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Benchmarking Graph Database Backends —
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Abstract

Knowledge bases often utilize graphs as logical model. RDF-based knowl-
edge bases (KB) are prime examples, as RDF (Resource Description Frame-
work) uses graph as logical model. Graph databases are an emerging breed of
NoSQL-type databases, offering graph operations to process and manipulate
data. Although there are specialized databases, the so-called triple stores,
for storing RDF data, graph databases can also be promising candidates for
storing knowledge. In this paper, we benchmark different graph database im-
plementations loaded with Wikidata, a real-life, large-scale knowledge base.
Graph databases come in all shapes and sizes, offer different APIs and graph
models. Hence we used a measurement system, that can abstract away the
API differences. For the modeling aspect, we made measurements with differ-
ent graph encodings previously suggested in the literature, in order to observe
the impact of the encoding aspect on the overall performance.
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1 Introduction

Representing knowledge as a graph seems to be a natural choice from several as-
pects. People even without any specialized technical or natural science knowledge
often organize concepts and relations between the concepts as nodes connected by
edges. Some knowledge representation techniques also embraced this abstraction:
RDF [21] represents metadata as a graph. Even the concept of knowledge graph
has been floating around in recent years, without a clear definition [23]. We use
this concept aligned with [26]: an RDF graph encoding a set of knowledge. A set
of standards and technologies are built around the RDF concept. The so-called
triple stores [15] emerged, a form of storage engines optimized to store a massive
amount of RDF-modelled data. SPARQL standard [27] was also introduced as a
query language to roam the RDF graphs.

In the DBMS world, graph as a data model is used since the dawn of database
systems. As the NoSQL movement gained traction and as problem spaces with
large-scale highly interconnected schemas—such as network simulation and social
networks—demanded, a new family of NoSQL databases emerged, replacing the
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key-value and the document concepts with graphs. The landscape of NoSQL graph
databases (GDBs) is in flux even today, with various graph models, e.g., property
graphs, hypergraphs, RDF graphs [42, 19], without standardized APIs, and even
without a clear definition of a native graph database [41]. In our research, we fo-
cused on GDBs offering property graph model through Apache Tinkerpop API [13],
a widespread property graph framework.

While connecting the dots above, storing knowledge represented as a graph in a
database specialized to store graphs also seems a natural choice. However, one has
to choose a graph database implementation first, that in turn determines the graph
model and the API. Another decisive aspect is the graph encoding method. The
RDF model gives a straightforward encoding for basic knowledge structures, how-
ever, there are different encoding models for reification [29], i.e., statements about
statements. Reification is extensively used in KBs with reference management,
where every statement should be backed up by external sources.

In order to help with these decisions, we selected a few graph database imple-
mentations and loaded with the same real-life, large-scale dataset, then queried
with the same set of queries randomly generated from predefined query patterns.
We run different measurements with different reification strategies. From the tim-
ing result of the query runs, we were able to construct the performance profile of
each database—encoding strategy combination.

Our research aims to determine the performance characteristics of utilizing
graph databases in various problem spaces. For the field of KBs, in the early phase,
we worked with an algorithm-generated graph. Our initial results [34] showed
counter-intuitive performance trends where more selective queries run slower than
queries with more unbound values. In [30] the authors also encountered similar
phenomena with a real-life dataset.

In this phase of our research, we also used Wikidata data, but we chose the
databases exclusively from the family of NoSQL graph databases.

In this paper, we review the most important results connected to the research
area. In Section Related Work, we present other’s work related to this paper: bench-
marks using Wikidata in which graph databases are involved and possible modeling
solutions to the problem of reification. In Section Background, we describe the rel-
evant part of the previous phase of the research: we give a short description of the
already existing measurement system and how it is used to measure the performance
of different DBMSs. After that, we give a detailed description of the measurement
process in Section Experimental Settings: we introduce the dataset we used in the
measurements, define the unified workflow of the benchmarking process, introduce
the investigated database implementations, reification models and query patterns,
and present the physical infrastructure on which the benchmarks were executed.
Then we describe and analyze the results we got from the measurements in the
Results section. Finally, we summarize our work, make some conclusions based on
the results and present some of our plans for further enhancements.
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2 Related Work

As performance is a key factor in the field of databases, several benchmarks have
been conducted on graph databases. These measurements usually differ in the
dataset used, in the query workloads, and in the benchmarked systems. In [32]
several GDBs were loaded with the same generated graph and evaluated using a
workload of loading, primitive graph operations, and traversals. Social networking
is one of the primary problem spaces for GDBs. In [20] Angles et al. generated
a synthetic graph with similar characteristics as a real-life social network, then
executed a workload typical to this problem space (common friends, path search,
etc.) on selected graph databases, triple stores, and relational engines. They have
found that graph databases are more scalable in compute intensive graph problems
than the concurrents.

