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How Sufficient Conditions are Related for

Topology-Preserving Reductions

Kálmán Palágyia

Abstract

A crucial issue in digital topology is to ensure topology preservation for
reductions acting on binary pictures (i.e., operators that never change a white
point to black one). Some sufficient conditions for topology-preserving reduc-
tions have been proposed for pictures on the three possible regular partition-
ings of the plane (i.e., the triangular, the square, and the hexagonal grids).
In this paper, the relationships among these conditions are stated.

Keywords: digital topology, topology preservation, simple points, P -simple
sets, hereditarily simple sets, general-simple deletion rules

1 Introduction

A binary picture on a grid is a mapping that assigns a color of black or white to
each grid element called a point [15]. A regular partitioning of the 2D Euclidean
space is formed by a tessellation of regular polygons (i.e., polygons having equal
angles, and sides are all of the same length). There are exactly three polygons that
can form such regular tessellations, these being the equilateral triangle, the square,
and the regular hexagon [19] (see Figure 1). Although 2D digital pictures sampled
on the square grid are generally assumed, triangular and hexagonal grids have also
attracted significant interest [4, 15, 19, 20].

Figure 1: The three possible regular planar grids.
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A reduction transforms a binary picture only by changing some black points to
white ones, which is referred to as deletion [15]. Reductions play a key role in some
topological algorithms, e.g., thinning [5, 13, 15] and shrinking [6] algorithms.

Topology preservation is a major concern of reductions [13, 15]. In this paper,
five types of sufficient conditions for topology-preserving reductions acting on the
three possible regular planar grids are presented, and the relationships among these
conditions are revealed.

2 Basic Notions and Results

In this study, we apply the fundamental concepts of digital topology as reviewed by
Kong and Rosenfeld [15]. Despite the fact that there are other approaches based on
cellular/cubical complexes [16], here we shall consider the ‘conventional paradigm’
of digital topology.

2.1 Binary Digital Pictures

Let us denote the triangular, the square, and the hexagonal grids by T , Z2, and
H, respectively, and throughout this article, if we will use the notation V, we will
mean that V belongs to {T ,Z2,H}. The elements of the given grids (i.e., regular
polygons) are called points. Two points are 1-adjacent if they share an edge and
they are 2-adjacent if they share an edge or a vertex (see Fig. 2). Note that both
relations are reflexive and symmetric. Now let us denote the set of points being
j-adjacent to a point p in the grid V by NVj (p), and let N∗Vj (p) = NVj (p) \ {p} (j =

1, 2). It is obvious that NT1 (p) ⊂ NT2 (p), NZ2

1 (p) ⊂ NZ2

2 (p), and NH1 (p) = NH2 (p).
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Figure 2: The adjacency relations studied on the three possible regular planar grids.
Points that are 1-adjacent to the central point p are marked ‘•’, while points that
are 2-adjacent but not 1-adjacent to p are denoted by ‘◦’.

A sequence of distinct points 〈p0, p1, . . . , pm〉 is called a j-path from p0 to pm43

in a non-empty set of points X if each point of the sequence is in X and pi is44

j-adjacent to pi−1 for each i = 1, 2, . . . ,m (j = 1, 2). Two points are said to be45

j-connected in a set X if there is a j-path in X between them. A set of points X46

is j-connected in the set of points Y ⊇ X if any two points in X are j-connected47

in Y . A j-component of a set of points X is a maximal (with respect to inclusion)48

j-connected subset of X .49
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are 2-adjacent but not 1-adjacent to p are denoted by ‘◦’.

A sequence of distinct points 〈p0, p1, . . . , pm〉 is called a j-path from p0 to pm
in a non-empty set of points X if each point of the sequence is in X and pi is
j-adjacent to pi−1 for each i = 1, 2, . . . ,m (j = 1, 2). Two points are said to be
j-connected in a set X if there is a j-path in X between them. A set of points X
is j-connected in the set of points Y ⊇ X if any two points in X are j-connected
in Y . A j-component of a set of points X is a maximal (with respect to inclusion)
j-connected subset of X.

Let (k, k̄) be an ordered pair of adjacency relations. Throughout this article, it
is assumed that (k, k̄) belongs to {(1, 2), (2, 1)}. A (k, k̄) binary digital picture (or,
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in short picture) is a quadruple (V, k, k̄, B) [15], where set V contains all points of
the given grid, B ⊆ V denotes the set of black points, and each point in V \ B is
said to be a white point . A black component or object is a k-component of B, while
a white component is a k̄-component of V \B.

Here it is assumed that a picture contains finitely many black points. Conse-
quently there is a unique infinite white component, which is said to be the back-
ground . A finite white component is called a cavity in a picture.

A black point p is an interior point if all points in N∗V
k̄

(p) are black. A black

point p is said to be a border point if p is k̄-adjacent to at least one white point
(i.e., N∗V

k̄
(p) \ B 6= ∅). A border-point p is called an isolated point if all points in

N∗Vk (p) are white (i.e., {p} is a singleton object).

2.2 Topology Preservation

A reduction in a 2D picture is topology-preserving if each object in the input picture
contains exactly one object in the output picture, and each white component in the
output picture contains exactly one white component in the input picture [15]. In
other words, a 2D reduction is topology-preserving if no object in the input picture
is split (into two or more) or completely deleted, no cavity in the input picture
is merged with the background or another cavity, and no cavity is created where
there was none in the input picture [13].

