
Acta Cybernetica 24 (2019) 29–41.

Multi Party Computation Motivated by the

Birthday Problem∗

Péter Hudobaa and Péter Burcsib

Abstract

Suppose there are n people in a classroom and we want to decide if there
are two of them who were born on the same day of the year. The well-
known birthday paradox is concerned with the probability of this event and
is discussed in many textbooks on probability. In this paper we focus on
cryptographic aspects of the problem: how can we decide if there is a colli-
sion of birthdays without the participants disclosing their respective date of
birth. We propose several procedures for solving this generally in a privacy-
preserving way and compare them according to their computational and com-
munication complexity.

Keywords: secure multi-party computation, birthday paradox,
privacy-preserving, communication complexity

1 Introduction

1.1 Description of the problem

The birthday paradox or birthday problem [14, 18, 1] investigates the following
question: n people are selected at random from a large population. What is the
probability that at least r people share the same birthday? It’s usually referred to
as a paradox because of the unintuitively large probability of over 50% already for
the relatively small value of n = 23 and r = 2.

In the present paper we focus on cryptographic aspects of the problem. We
examine whether and how the n participants can decide if r of them share the
same date of birth without any of them publicly announcing his or her birthday,

∗Péter Hudoba’s was work supported by EFOP-3.6.3-VEKOP-16-2017-00001: Talent Manage-
ment in Autonomous Vehicle Control Technologies. The Project is supported by the Hungarian
Government and co-financed by the European Social Fund. Péter Burcsi’s work was supported
by the European Union, co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013,
Thematic Fundamental Research Collaborations Grounding Innovation in Informatics and Info-
communications).

aEötvös Loránd University, Budapest, Hungary, E-mail: peter.hudoba@inf.elte.hu
bELTE 3in External Research Group, E-mail: bupe@inf.elte.hu

DOI: 10.14232/actacyb.24.1.2019.4

30 Péter Hudoba and Péter Burcsi

using secure communication. This is a so-called multi-party computation, see e.g.
Chapter 7 of [9] or [10].

The n = 2 case is well-known and named Tiercé or socialist millionaires’ prob-
lem. This is similar to Yao’s millionaires’ problem originally introduced in [19, 20]
where the two participants want to compare their secrets (decide which one is
larger). Later, other solutions were proposed, e.g. [5],[13],[16], [15] but all of them
consider the case of 2 participants.

A first idea would be to use pairwise socialist millionaires’ protocols for the
general n-participant version. However, in case of equality the two participants
involved would instantly learn each other’s secrets which we want to avoid when
n ≥ 3. In what follows, we deal with the r = 2 case but general n.

More generally and formally we have a finite but possibly large set of possible
values V (corresponding to possible birthdays) and each of n participants holding
a secret value xi ∈ V (their respective birthdays). We want to compute, using a
secure multi-party computation, the following function:

f(x1, . . . , xn) =

{
1, if ∃i, j ∈ {1, . . . , n} : i 6= j ∧ xi = xj

0, otherwise
(1)

1.2 Security assumptions and comparison of protocols

In this paper we make the assumption on the participants’ behavior called honest
but courious or semi-honest. The participants are honest in following the protocol
which means they do not poison or dilate the data, but if they can gain information
without poisoning the algorithm, they will do it. With these conditions we want
to make sure no one learns any other participant’s secret.

We can characterize the level of privacy of a secure multi-party scheme with
numbers adva (respectively advp) corresponding to the minimal number of active
(resp. passive) coordinated adversary participants who are able to gain access to
secrets of the others, while still following the protocol. Below, when we call a
scheme ”adv out of n” scheme, we’ll always mean adva = adv.

At the end of each section, we briefly discuss the running time and communi-
cation complexity of the scheme. We always consider only the slowest participant,
unless the others are idle. We also restrict our attention to data sending (rather
than receiving), because all communication is symmetric in all of the described
algorithms.

