
Acta Cybernetica 24 (2019) 121–129.

LZ based Compression Benchmark on PE Files

Zsombor Paróczia

Abstract

The key element in runtime compression is the compression algorithm
itself, that is used during processing. It has to be small in enough in decom-
pression bytecode size to fit in the final executable, yet have to provide the
best possible compression ratio. In our work we benchmark the top LZ based
compression methods on Windows PE (both EXE and DLL) files, and present
the results including the decompression overhead and the compression rates.

Keywords: lz based compression, compression benchmark, PE benchmark

1 Introduction

During runtime executable compression an already compiled executable is modified
in ways, that it still retains the ability to execute, yet the transformation produces
smaller file size. The transformations usually exists from multiple steps, changing
the structure of the executable by removing unused bytes, adding a compression
layer or modifying the code itself. During the code modifications the actual byte-
code can change, or remain the same depending on the modification.

In the world of x86 (or even x86-64) PE compression there are only a few
benchmarks, since the ever growing storage capacity makes this field less important.
Yet in new fields, like IOT and wearable electronics every application uses some kind
of compression, Android apk-s are always compressed by a simple gzip compression.
There are two mayor benchmarks for PE compression available today, the Maximum
Compression benchmark collection [1] includes two PE files, one DLL and one EXE,
and the PE Compression Test [2] has four EXE files. We will use the 5 EXE files
PE files during our benchmark, referred as small corpus. For more detailed results
we have a self-collected corpus of 200 PE files, referred to as large corpus.

When approaching a new way to create executable compression, one should con-
sider three main factors. The first is the actual compression rate of the algorithms,
since it will have the biggest effect on larger files. The second is the overhead in
terms of extra bytecode within the executable, since the decompression algorithm
have to be included in the newly generated file, using large pre-generated dictio-
nary is usually not an option. This is especially important for small (less than

aBudapest University of Technology and Economics, E-mail: paroczi@tmit.bme.hu

DOI: 10.14232/actacyb.24.1.2019.9



122 Zsombor Paróczi

100kb) executables. The third factor has the lowest priority, but still important:
the decompression speed. The decompression method should not require a lot of
time to run, even on a resource limited machine. This eliminates whole families of
compression methods, like neural network based (PAQ family) compressions.

Figure 1: Annotated asm code

Split-stream methods are well-know in the executable compression world, these
algorithms take advantage of the structural information of the bytecode itself, sep-
arating the opcode from all the modification flags. Each x86 instruction can be
separated into multiple parts, prefix, opcode, mod r/m, etc., an annotated asm
snippet can be seen on Figure 1. The idea behind split-stream is to annotate each
byte by these parts, and collect them into one chunk. By doing this, each chunk
can be compressed better due to local redundancies. During decompression the
original bytecode is reconstructed using a small compiler. We used a reference
implementation from the packer kkrunchy [6].

2 LZ based compression methods

LZ based compression methods (LZ77/LZSS/LZMA families) are well fitted for
this compression task, since they usually have relatively small memory require-
ment (less than 64 Mb), they use Lempel-Ziv compression methods [3] and maybe
some Huffman tables or hidden Markov model based approaches. These methods
are simple algorithms, resulting in small size in terms of decompression bytecode.
During the last few years there are a lot of new LZ based compression methods,
the mayor ones are Zstandard (zstd) from Facebook and Zopfli from Google. The
selected libraries can be seen on Table 1, these are the top LZ familly libraries for
generic purpose compression regarding an extensive LZ benchmark [4,5].

The compression rates on generic dataset (non-code section of an executable)
can be seen on Figure 2 and Table 2. All of these tests and results are in sync with
the LZ benchmark mentioned previously, the only exception is Brotli which worked
quite well on our dataset. Brotli, Lzlib and LZMA have the best compression ratio
on average, followed by CSC, Zopfli and zstd. aPlib has the worst compression
ratio, since it only implements a very simple LZ77 variant.