Figure 3 depicts a counter-example.
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Figure 3: A reduction for a (2, 1) picture on Z2 that is not topology-preserving.
Deletion of the point marked ‘a’ splits the larger object into two and the smaller
object is completely deleted by deleting the points marked ‘b’; deletion of the point
marked ‘c’ merges a cavity with the background; the remaining two cavities are
merged with each other by deleting the point ‘d’; deletion of the point marked ‘e’
creates a brand new cavity.
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Deletion of the point marked ‘a’ splits the larger object into two and the smaller
object is completely deleted by deleting the points marked ‘b’; deletion of the point
marked ‘c’ merges a cavity with the background; the remaining two cavities are
merged with each other by deleting the point ‘d’; deletion of the point marked ‘e’
creates a brand new cavity.

2.3 Simple Points

A black point is said to be simple in a picture if its deletion is a topology-preserving
reduction [13, 15]. In [15], Kong and Rosenfeld stated a characterization of simple
points only on the square grid. Later Kardos and Palágyi stated a ‘formal’ and two
kinds of ‘easily visualized’ characterizations of simple points in all the given five
types of pictures on the regular 2D grids (i.e., two for T , two for Z2, and one for
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H) [9, 10, 12]. The following theorem states our ‘formal’ necessary and sufficient
condition:

Theorem 2.1. [12] Let p be a black point in a picture (V, k, k̄, B). Then p is simple
if and only if the following conditions hold:

1. p is k-adjacent to exactly one k-component of N∗V2 (p) ∩B.

2. p is k̄-adjacent to exactly one k̄-component of NV2 (p) \B.

Theorem 2.1 shows that simplicity of a point p is a local property: it can be
decided by examining the set N∗V2 (p) containing just 12, 8, and 6 points for T , Z2,
and H, respectively. As a straightforward consequence of the above theorem we
note that if a black point is an isolated or interior point then it is not simple (i.e.,
some border points may be simple). Another immediate consequence of Theorem
2.1 is the following duality theorem:

Theorem 2.2. A black point p is simple in picture (V, k, k̄, B) if and only if p is
simple in picture (V, k̄, k, (V \B) ∪ {p}).

Figure 4a classifies the set of black points in a in a (2, 1) picture on Z2 into
(non-simple) interior points, non-simple border points, and simple (border) points.
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Figure 4: Classifying black points in a (2, 1) picture on Z2 (a). Notations: (non-
simple) interior points are marked ‘i’; non-simple border points are marked ‘n’;
simple (border) points are depicted in gray. An example of P -simple sets in the
same picture (b). Elements in that P -simple set are depicted in gray. Note that all
possible P -simple sets are subsets of simple points.

3 Sufficient Conditions for Topology-Preservation94

The deletion of a single point in a picture preserves the topology if and only if it is95

simple in that picture. However, reductions can delete one set of black points at a96
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3 Sufficient Conditions for Topology-Preservation

The deletion of a single point in a picture preserves the topology if and only if it is
simple in that picture. However, reductions can delete one set of black points at a
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time. Hence we need a precise definition of what is meant by topology preservation
when a number of points are deleted simultaneously.

Definition 3.1. [13, 17] Let B be the set of black points in an arbitrary picture. A
set of n points Q ⊂ B is a simple set for B if it is possible to arrange the elements
of Q in a sequence 〈q1, . . . , qn〉 such that q1 is a simple point for B and each qi
is simple after the set of points {q1, . . . , qi−1} is deleted (i = 2, . . . , n). Such a
sequence is called a simple sequence. (And let the empty set be called simple.)

Figure 5 gives examples of simple and non-simple sets of black points in a (2, 1)
picture on the grid Z2.

How Sufficient Conditions are Related for Topology-Preserving Reductions 5

time. Hence we need a precise definition of what is meant by topology preservation97

when a number of points are deleted simultaneously.98

Definition 3.1. [13, 17] Let B be the set of black points in an arbitrary picture. A99

set of n points Q ⊂ B is a simple set for B if it is possible to arrange the elements100

of Q in a sequence 〈q1, . . . , qn〉 such that q1 is a simple point for B and each qi101

is simple after the set of points {q1, . . . , qi−1} is deleted (i = 2, . . . , n). Such a102

sequence is called a simple sequence. (And let the empty set be called simple.)103

Figure 5 gives examples of simple and non-simple sets of black points in a (2, 1)104

picture on the grid Z2.105

h i j

e f g

c d

a b

Figure 5: Examples of simple and non-simple sets in the picture
(Z2, 2, 1, {a, . . . , j}). The set of black points {a, b, c, d} is simple as all the 12
sequences (of the possible 24 ones) 〈a, b, c, d〉, 〈a, b, d, c〉, 〈a, c, b, d〉, 〈a, d, b, c〉,
〈b, a, c, d〉, 〈b, a, d, c〉, 〈b, c, a, d〉, 〈b, d, a, c〉, 〈c, a, b, d〉, 〈c, b, a, d〉, 〈d, a, b, c〉, and
〈d, b, a, c〉 are simple. The set of black points {f, i} is non-simple as both sequences
〈f, i〉 and 〈i, f〉 are non-simple. (Note that all black points are simple in this picture.
Hence all the 10 singleton sets {a}, . . . , {j} are simple sets.)

There is general agreement that the concept of a simple set trivially implies a106
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〈f, i〉 and 〈i, f〉 are non-simple. (Note that all black points are simple in this picture.
Hence all the 10 singleton sets {a}, . . . , {j} are simple sets.)

There is general agreement that the concept of a simple set trivially implies a
sufficient condition for topology-preserving reductions:

Criterion 3.1. [13, 17, 33] A reduction is topology-preserving if, for all possible
pictures, it deletes only simple sets.