We will express the running time in terms of basic operations, using the following
notations. T (M, l) and T (A, l) are the running time in order of the multiplication
and the adding for l-word unsigned integers. T (C, l) is the running time of sending a
l-word message, T (R, l) is the running time of generating a l-word random number.
As a shorthand for integers that fit in one word we write: T (M) = T (M, 1),
T (C) = T (C, 1), T (R) = T (R, 1). Finally, W is the number of bits in one word.

Multi Party Computation Motivated by the Birthday Problem 31

2 Multi-party protocols for the birthday problem

2.1 Voting based

Below, by voting protocol we mean a multi-party computation where each partici-
pant casts a ’yes’ or ’no’ vote, and the protocol computes the number of ’yes’ and
’no’ votes. The birthday problem can be solved using voting protocols [6]. In a
näıve approach, we perform a voting for all possible values in V . Whenever a value
receives more than one vote, we know there is a collision. Unfortunately, this is
unfeasible when |V | is large (for birthdays it could still work).

In order to improve the efficiency of the approach, we can partition the set V
of possible values into subsets Si, which we call slots. First we perform the votes
for the subsets and then focus on values from those subsets Si that have received
at least two votes. This approach can reduce the number of the required voting
rounds. Clearly, if the number of slots is too small, then there might be a lot of
slots with at least two values and we have to test all values in these slots. On the
other hand, if the slots are two small, then the number of slots is not much smaller
than the number of possible values.

In the following we analyze the possible slot numbers in worst and average cases.
We denote the number of possible values by k ∈ Z+, the number of participants by
n ∈ Z+ and the number of slots by q ∈ Z+. We try to distribute the possible values
among the slots as equally as possible and analyze the optimal choice of parameter
q.

WorstCase If we distribute the participant values equally to the slots, each slot

will contain
⌈
k
q

⌉
or
⌊
k
q

⌋
values. Let’s call the slots that have

⌈
k
q

⌉
values “full”

slots. Denote the number of full slots by T . Then

T =

{
q, if q | k
k − q

⌊
k
q

⌋
, otherwise

The maximal number of slots with at least 2 participant values is
r = min{

⌊
n
2

⌋
, q}. Denote the maximal number of full slots with at least

2 participant values by Tr = min {r, T}. The number of necessary voting

rounds in the worst case is q + Tr

⌈
k
q

⌉
+ (r − Tr) ·

⌊
k
q

⌋
.

In the case when q | k, we have T = q, so Tr = min{r, q} =
min{min{

⌊
n
2

⌋
, q}, q} = min{

⌊
n
2

⌋
, q}. We get r − Tr = 0, so the number of

voting rounds is q + min{
⌊
n
2

⌋
, q}kq = q + k ·min{

⌊
n
2

⌋
1
q , 1}. The derivative

w.r.t. q is 1 + k ·min{
⌊
n
2

⌋
(− 1

q2), 0} showing that in case of
⌊
n
2

⌋
≥ q we do

not have an optimal value of q. If
⌊
n
2

⌋
≤ q, then we have a minimum at

q =
√
k ·
⌊
n
2

⌋
.

32 Péter Hudoba and Péter Burcsi

If we assume that q - k, then T = k− q
⌊
k
q

⌋
, so Tr = min{r, T} = min{r, k−

q
⌊
k
q

⌋
} = min{min{

⌊
n
2

⌋
, q}, k − q

⌊
k
q

⌋
} = min{

⌊
n
2

⌋
, k − q

⌊
k
q

⌋
}. In this case

the formula for the rounds gives q + Tr

⌈
k
q

⌉
+ (r − Tr) ·

⌊
k
q

⌋
= q + Tr(

⌈
k
q

⌉
−⌊

k
q

⌋
)+r ·

⌊
k
q

⌋
= q+Tr+r ·

⌊
k
q

⌋
= q+min{

⌊
n
2

⌋
, k−q

⌊
k
q

⌋
}+min{

⌊
n
2

⌋
, q}·

⌊
k
q

⌋
.