3 Decompression code

For each compression method the related library also supplies the decompression
method as well. In most cases it’s tightly coupled with the compression code, so



LZ based Compression Benchmark on PE Files 123

Table 1: Libraries used in the benchmark

Compression method Version Source

aPlib 1.1.1 http://ibsensoftware.com/products aPLib.html

Lzlib 1.10 https://www.nongnu.org/lzip/lzlib.html

LZMA 9.35 https://www.7-zip.org/sdk.html

Zopfli 2017-07-07 https://github.com/google/zopfli

Zstandard 1.3.3 https://facebook.github.io/zstd/

CSC 2016-10-13 https://github.com/fusiyuan2010/CSC

Brotli 1.0.3 https://github.com/google/brotli

20%

30%

40%

50%

60%

70%

80%

90%

100%

5000 55000 105000 155000 205000 255000 305000 355000

Co
m
pr
es
si
on

	ra
tio

Sum	size	of	non-code	section
aplib zopfli lzlib lzma zstd csc brotli

Figure 2: Compression rates on non-code section by input size

Table 2: Compression rates on non-code section

Method aPlib Zopfli Lzlib LZMA zstd CSC Brotli
Rate 40.2% 37.2% 34.7% 34.2% 38.3% 34.6% 33.4%

in the first step we separated the compression method from the decompression one
and created small executables which included only the decompression method and
a sample from the compressed data, so we can verify that the decompression still
works. All these LZ based compression libraries are written in C / C++, during
this step we used GCC for ease of debugging. The aPlib library includes an ASM
written decompression method which is already small enough, so we didn’t do any
modification on it. Lzlib, LZMA, zlib, zstd, CSC and Brotli are at some point use



124 Zsombor Paróczi

dynamic memory allocation, Brotli and CSC has some other external dependencies.
We opted to remove (or inline) all dependencies, since loading external DLLs or
extra functions takes up more space than an inlined function. We managed to fully
remove memory allocation from LZMA and Lzlib by simply creating a large chunk
of zerofilled memory at the end of the executable, and absolutely referencing those
with some pointers. In the other libraries we could inline some trivial functions
(zerofill, memcpy) but due to the nature of those algorithms there are a lot of dy-
namic allocations that require external libraries. We also remove all error reporting
functionality from the code, these are designed to detect if the compressed data is
damaged in any way. All of the modifications were tested with multiple samples to
retain the ability of decompressing compressed data.

Table 3: Decompression bytecode size

Compression method Bytecode size Compressed with aPlib

aPlib 150 -
Lzlib 7.168 3.943

LZMA 8.602 3.155
Zopfli 14.351 8.173

Zstandard 106.525 26.632
CSC 23.714 10.671
Brotli 215.665 92.736

GCC has several flags for optimizing for space, speed and even some internal
optimization options are available, but after several failed attempts to make the
pure decompression bytecode smaller, we started to experiment with other compil-
ers. Clang and Microsoft Visual C++ compiler produced almost the same bytecode
size, even with extra optimization options, but Watcom Compiler (Open Watcom
1.9) managed to create 10%-15% smaller bytecode than any of the other compilers
(second best was gcc with size optimization flags). This is due to the fact that
generic registers (registers storing and passing variables between functions) can be
fine-tuned in Watcom, using esi, edi, ebp registers in the produced binaries. Af-
ter several iterations of modifying the code, testing and compiling we managed to
create really small sized decompression code for each library. We also noticed that
compressing the various decompressing bytecodes with aPlib and decompressing
them during runtime is a great way to create smaller sized binaries. The aPlib
decompression bytecode is 150 bytes after all. Table 3 contains the bytecode size
on both the decompression code bytesize as is, and the compressed decompression
bytecode size. Also worth noting that Brotli can be compiled without the built-
in dictionary, which results in 66.930 bytes (and 23.425 bytes compressed with
aPlib), but the dictionary has huge benefits during compression / decompression.
Any data compressed with Brotli with dictionary can only be decompressed, if the
decompressor code also has the dictionary.



LZ based Compression Benchmark on PE Files 125

4 Benchmark

During the benchmark we constructed a system, which is capable of extracting dif-
ferent sections from the executables, apply split-stream and a compression method
on it to create a well detailed benchmark result. During the benchmark we run
each compression method on each section, then run each compression method with
split-stream on executable sections. The benchmark system was created using C++
and Node.js, the Node.js part was responsible for the instrumentation of the com-
pressions, the C++ part was responsible for extracting the section and verifying
the modified decompression method we created. If there is any side effect from the
decompression code modification explained in the third section, we are not seeing
it.