3.1 P -Simple Sets

Bertrand introduced the notion of a P -simple set , whose simultaneous deletion
preserves the topology:

Definition 3.2. [1] Let B be the set of black points in an arbitrary picture. A set
of black points Q ⊂ B is a P -simple set for B if for any point q ∈ Q and any set
of points R ⊆ Q \ {q}, q is simple for B \ R. Each element of a P -simple set is
called a P -simple point.

Figure 4b shows an example of P -simple sets in a (2, 1) picture on Z2.

Theorem 3.1. [1] A reduction that deletes a subset composed solely of P -simple
points is topology-preserving.
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Note that Bertrand and Couprie gave a local characterization of P -simple points
in (2, 1) pictures on Z2 [3]. Kardos and Palágyi presented both ‘formal’ characteri-
zation and ‘easily visualized’ sufficient and necessary conditions of P -simple points
in all the five given types of pictures [11].

3.2 Hereditarily Simple Sets

Kong reported an alternative solution to the problem by introducing the notion
of a hereditarily simple set , whose simultaneous deletion is proved to be topology-
preserving [13].

Definition 3.3. [13] Let B be the set of black points in an arbitrary picture. A set
of points Q ⊂ B is said to be hereditarily simple for B if all subsets of Q (including
Q itself) are simple sets in that picture.

Theorem 3.2. [13] A reduction that deletes only hereditarily simple sets is topol-
ogy-preserving.

3.3 Configuration-Based Condition

Ronse [33] and later Kong [13] gave a sufficient condition for topology-preserving
reductions acting on (2, 1) pictures on Z2. This condition concerns some configu-
rations of deleted points, hence it is referred to as a configuration-based condition.
Kardos and Palágyi formulated the following unified configuration-based sufficient
condition:

Definition 3.4. [8] An object in a picture (V, 2, 1, B) is small if it is composed
of two or more mutually 2-adjacent points, and it is not formed by two 1-adjacent
points.

Theorem 3.3. [8] For any picture (V, k, k̄, B), a reduction is topology-preserving
if all of the following conditions hold.

1. Only simple points for B are deleted.

2. For any two k̄-adjacent black points p, q ∈ B that are deleted, p is simple for
B\{q}.

3. If (k, k̄) = (2, 1), no small object is deleted completely.

3.4 Point-Based Conditions

Condition 2 of Theorem 3.3 takes pairs of k̄-adjacent deleted points into considera-
tion, and Condition 3 applies to small objects. Hence this theorem just provides a
method of verifying that a formerly constructed reduction preserves the topology,
rather than a methodology for constructing topology-preserving reductions. This
is why point-based conditions were proposed that directly provide deletion rules
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of topology-preserving reductions, and allow us to construct topology-preserving
thinning algorithms [21, 22].

Kardos and Palágyi proposed the following theorem that states the deletability
of individual points:

Theorem 3.4. [9, 10, 12] A reduction acting on (k, k̄) pictures on V is topology
preserving, if for any set of black points B and for any point p ∈ B that is deleted
by that reduction, the following conditions hold:

1. Point p is simple for B.

2. For any point q ∈ N∗V
k̄

(p) ∩ B that is simple for B, point p is simple for
B \ {q}.

3. For the (k, k̄) = (2, 1) case, p is not an element of a small object.

Conditions of Theorem 3.4 may be viewed as symmetric since elements in pairs
of k̄-adjacent points (see Condition 2) and points in small objects (see Condition
3) are not distinguished.

We examined some total orderings of elements in the given three regular planar
grids. Now let us assume the addressing schemes depicted in Fig. 6, which define
every point in Z2 and H by a pair of coordinates and the lexicographical order
relation ‘≺’ between two distinct points p = (px, py) and q = (qx, qy) is defined as
follows: p ≺ q ⇔ (py < qy) ∨ ((py = qy) ∧ (px < qx)). Let Q be a finite set
of points. Then, point p ∈ Q is said to be the smallest element of Q if for any
q ∈ Q \ {p}, p ≺ q.
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of points. Then, point p ∈ Q is said to be the smallest element of Q if for any173

q ∈ Q \ {p}, p ≺ q.174
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Figure 6: Feasible addressing schemes for the grids Z2 and H. Each point q in
N∗Z2

2 (p) and N∗H
2 (p) such that p ≺ q is depicted in gray, where p is the central

point with coordinates (0, 0).

With the help of the proposed ordering, Kardos and Palágyi gave the following175

asymmetric point-based condition for topology-preserving reductions:176

Theorem 3.5. [9, 10, 31] A reduction acting on (k, k̄) pictures on V is topology177

preserving, if for any set of black points B and for any point p ∈ B that is deleted178

by that reduction the following conditions hold:179

1. Point p is simple for B.180

Figure 6: Feasible addressing schemes for the grids Z2 and H. Each point q in
N∗Z

2

2 (p) and N∗H2 (p) such that p ≺ q is depicted in gray, where p is the central
point with coordinates (0, 0).

With the help of the proposed ordering, Kardos and Palágyi gave the following
asymmetric point-based condition for topology-preserving reductions:

Theorem 3.5. [9, 10, 31] A reduction acting on (k, k̄) pictures on V is topology
preserving, if for any set of black points B and for any point p ∈ B that is deleted
by that reduction the following conditions hold:

1. Point p is simple for B.
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2. For any point q ∈ N∗V
k̄

(p) ∩ B that is simple for B and p ≺ q, point p is
simple for B \ {q}.

3. For the (k, k̄) = (2, 1) case, p is not the smallest element of a small object.

Note that Kardos and Palágyi marked the smaller point in the possible pairs of
k̄-adjacent points, and the smallest point in the possible small objects on T [10].
Therefore relation ‘≺’ on the triangular grid has also been defined.