Below we approximate q +
⌊
k
q

⌋
by q + k

q in order to simplify the calculation.

• If
⌊
n
2

⌋
≥ q, then q + min{

⌊
n
2

⌋
, k − q

⌊
k
q

⌋
} + q ·

⌊
k
q

⌋
. If we remove the

floor functions then the derivative is 1 so the minimum is at one of the
boundaries.

• If
⌊
n
2

⌋
≤ q, then q + min{

⌊
n
2

⌋
, k − q

⌊
k
q

⌋
} +

⌊
n
2

⌋
·
⌊
k
q

⌋
. The derivative

after removing floor functions is 1+min{0, 0}−
⌊
n
2

⌋
· kq2 , so the minimum

is at q =
√
k ·
⌊
n
2

⌋
which is usually better than the first case.

Average case We compute the expected number of slots with at least two par-
ticipant values. This can be formulated as follows. Let f : A → B where
|A| = n, |B| = q, q < n, f chosen uniformly among all such functions.
We are interested in E(#{b ∈ B|

∣∣f−1(b)
∣∣ > 1}) =

∑
b∈B P (

∣∣f−1(b)
∣∣ >

1) = |B| · P
(∣∣f−1(b1)

∣∣), where b1 denotes the first slot. P
(∣∣f−1(b1)

∣∣) =

1 − P (
∣∣f−1(b0)

∣∣ = 1) − P (
∣∣f−1(b0)

∣∣ = 0) = 1 − n
(

q−1
q

)n−1
1
q −

(
q−1
q

)n
.

We approximate this by 1 − n
q

(
1
e

)n
q −

(
1
e

)n
q = 1 − n+q

q

(
1
e

)n
q . So the esti-

mated expected number of slots with at least 2 values is: q
(

1− n+q
q e−

n
q

)
=

q − (n + q)e−
n
q . The number of voting rounds is q + k/q

(
q − (n + q)e−

n
q

)
.

Deriving and solving for zero we get n2/q3 = ken/q and thus we can compute
the optimal choice for q.

If we assume that
⌊
n
2

⌋
≤ q and q | k, then the worst case needs q +

⌊
n
2

⌋
k
q

voting rounds. Since we assumed semi-honest behavior, we can use a simple vot-
ing algorithm with leader (we show runtime in parenthesis): every participant
sends a fragment to two others (2T (C)), everyone receives two shares and adds
to their remaining share (2T (A)) and sends the fragment of the solution to the
leader node (T (C)) who combines all received values (nT (A)). The running time

is
(
q +

⌊
n
2

⌋
k
q

)
(3T (C) + 2T (A) + nT (A)).

Remark 1. We can use a multiple hashing (several orthogonal sets of slots) too,
if k is small relative to n.

Remark 2. If user behavior is more complicated and we insist on more privacy,
there are several voting protocols to be considered, e.g. [3, 6].

Multi Party Computation Motivated by the Birthday Problem 33

2.2 Pots

A folklore method for privately computing the average age of participants is the
following. Start with one of the participants, called the seeder, putting a piece of
paper containing a secret random value, the seed, into a pot. The seed could be
chosen e.g. uniformly among the first one thousand positive integers. Then the
participants secretly increment the value by their respective ages, one-by-one. At
the end the seeder subtracts the seed and we get the sum of the ages.

We adapt this method for the birthday problem: let there be n participants, m
seeders (m ≤ n), and k pots, initially containing 0. We start by every seeder getting
the pots and adding some random number to the number found in it (independently
for every pot). They remember that number for later. To each participant, we
assign a pot that will be responsible for taking into account the participant’s value
(birthday). When inserting their seed into the pots, the seeders also increment by
1 the value in the pot holding their secret.