5 Results: compression ratio

The detailed results for each test case on the small corpus can be seen on Figure
3. As you can see applying split-stream before the compression is useful in most
of the cases (except for the smallest executable, which suffered from the overhead
of this method - splitting 1 byte instructions into base instruction + mod flags).
The rates for each compression varies between test cases, but Lzlib, LZMA, Brotli

97
.9
%

95
.8
%

61
.8
%

48
.1
%61
.4
%

49
.2
%58
.7
%

42
.1
%

58
.6
%

42
.1
%

61
.1
%

44
.9
%58
.6
%

39
.5
%

59
.1
%

42
.8
%57
.3
%

44
.0
%54
.2
%

41
.9
%53
.0
%

37
.9
%53

.0
%

38
.0
%

56
.4
%

41
.3
%56
.0
%

41
.3
%54
.4
%

39
.1
%

DEMOTHREAD. EXE UPXSHELL. EXE

split aplib

zopfli lzlib

lzma zstd

csc brotli

split	+	aplib split	+	zopfli

split	+	lzlib split	+	lzma

split	+	zstd split	+	csc

split	+	brotli

94
.5
%

97
.7
%

10
1.
3%

54
.5
%

47
.9
% 56
.1
%

54
.4
%

48
.2
%

54
.7
%

47
.0
%

38
.8
%

54
.5
%

47
.0
%

38
.8
% 54

.1
%

50
.1
%

41
.1
%

57
.0
%

43
.8
%

40
.3
%

56
.7
%

47
.8
%

39
.3
% 53
.6
%

45
.3
%

41
.0
%

59
.3
%

41
.9
%

37
.5
%

56
.3
%

37
.8
%

32
.4
%

56
.4
%

37
.9
%

32
.5
%

56
.2
%

41
.1
%

35
.1
%

58
.3
%

40
.2
%

35
.0
%

59
.6
%

38
.8
%

33
.4
%

56
.1
%

DEMOTHREAD. EXE UPXSHELL. EXE ACRORD32. EXE

Figure 3: Resulting section size compered to the original on the small corpus files



126 Zsombor Paróczi

are clearly the best for the small corpus, followed by zstd, CSC, Zopfli and aPlib.
There is a constant improvement when using split-stream. Only for really small
executable aPlib is the best, due to the simplicity of the algorithm itself. All of
these results were verified during our large corpus benchmark.

The actual compression rates on the large corpus can be seen on Table 2 and 4
(split-stream is annotated as s). As you can see the ratio between each compression
rate on average is really small, for code sections split-stream really helps. For code
section LZMA, Lzlib and Brotli are the best, followed by Zopfli and CSC. For
non-code section we had a larger variety of results, since the non-code sections can
contain any datatype. The non-code section has a more loose structure and less
density, the compression rates are higher. It is interesting, that Brotli is the winner
in these tests, but as it turned out Brotli has a large dictionary prebuilt into the

Table 4: Average compression rates on code section

Compression method compression rate

aPlib 47.0%
LZMA 42.1%

s + aPlib 44.3%
s + Zopfli 41.3%
s + Lzlib 39.6%

s + LZMA 39.5%
s + zstd 42.4%
s + CSC 42.0%
s + Brotli 40.0%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5000 55000 105000 155000 205000 255000 305000 355000

Co
m
pr
es
si
on

	ra
tio

Size	of	code	section

split aplib zopfli lzlib lzma zstd csc brotli

split	+	aplib split	+	zopfli split	+	lzlib split	+	lzma split	+	zstd split	+	csc split	+	brotli

Figure 4: Compression rates vs file size the code section



LZ based Compression Benchmark on PE Files 127

algorithm, that helps with compressing text. LZMA, Lzlib, CSC produced just
1-2% lower rates, followed by zstd and Zopfli. Obviously aPlib was the worst in
both tests, since it contains the most simple algorithm for compression. PE sections
tend to be less then 3 Mb, the larger the section the more compression rate we can
achieve.