Our symmetric and asymmetric point-based sufficient conditions (see theorems
3.4 and 3.5) allow us to derive the following reductions:

Definition 3.5. Let R
V,(k,k̄)
symm be the reduction acting on (k, k̄) pictures on V that

deletes all points satisfying all conditions of Theorem 3.4.

Definition 3.6. Let R
V,(k,k̄)
asymm be the reduction acting on (k, k̄) pictures on V that

deletes all points satisfying all conditions of Theorem 3.5.

Note that all the five pairs of the derived reductions are evidently topology-
preserving. Figure 7 gives an example of the pair of reductions acting on the
hexagonal grid.

Figure 7: The original picture on the hexagonal grid H (left) and the results

produced by the two point-based reductions R
H,(1,2)
symm = R

H,(2,1)
symm (middle) and

R
H,(1,2)
asymm = R

H,(2,1)
asymm (right). Deleted pixels are depicted in gray.

3.5 General-Simple Deletion Rules

Each sufficient condition for topology-preserving reductions reported here checks
some configurations of deleted points or individual deleted points. The author
proposed a novel condition that considers the deletion rules of reductions [23, 25, 27]
that specify the points to be deleted.

Parallel reductions can change a set of black points simultaneously, while se-
quential reductions traverse the black points of a picture, and focus on the actually
visited single point for possible deletion. These two absolutely dissimilar strategies
are illustrated in algorithms 1 and 2.

Thinning algorithms generally classify the set of black points in input pictures
into two (disjoint) subsets. That is, the deletion rule associated with a phase
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Algorithm 1: parallel reduction

Input: set of black points B,
constraint set C(B), and
deletion rule R

Output: set of black points PB
X = B \ C(B) // selecting interesting points
D = { p | p∈X and R(p,B,C(B))=true } // determining deletable points
PB = B \D // deletion

Algorithm 2: sequential reduction

Input: set of black points B,
constraint set C(B),
permutation (total ordering) Π of elements in B \ C(B)
deletion rule R

Output: set of black points SB
X = B \ C(B) // selecting interesting points
SB = B // setting initial black points
foreach p ∈ X, traversal according to Π do

if T (p, SB,C(B)) = true then
SB = SB \ {p} // deletion

of an algorithm is evaluated for the elements of its set of interesting points, and
black points in its constraint set are not taken into consideration. This is why
algorithms 1 and 2 treat a constraint set C(B) ⊂ B (as an input parameter) and
its complementary X = B \ C(B) as a set of interesting points.

An interesting point p ∈ X is deletable by the deletion rule R, if R(p, Y, C(B)) =
true, where Y denotes the set of black points in the (actual) picture, i.e., Y = SB ⊆
B in sequential reductions (see Algorithm 2), and Y = B in the parallel case (see
Algorithm 1). Therefore, in the parallel case the initial picture is considered when
the deletion rule is evaluated. In contrast, the picture is dynamically altered when
a sequential reduction is performed. We should add that elements of the constraint
set C(B) are omitted when the deletion rule R is evaluated. For practical purposes,
we will deal with finite pictures (i.e., B contains finitely many points).

The sequential approach suffers from the drawback that different visiting orders
of interesting points may yield different results. A deletion rule R is said to be order-
independent if the result of Algorithm 2 is uniquely specified by R (i.e., the result
of Algorithm 2 does not depend on the order Π in which the points are selected by
the foreach loop) [7, 23, 32].

Two reductions are called equivalent if they produce the same result for each
input picture. A deletion rule is said to be equivalent if it yields a pair of equivalent
parallel and sequential reductions.

The support of a deletion rule R applied at a point is a minimal set of points
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whose values determine whether the investigated points are deleted by R from a
picture. Note that thinning and shrinking algorithms use local supports with ‘small’
diameters. Let us denote the support of the deletion rule R with respect to a point
p by SR(p). (Generally N∗V2 (p) ⊆ SR(p) ⊆ ⋃q∈NV

2 (p) N
V
2 (q) \ {p}.) It is easy to see

that R(p, Y, C(B)) = R(p, Y ∩ SR(p), C(B) ∩ SR(p)).
The author introduced two special classes of deletion rules. These are:

Definition 3.7. [25] Let R be a deletion rule, let B be a set of black points in a
picture, let p ∈ B \ C(B) be an interesting point with respect to the constraint set
C(B) ⊂ B, and let us assume that R(p,B,C(B)) = true (i.e., p can be deleted
by R). Then R is general if R(q,B,C(B)) = R(q,B \ {p}, C(B)) for any point
q ∈ B \ C(B).

In other words, a deletion rule is general if the deletability of any point does
not depend on the ‘color’ of any deletable point. It is obvious that a method of
verifying that a deletion rule R is general may ignore each point q 6∈ SR(p).

Definition 3.8. [25] A deletion rule is general-simple if it is general, and it deletes
only simple points.

The following theorems summarize the author’s most important results con-
cerning general and general-simple deletion rules:

Theorem 3.6. [25] A deletion rule R is order-independent if and only if R is
general.

Theorem 3.7. [25] A deletion rule R is equivalent if R is general.

Theorem 3.8. [25] A (sequential or parallel) reduction is topology-preserving if its
deletion rule is general-simple.

Theorem 3.8 is an exceptional, sufficient condition for topology-preserving re-
ductions. In addition, with the help of general-simple deletion rules some sequen-
tial thinning algorithms can be directly implemented for parallel computers, and
conversely, some parallel algorithms can be readily implemented on conventional
sequential computers.