Next, all non-seeder participants take the pots and add 1 to the pot assigned
to their secret, and 0 to the other pots. Finally, the seeders subtract the random
numbers they added at the beginning. The order in which the seeders perform
the final phase is shuffled compared to the initial phase in order to have different
predecessors and successors for extra privacy. We can always achieve this when
n ≥ 5 (we can find two disjoint Hamiltonian cycles in the complete graph with at
least 5 vertices).

The adding/subtracting functions can come from an arbitrary Abelian group,
e.g. exclusive or operation on a fixed length word, or a simple unsigned integer
addition/subtraction in a Zm. In order to detect collisions for values from a set of
size k, we could use a bit vector of length k. Adding a secret value of m to the pot
means flipping the mth bit of the bit vector. If all values of the participants are
distinct, then the number of the 1 bits in the final result is exactly n, otherwise we
have flipped at least one bit back to 0, reducing the number of 1 bits.

To illustrate this method with an example, imagine that 3 people want to know
if any two of them share the same favourite Star Wars movie from the original
trilogy. To indicate which movie they prefer, everyone sets a bit vector of length
three: 100 corresponds to the first movie, 010 to the second and 001 to the third
one. The bitwise XOR of the three vectors reveals whether there is a collision: a
necessary and sufficient condition for this is that the number of 1 bits is smaller
than the number of participants (colliding 1s puts out each other). In order to do
this with privacy preserved, everyone adds a random mask to the vectors which are
then subtracted at the end.

The security level of the scheme depends on the number of seeders. If not all
participants are seeders, all of the non-seeders’ values can be claimed by the two
neighboring participants, since they can simply calculate the difference. So this
scheme is 2 out of n if m < n. If all of the participants are seeders, but we do not
use the shuffling, we get 2 out of n again: in this case the neighbors can calculate
the difference of the differences and get the secret. If we do use shuffling, we get a
4 out of n scheme. Below, when the m = n case is considered, we always mean the

34 Péter Hudoba and Péter Burcsi

shuffled version, and the non-shuffled version if m < n.
For the runtime analysis, observe that in the seeder phase we have to generate

one random number, perform two additions (add 1 or 0 to the random number and
add to the pot) and send the pot to the next seeder. This is done in max{k,m}
rounds, so the time needed is: max{k,m}(T (C)+2T (A)+T (R)). The next phase is
the value filling for non-seeders: max{k, (n−m)}(T (C) +T (A)). Finally removing
seeds: max{k,m}(T (C) + T (A)). The overall complexity is: max{k,m}(T (C) +
2T (A) + T (R)) + max{k, (n −m)}(T (C) + T (A)) + max{k,m}(T (C) + T (A)) =
max{k,m}(2T (C) + 3T (A) + T (R)) + max{k, (n−m)}(T (C) + T (A)).

2.3 Big Pot

We consider the special case where we only have one pot (unsigned integer), with k
bits, initiated by the seeders (with random numbers). After seeding, every partici-
pant flips one bit of the pot corresponding to his or her secret. Finally the seeders
remove their random numbers. If the number of one bits is not equal to the number
of participants, we found a collision. In order to avoid the attack by the neighbors,
it is also necessary to use n seeders.

The complexity of the algorithm is the following: m(T (C,
⌈

k
W

⌉
)+2T (A,

⌈
k
W

⌉
)+

T (R,
⌈

k
W

⌉
)) + (n−m)(T (C,

⌈
k
W

⌉
) + T (A,

⌈
k
W

⌉
)) + m(T (C,

⌈
k
W

⌉
) + T (A,

⌈
k
W

⌉
)) =

(m + n)T (C,
⌈

k
W

⌉
) + (2m + n)T (A,

⌈
k
W

⌉
) + mT (R).

2.4 Additive secret sharing based

In this section we consider schemes that are based on additive secret sharing.
W.l.o.g, we assume secret values are from a finite field. The secret pieces of in-
formation are split into multiple fragments and shared in the following way: every
participant holding secret xi chooses 2 random numbers xi,1, xi,2 ∈ Fpq (Fpq is a
finite field with pq element, where p is a prime, using the ordinary + operator) and
then calculates xi,3 = xi − xi,1 − xi,2. Clearly xi = xi,1 + xi,2 + xi,3.