The Linked Data Benchmark Council (LDBC)[9] is an independent authority
"responsible for specifying benchmarks |...] for software systems designed to man-
age graph and RDF data.” LDBC is continuously widening its benchmark port-
folio: it has a framework for graph analytic tasks (breadth-first search, page rank,
etc.)[31], social networking [24] and linked data (RDF)[33]. In [38] the authors
run the LDBC social network benchmark against graph databases, triple stores
and relational engines. They have found that more mature systems with heavily
optimized query execution pipelines have the advantage over the more innovative
newcomers—regardless of the database model type.

Meanwhile, the Linked Data community is looking for efficient storage solutions
for RDF data. The LDBC’s Semantic Publishing Benchmark [33] offers a measure-
ment specification for comparing the performance of RDF engines. Recently, Pan
et al.[39] surveyed the contemporary RDF benchmarks and management solutions.
Moreover, the authors run the benchmarks against distributed RDF systems. In
the end, they could not announce a clear winner, the performance depended heavily
on the type of the query workload.

One of the key aspects of the benchmark dataset, that whether is it synthetic or
real-life. Although synthetic datasets are trying to mimic some characteristics of a
real-life dataset, Duan et al.[22] pointed out that benchmark datasets are tend to
differ significantly in performance impacting metrics. In [35] Morsey et al. proposed
a benchmark dataset and workload based on a real-life knowledge base. They also
concluded that measurement results of a real-world dataset can be substantially
different from the results of a synthetic dataset.

In [29] Herndndez et al. compared the performance of several triple store
databases on the same reified KB dataset. Later, as a follow-up, also Hernandez
et al.[30] compared the performance of DBMS’s with different data models. They
evaluated databases from different families, including relational, graph, triplestore,
and used the publicly available and collaboratively edited knowledge base Wikidata
[21] as the dataset. Due to the diverse data models, they had to use various en-
coding strategies for different database implementations. In [34] we loaded several
graph databases with the same generated reified dataset, i.e., with an abstract, ar-
tificial knowledge base. As a natural next step, in the current phase of our research,
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we replaced the generated data with a real-life knowledge base.

3 Background

Modeling reification

The quasi-standardized way of reification was introduced in the early stages of the
RDF specification [12]. It introduces a special vocabulary and a new node for every
statement. The parts of the original statements are connected to this node with sep-
arate statements through to meta-predicates (rdf:subject, rdf:property, rdf:object)
of the special vocabulary. Then, the meta-statements can use the intermediate node
as the subject. We will be referring to this approach as standard reification. Stan-
dard reification is considered cumbersome and unnecessarily verbose. A somewhat
leaner approach is proposed by implementing n-ary relations over the RDF model
in [37]. Similarly, an intermediate node is introduced, connecting the object as well
as other claim metadata to the subject. Hartig et al.[28] introduced an extension
to the original RDF notation called RDF* by enabling using a whole statement
as the subject, resulting a much shorter and clearer notation (Figure 2). Other
reification modes like n-ary [25], singleton property [36] and named graph [29] were
also proposed in the literature.

Graph databases usually offer more elaborate graph models than the basic RDF
graph model. It seems promising that one can take advantage of these advanced
constructs throughout the modeling of the reification. In [30] the authors mapped
reified data to edge properties of the property graph model. At load time it worked,
but typical queries involved edge properties had such a poor support, that they
dropped this model. As a fallback, a form of standard reification model was imple-
mented.

Previous work

In [34], we created an easy-to-extend system for benchmarking graph DBMSs that
we enhanced in the next phase of the research. The framework can be structured
into several layers: the data source layer, the 1st conversion layer, the intermediate
representation layer, the 2nd conversion layer, and the concrete implementation
layer.