In [24], the author proved that the deletion rule of the 2D fully parallel thinning
algorithm proposed by Manzanera et al. [18] is general-simple, and Palágyi, Németh,
and Kardos gave a pair of equivalent 2D sequential and parallel subiteration-
based thinning algorithms [28]. Palágyi, Németh, and Kardos proposed four pairs
of equivalent sequential and parallel subiteration-based 3D surface-thinning algo-
rithms [26], and Palágyi and Németh gave a pair of equivalent sequential and fully
parallel 3D surface-thinning algorithms [30].

4 Relationships

Next, the relationships among the given five types of sufficient conditions are pre-
sented.
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4.1 Deletion of Hereditarily Simple Sets and Deletion of P -
Simple Sets

In [14], Kong and Gau proved that the two kinds of sufficient conditions for
topology-preserving reductions based on P -simple sets (i.e., Theorem 3.1) and
hereditarily simple sets (i.e., Theorem 3.2) are equivalent. We will state this as
a theorem:

Theorem 4.1. [14] A set of black points in a picture is hereditarily simple if and
only if it is a P -simple set in that picture.

4.2 Configuration-Based and Point-Based Sufficient Condi-
tions

Let us now state the relationship between the point-based and the configuration-
based conditions:

Theorem 4.2. If a reduction satisfies a point-based condition (see theorems 3.4 or
3.5), it satisfies the configuration-based condition (see Theorem 3.3) as well.

Proof. It can readily be seen that if a parallel reduction satisfies Condition i of
Theorem 3.4 (i.e., the symmetric point-based result), Condition i of Theorem 3.3
(i.e., the configuration-based result) holds for each i ∈ {1, 2, 3}.

Similarly, it is clear that if a parallel reduction satisfies Condition i of Theorem
3.5 (i.e., the asymmetric point-based result), Condition i of Theorem 3.3 (i.e., the
configuration-based result) holds for each i ∈ {1, 2, 3}.

4.3 Configuration-Based Sufficient Conditions and Deletion
of P -Simple Sets

Palágyi and Kardos proved the following theorem:

Theorem 4.3. [31] If a reduction acting on (k, k̄) pictures on V deletes only P -
simple sets, all conditions of Theorem 3.3 (i.e., the configuration-based result) are
satisfied.

We can also prove the following theorem as well:

Theorem 4.4. [31] If a reduction acting on (k, k̄) pictures on V satisfies all con-
ditions of Theorem 3.3, it deletes only P -simple sets.

In [31], we reported the proof of Theorem 4.4 for (1, 2) pictures on Z2. Here, it
is carried out for the hexagonal case.

By Theorem 2.1, it can readily be seen that black simple points in (1, 2) = (2, 1)
pictures on H are characterized by the matching templates depicted in Fig. 8.

Since the simplicity of a point is a local property by Theorem 2.1, the following
proposition holds:
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Figure 8: The five base matching templates for characterizing a black simple point
p in (1, 2) = (2, 1) pictures on H. Note that all the rotated and reflected versions
of the base matching templates also match simple points.

In [31], we reported the proof of Theorem 4.4 for (1, 2) pictures on Z2. Here, it297

is carried out for the hexagonal case.298

By Theorem 2.1, it can readily be seen that black simple points in (1, 2) = (2, 1)299

pictures on H are characterized by the matching templates depicted in Fig. 8.300

Since the simplicity of a point is a local property by Theorem 2.1, the following301

proposition holds:302

Proposition 4.1. Let Q ⊂ B be a set of points in a picture (V , k, k̄, B). A point303

q ∈ Q is a P -simple point for Q if for any set of points R ⊆ N∗V
2 (q) ∩ Q, q is304

simple for B \R.305

Theorem 4.5. If a parallel reduction obeys all the conditions of Theorem 3.3 (i.e.,306

the configuration-based result), and it deletes the set of points Q ⊂ B from picture307

(H, 1, 2, B) = (H, 2, 1, B), then Q is a P -simple set.308

Proof. Let p ∈ Q. Since Condition 1 of Theorem 3.3 holds, p is simple for B.309

Without loss of generality, we will just consider the five base matching templates310

shown in Fig. 8.311

By Proposition 4.1, the following cases are to be investigated with the help of312

the configurations shown in Fig. 9:313

(a) If p is matched by the template in Fig. 8a, then consider the configuration in314

Fig. 9a. In this case, only the black point q need be examined. Since p is a315

non-simple (isolated black) point in B \ {q}, by Condition 2 of Theorem 3.3,316

q 6∈ Q.317

(b) If p is matched by the template in Fig. 8b, then consider the configuration in318

Fig. 9b. Let us investigate the two black points q and r.319

– Assume that q ∈ Q and r 6∈ Q. Since p is matched by the template in320

Fig. 8a in B \ {q}, p remains simple after the deletion of q.321

– Assume that r ∈ Q and q 6∈ Q. Since p is matched by the template in322

Fig. 8a in B \ {r}, p remains simple after the deletion of r.323

– Assume that q ∈ Q and r ∈ Q. Since q is a simple point, and it remains324

simple after the deletion of r, by Condition 2 of Theorem 2.1, all points325

Figure 8: The five base matching templates for characterizing a black simple point
p in (1, 2) = (2, 1) pictures on H. Note that all the rotated and reflected versions
of the base matching templates also match simple points.

Proposition 4.1. Let Q ⊂ B be a set of points in a picture (V, k, k̄, B). A point
q ∈ Q is a P -simple point for Q if for any set of points R ⊆ N∗V2 (q) ∩ Q, q is
simple for B \R.