The problem statement (1) can be reformulated into an algebraic form (2) to
better fit secret sharing.

f = sgn

∣∣∣∣∣∣
n∏

i=1

n∏
j=i+1

(xi − xj)

∣∣∣∣∣∣
 (2)

Clearly, the product vanishes if and only if there is a collision of values.
In the following assume that there are n participants and denote the ith

participant’s secret by xi = xi,1 + xi,2 + xi,3, i = 1, . . . , n. Two of the three
shares can be distributed, because without the third share it does not give
any information for an adversary. In our approach, if q participants perform
part of the protocol, we allow the ith participant to have access to shares
{xj,k | ∀j ∈ {1..q},∀k ∈ {1, 2, 3} : i 6≡ k mod 3}.

Expanding the product in (2) gives an exponentially growing formula w.r.t. n, so
we will relax privacy conditions and perform multiple collision-detection protocols

Multi Party Computation Motivated by the Birthday Problem 35

for smaller subsets of participants. We will consider the general collision detection
protocol where collisions to be detected are given by a graph. For example, with
people seated in a circle, we might only be interested in two neighbors having the
same birthday, which corresponds to the collision-detection graph being a cycle.

If we cover all edges of the n-vertex complete graph by smaller collision-detection
graphs (possibly redundantly), then we can detect all collisions, using several iter-
ations on a more friendly version of (2).

We consider only simple finite and undirected graphs and will use standard
graph-theoretical concepts (see e.g. [4] for graph concepts used). As usual, Kt

denotes a complete graph with t vertices, Kt,u denotes the complete bipartite graphs
with t and u sized parts, Pt denotes a vertex disjoint path of length t − 1, and
St denotes the ”star” graph with t edges (K1,t−1). Below we focus on how the
generalized version of the socialist millionaires’ protocol can be performed on small
collision-detection graphs.

2.4.1 SMP (K3)

In the 3-participant case we want to find sgn (|(x1 − x2)(x1 − x2)(x2 − x3)|). In
Table 1 we show which shares are made available to which participant in an en-
crypted way (one-to-one communication).

Table 1: Shares that one participant holds

1. participant

x1,1 x1,2 x1,3

x2,2 x2,3

x3,2 x3,3

2. participant

x1,1 x1,3

x2,1 x2,2 x2,3

x3,1 x3,3

3. participant

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2 x3,3

Expanding the product, one finds that most terms can be computed by at least
one participant individually. The part of the formula missing is (3).

2x12x13x21−2x12x13x31−2x12x21x23 +2x13x31x32 +2x21x23x32−2x23x31x32 (3)

With the help of a 4th participant, we can compute each of the summands
because the necessary fragments can be sent to the helper without revealing any of
the secrets. The fourth participant does not share a secret in this part.

Covering Kn by copies of K3 graphs is not entirely trivial. The number of
copies of K3 needed is trivially between

(
n
2

)
and

(
n
2

)
/3. The latter value is obtained

by disjoint copies in the case of some special values of n using finite geometries.
The overlapping decomposition a graph into the minimum number of complete
subgraphs is NP-complete in general [11, 7]. There are polynomial time algorithms
that creates cover by trees, K1,k or P4 with overlap 2 [2]. In [17] it is proved that
optimal covering is polynomial with Sk and Pk graphs. Covering a graph with

36 Péter Hudoba and Péter Burcsi

complete bipartite subgraphs, but not with a fixed size is discussed in [12]. The
hardness of lane covering is discussed in [8]. Note that non-disjoint covers by small
collision-detection graphs can leak information: if e.g. two participants detect a
collision in two distinct 3-tuples with both of them involved in the collisions, the a
posteriori probability of the two of them colliding increases largely.

Overall the collision detection protocol with SMP (K3) gives us an extra level
of privacy compared to the pairwise socialist millionaires’ protocol without adding
to much computational overhead.