The data source layer is only responsible for providing the dataset for the mea-
surement system so that it can be any kind of information source, like a Wikidata
JSON dump or the output of a generator tool. As the experimental dataset is
quite large, the loading process can be done efficiently using the DBMSs’ bulk
loader tools. As every inspected importer tool has a different input format, we
defined an intermediate format so in case of n different input type and m different
DBMS, one had to implement only n+m converters instead of n*m, which is one
of the key factors in extensibility. The responsibility of the 1st conversion layer is
to convert the dataset from the data source layer to the defined intermediate for-
mat while the 2nd conversion layer is responsible for converting the intermediate
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format dataset to the format expected by the DBMS specific import tool. When
the dataset is loaded to a system, it goes into the concrete implementation layer.

For this infrastructure, we defined a unified measurement workflow in [34] for
every DBMS-model pair: (i) every data from previous measurement (if any) must
be deleted (ii) the source data must be converted to the intermediate format (iii)
the data in intermediate format must be converted to the concrete loader format
(iv) the dataset must be loaded into the DBMS (v) the queries must be converted
to the current language-reification model representation (vi) the queries must be
executed, measured and the results must be collected.

4 Experimental Setting

Dataset

As we wanted to compare our results with the ones in [30], we used the same Wiki-
data JSON dump from January 2016. This dataset holds a massive knowledge
base with 67 million statements. Wikidata highly encourages to back up the state-
ments with references, hence reification is used extensively. As of December 2018,
Wikidata holds 1.48 billion references for 654 million statements [18].

Workload

For the same comparability reasons, we similarly generated the so-called atomic-
lookup queries as in [30]. This simple query generation technique is based on the
atomic parts of a single reified statement: the three parts of the base statement,
with the property and the object of the metastatement. We generate a query by
for each statement part either fill it with a fixed value or define it as a variable to
project. As a result, we get 32 different query patterns. One of these patterns is
explained in Figure 1.

Reification models

Throughout our research, we examined three different reification techniques: (i)
the property graph representation which encodes the qualifiers as edge properties,
(ii) the standard reification, and (iii) the n-ary relation models which introduce a
new node per each statement. Figure 2 depicts these models.

As opposed to [30], we did measurements using the property graph model since
we wanted to compare the level of support between different graph database imple-
mentations. Edge properties look like a straightforward way to encode the reified
claims. However, a reification claim referring to a resource would be an edge be-
tween an edge and a node resulting in an invalid graph model. One has to encode
this kind of reference as an edge property with simple literal value referencing the
identifier of the resource. Additionally, reification claims can reference multiple
objects, e.g., a statement can be backed up by multiple sources. In that case, the
edge property value would be a collection of identifiers.
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P d.
Q123 (sub.) 394 (pred.) ? (obj.)

P16 (qual. t.)

? (qual. v.)

Figure 1: A reified statement has five parts: subject (sub.), predicate (pred.),
object (obj.), qualifier type (qual. t.) and qualifier value (qual. v.), therefore
the variability of this kind of statements can be described with five digit binary
patterns, like 11010, where the first digit represents whether the subject part has
a concrete value (1) or it is a variable (0), the second digit represents the same
for the predicate part etc. in the previous exact order. This figure demonstrates
the pattern 11010. The second and fourth numbers are 1, as they are bound to
concrete values: the subject is a resource with id Q123, the predicate is P394, and
the qualifier type is P16. The object and the qualifier value parts are variables.
The example can be interpreted as follows: What values have the resource Q123
for property P394 and what values have these claims for property P167

Database implementations

In the current phase of the research, we selected three systems for the following
reasons:

(i) We have chosen Blazegraph [1] database engine as a measurement subject,
as its customized version currently serves [17] as a backend for Wikidata Query
Service (WDQS)[16]. The primary model of Blazegraph is RDF, while SPARQL
endpoint is offered for query purposes. These features make Blazegraph closely
related to triple stores. However, the RDF model can be viewed and queried as
property graph through Blazegraph’s Apache Tinkerpop implementation [2].

(ii) The open source GDB called Titan [14] was the first pick for the WDQS
backend role, but was dropped eventually due to governance changes and the high
risk of abandonment. Later, the source code of Titan was forked, and JanusGraph
[7] was born. This database implements almost all of its functionalities through
the integration of other technologies; it supports various storage options [8] (e.g.,
BerkeleyDB, Apache Cassandra, Apache HBase) while utilizing Apache Tinkerpop
as property graph engine.