6 Results: final file size with decompression byte-
code

Since the decompression code has to be included in the final executable, we also
benchmarked how the decompression overhead code effects the final file size. As you
can see on Figure 4 for smaller executables the overhead is what really defines the
final result. All of the decompression methods were packed with aPlib, since aPlib
has a decompression code size of 150 bytes, and above 1.000 bytes it is better to
compress the decompression code with aPlib. Some of the more complex methods
(namely zstd, Brotli, CSC) has relatively large data tables in the decompression
code. Same goes for the split-stream code, which is above 1kByte uncompressed,
and 540 byte compressed with aPlib.

Our final results suggest, that there is no ”golden” LZ based compression with
split-stream method for all the executables.

You can see the best performing algorithm on Figure 6 for the large corpus. For
smaller files a more detailed result of this can be seen on Figure 5. There is a clear

Figure 5: Raw and compressed file size using the best method on smaller files



128 Zsombor Paróczi

Figure 6: Raw and compressed file size using the best method on larger files

tendency, that some algorithms perform better on smaller files, partly due to the
fact that the decompression code is small, and others perform well on larger files.
Since smaller files tend to be more code section heavy, and larger files are more like
a generic datafile (much more strings, xml, images within the sections), there is an
interesting trend how each compression method behaves on different sized binaries.

We consider 3 categories based on the executable size: for small files (less than
50kB) size aPlib is the clear winner with 150 byte decompression code, maybe with
split-stream if the executable section is large. For medium size (less than 500 kB)
split-stream with aPlib or split-stream with LZMA (aPlib compressed) should be
used. For larger files split-stream with LZMA (aPlib compressed) or split-stream
with Lzlib (aPlib compressed) should be used.

For some special cases any combination can be the winner in the final com-
pression size. CSC (without split-stream), Lzlib (without split-stream) and LZMA
(without split-stream) can outperform the others in some cases.

7 Summary

By providing a good ruleset for choosing the right compression method or methods
based on file size, we hope that future executable compression authors can improve
the compression rate of their tools. Besides that we see a clear trend, that even LZ
based compression libraries are getting more complex (dynamic memory allocations,
large dictionary size, etc.), making small size, compact decompression bytecode



LZ based Compression Benchmark on PE Files 129

creation a lot harder. We provided our insights of how to make small decompression
bytecode by simply modifying the decompression method in different ways, using
different compilers and compressing the bytecode itself.

92886 93426

26782 27322

11361 10821
0

8173 8713
4093 4633 3505 4045

150 690

9382 8631

9692 8957

8896 9302

15872
9738 8600

9320 8417 9298 8414
9812 9094

1849 1849

2145 2145

1932 1932
4608 1949 1949

1986 1986 1855 1855
2126 2126

0

20000

40000

60000

80000

100000

BROTLI S PLIT 	 + 	
BROTLI

Z S TD S PLIT 	 + 	
Z S TD

S PLIT 	 + 	
CS C

CS C RAW ZOPF LI S PLIT 	 + 	
ZOPF LI

LZ LIB S PLIT 	 + 	
LZ LIB

LZMA S PLIT 	 + 	
LZMA

A PLIB S PLIT 	 + 	
A PLIB

Overhead Code	section All	other	 sections

Figure 7: Final executable size example on DemoThread.exe (20kByte)

References

[1] Lossless data compression software benchmarks/comparisons. https://www.

maximumcompression.com/ (Visited 2018-03-04).

[2] PE Compression test by Ernani Weber. http://pect.atspace.com/ (Visited
2018-03-04).

[3] Ziv, J. and Lempel, A. A universal algorithm for sequential data compression.
IEEE Trans. on Inf. Th. IT-23, 337-343, 1977.

[4] LZbench. https://github.com/inikep/lzbench/ (Visited 2018-03-04).

[5] Kunkel, Julian. SFS: A Tool for Large Scale Analysis of Compression Character-
istics Research Papers (4), Research Group: Scientific Computing, University
of Hamburg

[6] Giesen, Fabian. Working with compression. Breakpoint conference, 2006.