2.4.2 SMP (P3)

Another approach computes only (x1 − x2)(x2 − x3) for three participants, mean-
ing we cover our complete graph with P3 graphs. There is no need for a helper
participant to do this type of sub protocol. The formulas for the participants can
be seen in (4).

f1 =x11x23 − x11x32 + x12x23 − x12x33+

x13x22 + x13x23 − x2
22 − x13x32 + x22x32 + x23x32 + x23x33

f2 =x11x22 − x11x31 + x13x21 − x13x31−
x13x33 − 2x21x23 − x2

23 + x21x31 − 2x22x23 + x22x31 + x23x31

f3 =x11x21 − x11x33 + x12x21 + x12x22−
x12x31 − x12x32 − x2

21 − 2x21x22 + x21x32 + x21x33 + x22x33

(4)

Theorem 1 (Theorem B. from [17]). Let p and q nonnegative integers, let n and k
be positive integers such that n ≥ 4k and k(p+q) =

(
n
2

)
, and let one of the following

conditions hold:
(1) k is even and p ≥ k

2 ,
(2) k is odd and p ≥ k.
Then there exists a decomposition of Kn into p copies of Pk+1 and q copies of Sk+1.

By Theorem 1, we can prove that we can decompose a complete subgraph with
at least 4 vertices into P3 graphs if 4 | n or 4 | (n − 1). The theorem gives the

number of covering graphs p = n(n−1)
4 .

If 4 | n, then every participant in one round generates two random num-
ber (2T (R)) subtracts two to achieve the secret fragmenting (2T (A)), sends two
fragments (4T (C)) to the other participants (2-2 share to each), has 11 multi-
plications (11T (M)) and additions (11T (A)) and finally they share the fi part
of the solution to a leader in the group (T (C)). We have n

2 rounds, so we get
n
2 (11T (M) + 13T (A) + 5T (C) + 2T (R)) for the overall running time.

2.5 SMP (2K2)

A 4-participant approach that performs subprotocol based on 2K2 graphs (see
Figure 1 (c)) can also solve the problem without a helper. The fourth participant’s
fragments can be seen in Table 2.

Multi Party Computation Motivated by the Birthday Problem 37

Table 2: Shares that one participant holds in 4 participant case

4. participant

x1,2 x1,3

x2,2 x2,3

x3,2 x3,3

x4,1 x4,2 x4,3

If we substitute the fragments and expand the (x1 − x2)(x3 − x4) we get the
participants formulas (5). Trivially a disjoint cover can be built up of the complete
graph by two lines if 4 | n or 4 | n− 1. If 4 | n, then in each round, no participant
is idle.

f1 =x11x32 − x11x42 − x11x43 + x12x32 − x12x42

− x22x33 + x22x42 − x23x32 − x23x33

f2 =x13x31 + x13x33 − x21x31 − x21x33 + x21x43

+ x22x41 + x22x43 − x23x31 + x23x43

f3 =x11x31 + x11x33 − x11x41 + x12x31 − x12x41

− x21x32 + x21x41 + x21x42 − x22x31

f4 =x12x33 − x12x43 + x13x32 − x13x41 − x13x42

− x13x43 + x23x41 + x23x42 − x22x32

(5)

The complexity is as follows: every participant in one round generates the shares
(2T (R) + 2T (A)), sends two fragments (6T (C)) for all of the other participants,
and does 9 multiplications (9T (M)) and additions (9T (A)) and finally shares the
fi part of the solution with a leader in the group (T (C)). We have n

2 rounds, so
we get n

2 (9T (M) + 11T (A) + 7T (C) + 2T (R)).

2.6 Other collision-detection graphs

We also experimented with other collision-detection graphs. We expanded the
formulas for different graphs and distributed the fragments by a randomized greedy
algorithm. Figure 1 shows how many participants are needed for the different
graphs used.