(iii) Neod4j [40] was chosen, as it is currently considered one of the most popular
graph database [3]. It is based upon the property graph model and supports the
Tinkerpop stack and its Gremlin query language. Besides Gremlin, it defines its
own declarative query language, called Cypher.

We did not examine every implementation-reification model pair for our ex-
periments. We did not apply the property graph model on Blazegraph, as its
primary model is RDF, it would map the edge properties (only available through
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Figure 2: Visual representation of the different reification models. The first one
is the property graph model, below that the standard model and finally the n-ary
reification model.

the Tinkerpop interface) to RDF constructs. We did not utilize the RDF* nota-
tion support of Blazegraph. Moreover, the standard model was not measured on
JanusGraph due to the extremely slow loading process. Table 1 summarizes the
implementation-dependent measurement configurations.

We have investigated other GDBs as well, such as Grakn [4], OrientDB [10] and
Gremlin APT of Azure Cosmos DB [6], but we encountered a few difficulties during
the modeling and loading phase. The primary cause of the problems was that
these systems hardly support having multiple different values of the same property
in a node or we did not find any available documentation on how to bulk load
them into a database. OrientDB is a multi-model database; its earlier version was
benchmarked as a GDB, e.g., in [32], but not with a real-life KB workload. Grakn
and Cosmos DB’s Gremlin are quite newcomers without any previous involvement
in a significant benchmark effort in the academic literature.
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Table 1: Overview of database configurations

Impl. Version Model Reification modes Query language
Neodj 3.3.3 Prop. graph Prop. graph Cypher
Standard

N-ary

Blazegraph 2.1.4  RDF (primary) Standard SPARQL
TinkerPop N-ary

JanusGraph  0.2.0 TinkerPop Prop. graph Gremlin
N-ary

In order to ensure the correctness of the results, the dataset is converted to the
natively supported graph format of a system during the conversion processes, for
example, we introduced edge and node properties in case of Neo4j and JanusGraph,
RDF triples in case of Blazegraph. This means that every database worked with its
native graph format, so the source of the dataset (a knowledge graph) is basically
irrelevant.

Installation environment

We provisioned separate virtual machine (VM) instances in the Azure public cloud
for every GDB implementation. All VMs had a size of Linux Ejs v3. They were
configured with Intel XEON E5-2673 v4 processor containing 4 virtual CPU cores
that support Intel Hyper-Threading Technology and 32 GiB of memory. A 64
GiB SSD was used as storage for the Ubuntu 16.04 LTS operating system and the
particular DBMS. As the dataset had to be stored more times simultaneously—for
example, during the conversions the source and the result dataset existed together
at the same time—we added another SSD with 512 GiB capacity to store the dataset
and the temporary files.

Besides the concrete DBMS implementation, we installed the Java and .NET
Core runtime environments on all VMs. Even though the hosting environment is
the same for the different DBMSs, the configuration of the systems can have a
massive impact on their performance. As every investigated system is Java-based,
we specified a uniform 20 GiB heap size for each system. On any other settings,
we used their default configurations like [30] did.
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Measurement workflow

In this benchmark, we basically used the same measurement workflow described
previously. The initial step was to delete all data that remained after the previ-
ous run. In the first phase, we transformed the decompressed JSON data to the
import format of the concrete DBMS’s import tool. After the transformation, we
loaded the newly created dataset into the database. Finally, our tool inserted the
previously random selected variable bindings into the query templates, measured
the execution times and collected the mean query times. This workflow is depicted
in Figure 3.

Wikidata JSON dump Query template

Converter

Intermediate format Converter

Converter

Binder

Data loader

Query executor

Loa easure

DBMS

Figure 3: Overview of the measurement workflow

While in [34] we used a custom dataset generator to artificially create the dataset
for our benchmarks, in this paper we replaced this component with a Wikidata
JSON dump. For that reason, the 1st conversion layer had to be reimplemented as
well, as the conversion between the data source and the intermediate representation
is the responsibility of this layer.

In this paper, we present the measurements of a DBMS that we did not bench-
mark in [34], so we added a new component to the 2nd conversion layer that converts
the dataset from intermediate representation to the format expected by the new
DBMS’s data loader tool. With the help of the intermediate representation layer,
every other component could be reused in our new benchmark without nearly any
modification.