Theorem 4.5. If a parallel reduction obeys all the conditions of Theorem 3.3 (i.e.,
the configuration-based result), and it deletes the set of points Q ⊂ B from picture
(H, 1, 2, B) = (H, 2, 1, B), then Q is a P -simple set.

Proof. Let p ∈ Q. Since Condition 1 of Theorem 3.3 holds, p is simple for B.
Without loss of generality, we will just consider the five base matching templates
shown in Fig. 8.

By Proposition 4.1, the following cases are to be investigated with the help of
the configurations shown in Fig. 9:

(a) If p is matched by the template in Fig. 8a, then consider the configuration in
Fig. 9a. In this case, only the black point q need be examined. Since p is a
non-simple (isolated black) point in B \ {q}, by Condition 2 of Theorem 3.3,
q 6∈ Q.

(b) If p is matched by the template in Fig. 8b, then consider the configuration in
Fig. 9b. Let us investigate the two black points q and r.

– Assume that q ∈ Q and r 6∈ Q. Since p is matched by the template in
Fig. 8a in B \ {q}, p remains simple after the deletion of q.

– Assume that r ∈ Q and q 6∈ Q. Since p is matched by the template in
Fig. 8a in B \ {r}, p remains simple after the deletion of r.

– Assume that q ∈ Q and r ∈ Q. Since q is a simple point, and it remains
simple after the deletion of r, by Condition 2 of Theorem 2.1, all points
in {c, d, e} are white. Since r is a simple point, and it remains simple
after the deletion of q, by Condition 2 of Theorem 2.1, all points in
{a, b, c} are white. Since {p, q, r} is a small object, by Condition 3 of
Theorem 3.3, we arrive at a contradiction.

(c) If p is matched by the template in Fig. 8c, then consider the configuration in
Fig. 9c. It can readily be seen that p is not simple for B \ {r}. Hence, by
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Condition 2 of Theorem 3.3, r 6∈ Q. Now let us examine the remaining two
black points q and s.

– Assume that q ∈ Q and s 6∈ Q. Since p is matched by the template in
Fig. 8b in B \ {q}, p remains simple after the deletion of q.

– Assume that s ∈ Q and q 6∈ Q. Since p is matched by the template in
Fig. 8b in B \ {s}, p remains simple after the deletion of s.

– Assume that q ∈ Q and s ∈ Q. Since p is matched by the template in
Fig. 8a in B \ {q, s}, p remains simple after the deletion of {q, s}.

(d) If p is matched by the template in Fig. 8d, then consider the configuration in
Fig. 9d. It can readily be seen that p is not simple for B \ {r} and B \ {s}.
Hence, by Condition 2 of Theorem 3.3, r 6∈ Q and s 6∈ Q. Now let us examine
the remaining two black points q and t.

– Assume that q ∈ Q and t 6∈ Q. Since p is matched by the template in
Fig. 8c in B \ {q}, p remains simple after the deletion of q.

– Assume that t ∈ Q and q 6∈ Q. Since p is matched by the template in
Fig. 8c in B \ {t}, p remains simple after the deletion of t.

– Assume that q ∈ Q and t ∈ Q. Since p is matched by the template in
Fig. 8b in B \ {q, t}, p remains simple after the deletion of {q, t}.

(e) If p is matched by the template in Fig. 8e, then consider the configuration in
Fig. 9e. It can readily be seen that p is not simple for B \ {r}, B \ {s}, and
B \ {t}. Hence, by Condition 2 of Theorem 3.3, r 6∈ Q, s 6∈ Q, and t 6∈ Q.
Now let us examine the remaining two black points q and u.

– Assume that q ∈ Q and u 6∈ Q. Since p is matched by the template in
Fig. 8d in B \ {q}, p remains simple after the deletion of q.

– Assume that u ∈ Q and q 6∈ Q. Since p is matched by the template in
Fig. 8d in B \ {u}, p remains simple after the deletion of u.

– Assume that q ∈ Q and u ∈ Q. Since p is matched by the template in
Fig. 8c in B \ {q, u}, p remains simple after the deletion of {q, u}.

Since p remains simple after the deletion of each subset of Q, p is a P -simple point
for Q.

In [2], Bertrand proposed a two-step (topology-preserving) thinning scheme that
is based on P -simple points. One phase/reduction of the iterative thinning process
is performed as follows:

1. A set of points Q ⊂ B is (somehow) chosen and labeled.

2. All P -simple points in Q are deleted (simultaneously).
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Figure 9: Configurations associated with Theorem 4.5 concerning (1, 2) = (2, 1)
pictures on H.

1. A set of points Q ⊂ B is (somehow) chosen and labeled.365

2. All P -simple points in Q are deleted (simultaneously).366

Note that Step 2 concerns tricolor pictures (say: the value ‘0’ corresponds to367

white points, the value ‘1’ is assigned to (black) points in B \ Q, and value ‘2’368

corresponds to (black) points in Q). Hence this two-step scheme is both space- and369

time-consuming.370

Theorems 4.2 and 4.4 provide a single-step thinning scheme that deletes P -371

simple points as well. The deletion rule of a reduction of the iterative thinning pro-372

cess can be directly constructed by combining the reduction R
V,(k,k̄)
symm (see Definition373

3.5) or R
V,(k,k̄)
asymm (see Definition 3.6) with different thinning strategies (i.e., fully par-374

allel , subiteration-based , and subfield-based [5]) and various geometric constraints375

(say endpoints [5]). The generated deletion rule is a common Boolean function376

that is to be evaluated for the neighborhood of the points in question in binary377