3 Comparison and conclusion

Some algorithms have some restrictions on the number of participants for which
they can be applied. Leakage means some information that is unavoidably leaked
in case of collisions. In Table 3, we compare the algorithms by the level of privacy,

38 Péter Hudoba and Péter Burcsi

(a) P3(3) (b) K3(4) (c) 2K2(4) (d) P4(5) (e) K1,3(5)

(f)C4(14) (g) paw(14) (h) diamond(59) (i) K4(253)

(j)P2 ∪ P3(6) (k) 3K2(7)

Figure 1: Graphs with number of necessary participants
Source: http://www.graphclasses.org/smallgraphs.html (reach: 2018-09-05)

the restrictions and show how many active adversaries in the system can claim any
information of any other participant in the worst case. In Table 4 the runtimes can
be seen.

Table 3: Adversary tolerance, most important information leakage and restrictions
of the algorithms

Method name Adversary Leaked information Restriction

Voting based 2
What is the

duplicated value

Pots (m = 1) 2
What is the

duplicated value

Pots (m = n) 4
What is the

duplicated value
n ≥ 5

Big pot (m = 1) 2
How many

collisions exist

Big pot (m = n) 4
How many

collisions exist
n ≥ 5

SMP (P3) 2
Equality guess with

1
2 probability

4 | n ∧ n ≥ 8

SMP (2K2) 2
Equality guess with

1
2 probability

4 | n ∨ 4 | n− 1

Multi Party Computation Motivated by the Birthday Problem 39

Table 4: Estimated runtime of algorithms based on base functions (addition, mul-
tiplication, random number generation and communication)

Method name Runtime

Voting based
(
q +

⌊
n
2

⌋
k
q

)
(3T (C) + 2T (A) + nT (A))

Pots (m = 1)
k(2T (C) + 3T (A) + T (R))+

max{k, (n− 1)}(T (C) + T (A))
Pots (m = n) max{k, n}(2T (C) + 3T (A) + T (R)) + k(T (C) + T (A))

Big pot (m = 1) (n + 1)T (C,
⌈

k
W

⌉
) + (n + 2)T (A,

⌈
k
W

⌉
) + T (R)

Big pot (m = n) 2nT (C,
⌈

k
W

⌉
) + 3nT (A,

⌈
k
W

⌉
) + nT (R)

SMP (P3) n
2 (11T (M) + 13T (A) + 5T (C) + 2T (R))

SMP (2K2) n
2 (9T (M) + 11T (A) + 7T (C) + 2T (R))

Let us estimate the runtime functions in the following way T (M) = A · T (A) =
R ·T (R), T (C) = C ·T (M) and let T (A, r) = r ·T (A), T (R, r) = r ·T (R), T (C, r) =
r · T (C) and let W = 64 (the number of bits in one number). This is a reasonable
approximation on modern architectures and software.

Table 5: Comparing runtimes of algorithms in T (M) with multiple parametrizations

Parameters
k 30 365 365 365 100
n 30 30 30 30 1000
C 5 5 20 2 5
A 1/3 1/3 1/3 1/3 1/3
R 1 1 1 1 1

Method estimations
Voting based 1089 3798 10458 2466 156078
Pots (m = 1) 520 6327 22752 3042 6528
Pots (m = n) 520 6327 22752 3042 12533

Big pot (m = 1) 167 1000 3790 442 10680
Big pot (m = n) 360 2160 7560 1080 24000

SMP (P3) 595 595 1720 370 19833
SMP (2K2) 705 705 2280 390 23500

The SMP (P3) is worse than SMP (2K2) only if 1 + A > C, which is a really
unlikely case. Clearly the pitfall of the pot algorithms is the big k value.

When k and n are small, the big pot seems the most reasonable choice, but
as k gets bigger, it becomes infeasible. The graph-based approaches have strong
restrictions 4 | n∨4 | n−1. It can be seen in Table 5 that the simple pots algorithm

40 Péter Hudoba and Péter Burcsi

becomes the best when n is large but k remains small.
In future work we plan to create a scheme based on multiple different graphs to

avoid restrictions and achieve the best performance at the same time.