Every query pattern (except the one without any variable) was run with ten
different variable bindings. The nth query pattern (g,) supplied with the mth
variable binding for it (b, ,,) forms the runnable query g¢b,, . The values of the
variables were randomly selected from the dataset in such a way that every query
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would have a non-empty result set. To avoid first-time run transient phenomena,
we ran all of the queries two times on every DBMS-encoding pair. In the beginning,
we did not apply any time limit during the measurements, the first queries run by
Neo4j were manually terminated after more than 15 minutes as the two runs would
have taken more than a week continuous execution time based on our estimations.
Afterwards, we set a query time limit to one minute, just like in [30] and in [34].

The workflow of the measurement phase consisted of the following steps (in this
order): we applied the first bindings to the 32 query patterns {qi, ...qs2}, then run
the set runnable queries of {gb11,gb2 1, ...gbs2 1}, limiting each query separately to
one minute. Then, we proceeded the same way with the remaining nine variable
sets {gb1,2,qba2, ...qb32,2,qb1 3, ...qb1 10, ---qb32,10}. When the execution of all the
runnable queries completed, the DBMSs were restarted to remove every memory
content that could distort the results for the later runs. Finally, we made a second
run by repeating the whole process with exactly the same pattern-binding com-
binations. The average response time values on the figures are calculated as the
average of the twenty results for a given query pattern: the response times of the
ten different variable bindings, i.e., the results from {gb; 1, gb; 2, ...qb; 10} for query
pattern i—from the two separate runs. When a query had to be terminated because
of the time limit, it was counted as 60 sec (actual time limit) in the average.

5 Results

Despite its popularity, Neo4j was the least performant system—in lots of cases by
far compared to the other systems, as every query must have been terminated due
to the time limit. We got these timeouts irrespective of the reification model. This
experience is in line with [30] and [34].

We examined some of the query plans, and we found that the main reason for the
poor performance is the lack of proper optimization. In some cases, we experienced
that even though there were concrete nodes in the graph pattern to match, the
pattern matching and the graph traversal started from variable nodes and the
concrete information was used only in later phases. We investigated the usage
of so-called planner hints [11]—adding explicit directions to the query optimizer
into the query—but it resulted in performance improvements only in some cases.
Furthermore, even the official documentation does not consider it as a general
optimization technique [11].

The diagrams in Figure 4 show the results we got after measuring the per-
formance of the Blazegraph. In contrast with Neo4j, most of the queries termi-
nated before the time limit; only the most general patterns reached the one-minute
timeout—the ones with only the qualifier part bound.

As can be seen in the diagram, there is no significant difference between the
performance of the standard and the n-ary reification models. The results show
that the two models do not just perform similarly, but they react almost the same
way to the changes in the query patterns as it can be seen between 00100 and 00110
and in 01100.
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Figure 4: Blazegraph query mean response times for the standard (solid) and n-ary
(dashed) models.

Even though the performance of the two models was quite similar, the n-ary
model has an advantage against the standard model: it requires one less node to
represent a statement, so on more massive datasets (like Wikidata), it requires
significantly less storage space than the standard model.

Looking at the figure, it is quite conspicuous that there is a significant break
in the middle of the graph. We have found that—in case of using Blazegraph—the
most important factor that affects the elapsed time of an atomic-lookup is whether
the subject (the starting point of the traversal) is concrete or not. Concretizing
the subject means a significant performance boost, which suggests that Blazegraph
pattern matching engine can perform reasonably well only if the graph traversal
and the edge are pointing to the same direction.

One can see that the execution times continuously decreased before and after
this gap as well. This constant performance improvement can be the result of the
declarative nature of the SPARQL language, whose execution can be optimized
using the up-to-date DB statistics in the more and more concrete queries.

Figure 5 shows the mean query response times of JanusGraph. One can see
that there are fewer patterns in the diagrams, the ones ending with 01 are missing.
That is because we encountered some difficulties in translating these queries into
Gremlin queries. We tried using the proper Gremlin Has step variant in a couple
of ways to filter the traversal according to the *01 patterns, but all of these queries
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Figure 5: JanusGraph query mean response times for the n-ary (solid) and property
graph (dashed) models.

returned with an empty result set. As we could not figure out why did this happen,
eventually we removed these patterns from the measurement of JanusGraph.

This system also performs much better than Neo4j in most cases, but its query
characteristic for atomic-lookups shows some similarities but also some fundamental
differences with Blazegraph’s. In case of both of these systems, the queries had to be
terminated because of reaching the timeout only in the most general query patterns.
While the n-ary model on JanusGraph timeouts on the patterns containing only
qualifier information—Ilike Blazegraph—, the queries with property graph model
terminated before the time limit only when the query presented any type of concrete
node information.

