-algorithm ALG∗ such that for every σ∗ ∈ I∗ ALG∗(σ∗) ≤ ALG(g(σ∗)).

V3 For every σ∗ ∈ I∗, OPT∗(σ∗) ≤ OPT(g(σ∗)).

Theorem 5 ([19]). Let P be a strictly ∨-repeatable online problem and let I =
{σ1, . . . , σm} be a finite set of P-inputs. Furthermore, let t = maxσinI OPT(σ)
and ε > 0 be a constant. Suppose that for every deterministic P-algorithm without
advice, ALG, there exists some 1 ≤ i ≤ m such that ALG(σi) ≥ k. Then, for every
randomized P-algorithm, R, reading o(n) bits of advice, there exists a P-input σ
such that E(R(σ)) ≥ (1− ε)k and such that OPT(σ) ≤ t.

It is easy to see that our two-coloring problems are strictly ∨-repeatable, there-
fore the following corollary holds.

Corollary 1. No algorithm for the online proper hypergraph coloring or the cf-
coloring with o(n) bits of advice can achieve a constant competitive ratio.
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3.1 Proper coloring

Proposition 1. There exists an online algorithm which uses at most n− 2 bits of
advice to give an optimal proper coloring of every proper two-colorable k-uniform
online hypergraph on n vertices.

Proof. Consider a proper two-coloring of a proper two-colorable k-uniform hyper-
graph H< on n vertices. It is easy to see that the algorithm which colors the first
vertex with color 1, asks for a bit of advice for each of the remaining n− 2 vertices
corresponding the parity of its color, and it colors the last vertex by FF colors H<

optimally.

Theorem 6. Any online algorithm needs at least n − 2k bits of advice to give an
optimal proper coloring of every proper two-colorable k-uniform online hypergraph
on n vertices if k > 2.

Proof. Set k > 2 and n ≥ 2k. Using proof by contradiction, let us assume that
there exists an online algorithm A which uses 2 colors and fewer than n− 2k bits
of advice for the optimal proper coloring of every proper two-colorable k-uniform
hypergraph. Next, consider the class Hn of the following online hypergraphs on n
vertices. For each w ∈ {0, 1}n−2k, define H<

w ∈ Hn as the set of vertices

V = {v1} ∪ U ∪X ∪ Y,

where

• ui = vi+1 ∈ U for all 1 ≤ i ≤ n− 2k,

• xi = vn−2k+1+i ∈ X for all 1 ≤ i ≤ k,

• yi = vn−k+1+i ∈ Y for all 1 ≤ i ≤ k − 1;

moreover, the set of the edges is

E = E1 ∪ E2 ∪ E3

where

• E1 =

(
X ∪ Y ∪ {v1}

k

)
− {X,Y ∪ {v1}},

• E2 = {{x1, . . . , xk−1, ui} | if the ith bit of w is 1},

• E3 = {{y1, . . . , yk−1, ui} | if the ith bit of w is 0}.

Without loss of generality, we shall assume that both A and the optimal algorithm
color v1 with color 1. It is easy to see that there is only one proper coloring the
subhypergraph induced by X ∪ Y by definition of E1: if x ∈ X then its color has
to be 2 and the color of the elements of Y have to be 1. Therefore if vi ∈ X, then
A has to color vi with 2 and if vi ∈ Y , then A has to color vi with 1; otherwise it



934 Judit Nagy-György

cannot give a proper coloring of the subhypergraph induced by {v1}∪X ∪Y . Here
from the definition of E2 and E3, the colors of vertices in U are determined by w.

Recall that A uses fewer then n−2k bits of advice. By definition |Hn| = 2n−2k,
so by the pigeonhole principle there are at least two hypergraphs in Hn such that A
cannot distinguish them when it knows only the subhypergraph induced by Vn−2k+1

because it does not contain any edge. But if H,H ′ ∈ Hn where H 6= H ′, then the
optimal colorings of their first n−2k+1 vertices are different, therefore if the advice
words are the same for both of them, so A cannot give a proper two-coloring to
both of them.

3.2 Conflict-free coloring

First note that the problem of proper coloring and the problem of cf-coloring are
equivalent on 3-uniform hypergraphs.

Theorem 7. There exists an online algorithm which uses at most n − 2 bits of
advice to give an optimal cf-coloring of every two-cf-colorable k-uniform online
hypergraph on n ≥ 3 vertices if k > 3.

Proof. Consider a two-cf-coloring of a two-cf-colorable k-uniform hypergraph H<

on n vertices. The last vertex of an edge will be called the closing vertex of the edge.
Observe that if the currently appeared vertex is closing, then its color is obvious for
an algorithm which knows the colors of the previous vertices. So whenever there is
at most one closing vertex in the input, FF colors it optimally without any bit of
advice. Therefore the following algorithm uses at most n− 2 bits af advice and the
coloring produced by it is optimal:

• Color the first vertex by FF.

• Then ask for one bit of advice. If it is 0 then use FF to color the remainig
vertices. If it is 1 then ask for a bit of advice for every non-closing vertex and
use the color whose parity is equal to this bit.

• Color any closing vertex by FF.

Intuitively, the ith advice bit indicates the color of the (i+1)th vertex which does
not apperar as a closing vertex, if FF is not optimal.

The following observation will be useful.

Observation 8. Let k > 3 and H a two-cf-colored k-uniform hypergraph. If we
change the color of exactly one vertex in any edge, the result will not be a two-cf-
coloring.