4 Acknowledgement

Péter Hudoba was supported by EFOP-3.6.3-VEKOP-16-2017-00001: Talent Man-
agement in Autonomous Vehicle Control Technologies — The Project is supported
by the Hungarian Government and co-financed by the European Social Fund.

Péter Burcsi has been supported by the European Union, co-financed by the Eu-
ropean Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research
Collaborations Grounding Innovation in Informatics and Infocommunications).

References

[1] Abramson, Morton and Moser, WOJ. More birthday surprises. The American
Mathematical Monthly, 77(8):856–858, 1970.

[2] Alon, Noga, Caro, Yair, and Yuster, Raphael. Covering the edges of a graph
by a prescribed tree with minimum overlap. journal of combinatorial theory,
Series B, 71(2):144–161, 1997.

[3] Bárász, Mihály, Ligeti, Péter, Lója, Krisztina, Mérai, László, and Nagy,
Dániel A. Another twist in the dining cryptographersprotocol. Tatra Moun-
tains Mathematical Publications, 57(1):85–99, 2013.

[4] Bondy, John Adrian, Murty, Uppaluri Siva Ramachandra, et al. Graph theory
with applications, volume 290. Citeseer, 1976.

[5] Boudot, Fabrice, Schoenmakers, Berry, and Traore, Jacques. A fair and effi-
cient solution to the socialist millionaires problem. Discrete Applied Mathe-
matics, 111(1-2):23–36, 2001.

[6] Chaum, David. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of cryptology, 1(1):65–75, 1988.

[7] Dor, Dorit and Tarsi, Michael. Graph decomposition is npc-a complete proof
of holyer’s conjecture. In Proceedings of the twenty-fourth annual ACM sym-
posium on Theory of computing, pages 252–263. ACM, 1992.

[8] Ergun, Ozlem, Kuyzu, Gultekin, and Savelsbergh, Martin. The lane covering
problem. Manuscript, 2003.

[9] Goldreich, Oded. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

Multi Party Computation Motivated by the Birthday Problem 41

[10] Hirt, Martin. Multi Party Computation: Efficient Protocols, General Adver-
saries, and Voting. Hartung-Gorre, 2001.

[11] Holyer, Ian. The np-completeness of some edge-partition problems. SIAM
Journal on Computing, 10(4):713–717, 1981.

[12] Jukna, Stasys and Kulikov, Alexander S. On covering graphs by complete
bipartite subgraphs. Discrete Mathematics, 309(10):3399–3403, 2009.

[13] Lin, Hsiao-Ying and Tzeng, Wen-Guey. An efficient solution to the millionaires
problem based on homomorphic encryption. In International Conference on
Applied Cryptography and Network Security, pages 456–466. Springer, 2005.

[14] Mathis, Frank H. A generalized birthday problem. SIAM Review, 33(2):265–
270, 1991.

[15] Maurer, Ueli. Secure multi-party computation made simple. Discrete Applied
Mathematics, 154(2):370–381, 2006.

[16] Pinkas, Benny. Fair secure two-party computation. In International Conference
on the Theory and Applications of Cryptographic Techniques, pages 87–105.
Springer, 2003.

[17] Shyu, Tay-Woei. Decomposition of complete graphs into paths and stars.
Discrete Mathematics, 310(15-16):2164–2169, 2010.

[18] Wagner, David. A generalized birthday problem. In Annual International
Cryptology Conference, pages 288–304. Springer, 2002.

[19] Yao, Andrew C. Protocols for secure computations. In Foundations of Com-
puter Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–164.
IEEE, 1982.

[20] Yao, Andrew Chi-Chih. How to generate and exchange secrets. In Founda-
tions of Computer Science, 1986., 27th Annual Symposium on, pages 162–167.
IEEE, 1986.