(two-level) pictures. As this Boolean function can be stored in a pre-calculated378

look-up-table, the proposed single-step scheme can be implemented efficiently.379

4.4 Deletion of P -Simple Sets and General-Simple Deletion380

Rules381

Let us consider some important properties of P -simple sets and general-simple382

deletion rules:383

Proposition 4.2. Let B be the set of black points in an arbitrary picture, and let384

p be an arbitrary point in a P -simple set Q for B. Then p is simple for B.385

Proof. Since ∅ ⊂ Q, by Definition 3.2, p is simple for B \ ∅ = B.386

Proposition 4.3. Let B be the set of black points in an arbitrary picture, and let387

Q be a P -simple set for B. Then R is a P -simple set for B\(Q\R) for any R ⊂ Q.388

389

Figure 9: Configurations associated with Theorem 4.5 concerning (1, 2) = (2, 1)
pictures on H.

Note that Step 2 concerns tricolor pictures (say: the value ‘0’ corresponds to
white points, the value ‘1’ is assigned to (black) points in B \ Q, and value ‘2’
corresponds to (black) points in Q). Hence this two-step scheme is both space- and
time-consuming.

Theorems 4.2 and 4.4 provide a single-step thinning scheme that deletes P -
simple points as well. The deletion rule of a reduction of the iterative thinning pro-

cess can be directly constructed by combining the reduction R
V,(k,k̄)
symm (see Definition

3.5) or R
V,(k,k̄)
asymm (see Definition 3.6) with different thinning strategies (i.e., fully par-

allel , subiteration-based , and subfield-based [5]) and various geometric constraints
(say endpoints [5]). The generated deletion rule is a common Boolean function
that is to be evaluated for the neighborhood of the points in question in binary
(two-level) pictures. As this Boolean function can be stored in a pre-calculated
look-up-table, the proposed single-step scheme can be implemented efficiently.

4.4 Deletion of P -Simple Sets and General-Simple Deletion
Rules

Let us consider some important properties of P -simple sets and general-simple
deletion rules:

Proposition 4.2. Let B be the set of black points in an arbitrary picture, and let
p be an arbitrary point in a P -simple set Q for B. Then p is simple for B.

Proof. Since ∅ ⊂ Q, by Definition 3.2, p is simple for B \ ∅ = B.

Proposition 4.3. Let B be the set of black points in an arbitrary picture, and let
Q be a P -simple set for B. Then R is a P -simple set for B\(Q\R) for any R ⊂ Q.

Proof. Consider a point r ∈ R and a set of points T ⊆ R \ {r}. Since r ∈ Q,
T∪(Q\R) ⊆ Q\{r}, and Q is a P -simple set for B, r is simple for B\(T∪(Q\R)) =
(B \ (Q \R)) \ T . Hence, R is a P -simple set for B \ (Q \R).
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Proposition 4.4. Any set of points Q ⊂ B is a P -simple set for B if and only if
all possible permutations of Q form simple sequences.

Proof. First, let Q ⊂ B be a P -simple set of n points, and consider the permu-
tation/sequence of its elements 〈q1, . . . , qn〉. Let us investigate the prefixes 〈q1〉,
〈q1, q2〉, . . . 〈q1, . . . , qn−1〉 of that sequence. By Proposition 4.2, point q1 is simple.
Since Q is a P -simple set, and {q1, . . . , qm−1} ⊆ Q \ {qm} for each m = 2, . . . , n,
point qm is simple for B \ {q1, . . . , qm−1}. Hence, 〈q1, . . . , qn〉 is a simple sequence.

Then let us assume that all possible permutations of a set Q ⊂ B form simple
sequences. Consider any point q ∈ Q and any set of n > 0 points R = {r1, . . . , rn}
such that R ⊆ Q\{q}. Since all prefixes of a simple sequence form simple sequences,
〈r1, . . . , rn, p〉 is also a simple sequence. Consequently, q is a simple point for B \R.
Thus Q is a P -simple set.

Proposition 4.5. If a deletion rule is general-simple, it is order-independent.

Proof. By Definition 3.8, each general-simple deletion rule is general. Since, by
Theorem 3.6, general deletion rules are order-independent, general-simple deletion
rules are also order-independent.

Proposition 4.6. A deletion rule is equivalent if it is general-simple.

Proof. It is actually a direct consequence of Definition 3.8 and Theorem 3.7.

Proposition 4.7. All permutations of the elements in the set of points deleted by
a (sequential or parallel) reduction with a general-simple deletion rule form simple
sequences.

Proof. Let R be a general-simple deletion rule, and consider the sequential reduc-
tion (see Algorithm 2) with R. By Theorem 3.6, Theorem 3.8, and Proposition
4.5, the sequential reduction with R is order-independent and topology-preserving.
Consequently, the result of Algorithm 2 does not depend on the order Π in which
the points in the set of interesting points X are selected in the foreach loop. Rule
R is equivalent, by Proposition 4.6, hence the parallel reduction (see Algorithm 1)
with R deletes the same set of n points D ⊆ X. Consider the arbitrary sequence of
elements in the set of n points 〈d1, d2, . . . , dn〉. Since R deletes only simple points,
d1 is simple, and dm is simple after the deletion of {d1, . . . , qm−1} (m = 2, . . . , n).
Thus 〈d1, d2, . . . , dn〉 is a simple sequence.

We can state the following theorem as an immediate consequence of propositions
4.4 and 4.7.

Theorem 4.6. Reductions with general-simple deletion rules delete P -simple sets.

Now we show that the contrary statement does not hold.