Corollary 2. Let k > 3 and H be a two-cf-colored k-uniform hypergraph,
{u1, . . . , uk−1, uk} and {u1, . . . , uk−1, u′k} be two edges of H with k − 1 common
vertices. The colors of uk and u′k will be equal.
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Theorem 9. Any online algorithm needs at least n−2 bits of advice to give an opti-
mal cf-coloring of every two-cf-colorable k-uniform online hypergraph on n vertices
if k > 3.

Proof. Using proof by contradiction, let us assume that there exists an algorithm A
which uses 2 colors and fewer than |V (H)|−2 bits of advice for teh proper coloring
of every proper two-colorable k-uniform hypergraph H. Set m ≥ 2k−2 and consider
the class of Hm of the following online hypergraphs. For each w ∈ {0, 1}m, define
H<
w in the following way. If w consists of m 1s, then the set of the vertices of

Hw = H1 is V = {v1, . . . , vm+2} and the set of edges is E = {vm+2 ∪ U | U ∈({v1,...,vm+1}
k−1

)
}. By Corollary 2 it is easy to see that the color of vi must be 1 if

1 ≤ i ≤ m+ 1.
If w 6= 1 the set of the vertices of Hw is

V = U0 ∪ U1 ∪ {vn−1, vn},

where

• ui = vi+1 ∈ U0 if 1 ≤ i ≤ m and the ith bit of w is 0,

• v1 ∈ U1, and ui = vi+1 ∈ U1 if 1 ≤ i ≤ m and the ith bit of w is 1.

The set of the edges is

E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6

where

• E1 = {{vn−1} ∪X | X ∈
(
U1

k−1
)
},

• E2 = {{vn−1, y} ∪ Y | y ∈ U1, X ∈
(
U0

k−2
)
},

• E3 = {{vn} ∪X | X ∈
(
U0

k−1
)
},

• E4 = {{vn, y} ∪X | y ∈ U0, X ∈
(
U1

k−2
)
},

• E5 = {{vn−1, vn} ∪X | X ∈
(
U1

k−2
)
},

• E6 = {{vn−1, vn} ∪X | X ∈
(
U0

k−2
)
},

Without loss of generality, we shall assume that both A and the optimal algorithm
color v1 with color 1. The aim is to show that there is only one two-cf-coloring of
Hw. Note that if n ≥ 2k, then either E1 is not empty or E2 and E3 are not empty
because |U0|+ |U1| ≥ 2k − 1. Moreover, if |U0| > 0 and E1 6= ∅, then E4 6= ∅.

For every u ∈ U1 there are edges e1, e2 ∈ E1 ∪ E2 such that the symmetric
difference of these edges e1 M e2 = {v1, u}. Thus the color of u must be 1, by
Corollary 2.

For every u, u′ ∈ U0 there are edges e1, e2 ∈ E3 ∪ E4 such that the e1 M e2 =
{u, u′}. Therefore the colors of u and u′ must be the same, by Corollary 2.
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Therefore the colors of vn−1 and vn must be different, by the definition of E5

and E6 and Corollary 2 if n > 2k. Moreover, there are edges e1,∈ E1 ∪ E2 and
e2 ∈ E5 ∪ E6 such that e1 M e2 = {vn, u} for any u ∈ U1, so the color of vn must
be 1 by Corollary 2 and the color of vn−1 must be 2.

For every u ∈ U0 there are edges e1,∈ E3 ∪ E4 and e2 ∈ E5 ∪ E6 such that
e1 M e2 = {vn−1, u}, hence the colors of vn−1 and u must be the same. We find
that the colors of ui ∈ U1 ∪ U0 in Hw are determined by w.

Now consider the set of the advice words used for the coloring of the first m+ 1
vertices of the elements Hm by A and denote it by S. Observe that if s, s′ ∈ S
advice words are used for coloring v1, . . . , vm+1, then s 6= s′; moreover, s is not the
prefix of s′ and vice versa because these vertices form an independent set in each
hypergraph in Hm and A is deterministic. Also, it is easy to see that |S| have to
be 2m, the length of each element of S is at most m and there is at least one s ∈ S,
the advice word for H1, with length less then m because of the assumption. But
this is a contradiction by the pigeonhole principle.

4 Other models

The advice complexity was defined in [10]. The authors suggested two models,
namely the helper mode and the answerer mode. These models don’t use a tape. In
the helper mode, the online algorithm receives a number of advice bits, which could
be zero, prior to processing each request. The answerer mode is similar, except that
advice bits are only given when requested by the online algorithm in which case at
least one bit is given. In both of these models, fewer bits of advice are sufficient
than in the tape model.

Theorem 10. o(n) bits of advice is sufficient to color optimally bipartite graphs
/ proper coloring proper two-colorable hypergraphs / cf-coloring two-cf-colorable
hypergraphs on n vertices in the helper and the answerer mode.

Proof. Let Wm = {(w1, w2) | w1 ∈ {0, 1}m1 , w1 ∈ {0, 1}m2 ,m1 + m2 = m} and
W ′m = {w | w ∈ {0, 1}m·blog2(m−1)c}. There is an injective function h : W ′m →Wm

because |Wm| ≥ m log2(m− 1) and |W ′m| = m · blog2(m− 1)c.
Next, consider an optimal coloring of the input. Our algorithm is the following:

• First, the algorithm gets an advice word w1 and colors the first vertex by FF.

• After the algorithm gets an advice word w2 and then it colors the (i + 1)
vertex with a color such that the parity of it is equal to the parity of the ith
bit of h−1(w1, w2).

• The algorithm colors the remaining vertices using FF.

Intuitively, the ith bit of h−1(w1, w2) indicates the color of the (i+1)th vertex in
the optimal coloring, if FF is not optimal.

Clearly, m bits of advice are sufficient to color an input graph (hypergraph) on
m · blog2mc+ 2 vertices optimally.
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