One can see that both systems have notable performance steps, but it emerges
in a much more visible way in the case of JanusGraph. The n-ary model has a
significant step at 00100 and two more small steps at 01000 and 11000. From
that result, we concluded that the key factors that determine the performance of
JanusGraph and n-ary model are the existence of concrete nodes but in contrast
with Blazegraph, binding a concrete value to the predicate can result in much
shorter response times. This DBMS-model pair can be ideal for queries containing
edge information only, where it outperformed any other investigated system-model
pairs.

The property graph model has a similar query characteristic to Blazegraph, as
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it has its large performance step, where any kind of node information is presented
in the query. In these cases, even though it performs significantly better than
the n-ary model, it is much slower than Blazegraph. As the Blazergaph queries
performed better for every query pattern than JanusGraph with property edge, we
do not recommend using this pair in a real-life application.

Another interesting phenomenon is that the performance is almost constant
between the steps on both models. This can be explained by the imperative kind
of the Gremlin query language, as it gives a relatively small space to the optimizer
to improve the query plans.
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Figure 6: Comparing the results of the three investigated DBMSs in case of n-ary
model: Neo4j (dotted), Blazegraph (dashed), JanusGraph (solid).

Based on the comparison of three measured systems on the only common reifi-
cation model (Figure 6), one can come to the conclusion that Blazegraph offer the
lowest response times if the subject part of the query is specified, otherwise Janus-
Graph outperforms all its competitors. Furthermore, neither of the systems could
efficiently answer the questions that contain only qualifier information.

6 Conclusions and Future Work

In our work, we examined the performance of several graph database implementa-
tion — reification model pairs. We used a real-life knowledge base as dataset and
simple atomic lookup queries as workload. Although the graph models offered by
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GDBs seem rather suitable for knowledge graphs at first, one can hit quite a few
limitations with datasets utilizing reification heavily. The direct, straightforward
encoding of reified claims often resulted in a subpar performance as they relied
on unoptimized features. In that manner, databases specialized to store knowl-
edge models (e.g., RDF-based stores) and with the dedicated support of modeling
reification clearly have advantage over general-purpose GDBs.

We concluded that the execution times depend heavily on both the query pat-
tern and the system-encoding pair. The general tendency is that the less node
variable a query has, the faster its execution is. Event though as the results show,
the execution times slightly depend on the selected representation model, its impact
is far less than the DBMS implementation used.

Based on the overall average query times measured, the best performance for
this kind of workload can be reached by using Blazegraph with either n-ary or
standard encoding. Considering other factors than performance, our choice would
be Blazegraph with n-ary representation, as this representation has lower storage
footprint.

As every benchmark, our work has its limitations. In the current phase, we
had to apply several constraints, for example on the workflow, on the measured
configurations or on the used query languages. Currently, we are working on re-
laxing these constraints. Our measurements were limited to atomic-lookup queries,
but in the future, we plan to investigate the performance of the DBMS’s on a more
real-life workload. To achieve this, we are analyzing the most frequently used query
patterns provided by the Wikidata query service. Once we get these statistics, we
can compose a query set that can simulate nearly real-life questions. Using these
queries, we can measure the performance of the implementation-model pairs on a
realistic load, which will give a better view on when and how to use these systems.

In the current phase of our work, we analyzed the query execution results and
some of the obtained query plans to find out why does a query run slowly while
others are fast. In the future, we are planning to make some deeper analysis, even
at the implementation level, as most of these systems are open-sources.

As we introduced the use of an intermediate representation in the conversion
phase, the measurement system can be extended effortlessly. Thus, we are planning
to involve other databases, like Grakn [4], Azure CosmosDB [6] or HypergraphDB
[5]. We are also planning the investigate other (even system specific) reification
techniques such as the general singleton property [29] approach or the RDF* mode
of Blazegraph [28].

Furthermore, we are planning to introduce the query language as a new di-
mension in the future. Until now, we investigated only the "native” language of a
DBMS, even though they usually support more than one, for example, Blazegraph
supports Gremlin. We are planning to measure the same database with different
languages (if possible) to determine how much influence does it have on the perfor-
mance. This may answer a couple of open questions, like whether the declarativity
of a language or the language itself has any impact on the performance of these
systems.
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