Theorem 4.7. The deletion rule of a reduction that deletes only P -simple sets
may not be general-simple.
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Now we show that the contrary statement does not hold.428

Theorem 4.7. The deletion rule of a reduction that deletes only P -simple sets429

may not be general-simple.430

Proof. Consider the plain deletion rule R that is given by two matching templates431

(see Fig. 10).432

⋆ ⋆

Figure 10: Matching templates associated with R working on (2, 1) pictures on
Z2. The new value of a black point depends on its 5× 5 neighborhood. A point is
deletable by R if at least one template matches it. Notations: the position indicated
by ‘⋆’ is the center of the template; each black element matches a black point; each
white element matches a white point; each gray element matches either a black or
a white point.

It can readily be seen that the parallel reduction with R obeys all the condi-433

tions of Theorem 3.3 (i.e., the configuration-based condition for topology-preserving434

reductions). By Theorem 4.4, this parallel reduction deletes only P -simple sets.435

It is obvious that the parallel reduction with R deletes both upper points of a436

kind of small objects (see Definition 3.4) composed of three points (and nothing437

else). In contrast, the sequential reduction with R can delete just one upper point438

that is visited first. Hence, this sequential reduction is not order-independent. Thus439

R is not general by Theorem 2.1, and it is not general-simple by Definition 3.8.440

Note that the author constructed a special deletion rule that deletes only P -441

simple points, and he proved that it is general-simple [29].442

Lastly, we state the following theorem:443

Theorem 4.8. For each P -simple set Q in a picture, there is a general-simple444

deletion rule that deletes Q from this picture.445

Proof. Let Q ⊂ B be a P -simple set for B. Consider the parallel sequential reduc-
tions (see algorithms 1 and 2) with the following deletion rule:

R(q, SB,B \Q) =

{
true if q is a P -simple point
false otherwise

,

where SB ⊆ B is the set of black points in the actual picture (that is initially equal446

to B), the constraint set C(B) is B \Q, and the set of interesting points X is Q.447

It is obvious that the parallel reduction with R deletes the P -simple set Q (and448

nothing else).449

Figure 10: Matching templates associated with R working on (2, 1) pictures on
Z2. The new value of a black point depends on its 5× 5 neighborhood. A point is
deletable by R if at least one template matches it. Notations: the position indicated
by ‘?’ is the center of the template; each black element matches a black point; each
white element matches a white point; each gray element matches either a black or
a white point.

Proof. Consider the plain deletion rule R that is given by two matching templates
(see Fig. 10).

It can readily be seen that the parallel reduction with R obeys all the condi-
tions of Theorem 3.3 (i.e., the configuration-based condition for topology-preserving
reductions). By Theorem 4.4, this parallel reduction deletes only P -simple sets.

It is obvious that the parallel reduction with R deletes both upper points of a
kind of small objects (see Definition 3.4) composed of three points (and nothing
else). In contrast, the sequential reduction with R can delete just one upper point
that is visited first. Hence, this sequential reduction is not order-independent. Thus
R is not general by Theorem 2.1, and it is not general-simple by Definition 3.8.

Note that the author constructed a special deletion rule that deletes only P -
simple points, and he proved that it is general-simple [29].

Lastly, we state the following theorem:

Theorem 4.8. For each P -simple set Q in a picture, there is a general-simple
deletion rule that deletes Q from this picture.

Proof. Let Q ⊂ B be a P -simple set for B. Consider the parallel and sequential
reductions (see algorithms 1 and 2) with the following deletion rule:

R(q, SB,B \Q) =

{
true if q is a P -simple point
false otherwise

,

where SB ⊆ B is the set of black points in the actual picture (that is initially equal
to B), the constraint set C(B) is B \Q, and the set of interesting points X is Q.

It is obvious that the parallel reduction with R deletes the P -simple set Q (and
nothing else).

To prove this theorem, it is necessary to show that R is general-simple. By
Proposition 4.2, R deletes only simple points. Hence the only thing we need to
verify is that deletion rule R is general.
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Consider a set of points D ⊆ Q, and two points p, q ∈ Q \D, and let us assume
that SB = B \D. Since Q ⊂ B is a P -simple set for B, by Proposition 4.3, both
points p and q are P -simple for SB, and q are P -simple for SB\{p}. Consequently,
R(p, SB,B \ Q) = true and R(q, SB,B \ Q) = R(q, SB \ {p}, B \ Q). Thus R is
general.

4.5 Summary of Relationships

Here, we summarize the relationships among the five types of sufficient conditions
for topology-preserving reductions with the help of Fig. 11. Note that three of
them (namely: deletion of P -simple sets, deletion of hereditarily simple sets, and
general-simple deletion rules) are absolutely universal, and the relationships among
them are valid for arbitrary pictures.

point-based
conditions

↓
configuration-based

conditions

m
deletion of

P -simple sets ⇔ deletion of
hereditarily simple sets

↑
general-simple
deletion rules

Figure 11: How the five kinds of sufficient conditions for topology-preserving re-
ductions are related.

The linkage between P -simple sets and hereditarily simple sets was established
by Kong and Gau [14], and the remaining relationships were discovered by Palágyi
and Kardos.

5 Conclusions

In this paper, five types of sufficient conditions for topology-preserving reductions
acting on the three possible regular planar grids are reported, and relationships
among these conditions were presented. These conditions are based on configu-
rations, individual deletable points, P -simple sets, hereditarily simple sets, and
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general-simple deletion rules. The given sufficient conditions are absolutely not au-
totelic, they provide methods of verifying that a reduction preserves the topology,
allow us to generate topology-preserving reductions, and they provide computa-
tionally efficient thinning algorithms.
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