
Acta Cybernetica 24 (2019) 105–120.

Different Types of Search Algorithms

for Rough Sets∗

Dávid Nagya, Tamás Mihálydeákb, and László Aszalósc

Abstract

Based on the available information in many cases, it can happen that two
objects cannot be distinguished. If a set of data is given and in this set two
objects have the same attribute values, then these two objects are called in-
discernible. This indiscernibility has an effect on the membership relation
because in some cases it makes our judgment uncertain about a given ob-
ject. The uncertainty appears because if something about an object needs to
be stated, then all the objects that are indiscernible from the given object
must be taken into consideration. The indiscernibility relation is an equiv-
alence relation which represents the background knowledge embedded in an
information system. In a Pawlakian system this relation is used in set ap-
proximation. Correlation clustering is a clustering technique which generates
a partition. In the authors’ previous research, (see in [10, 11, 9]) the possible
usage of correlation clustering in rough set theory was investigated. In this
paper, the authors show how different types of search algorithms can affect
the set approximation.

Keywords: rough set theory, set approximation, data mining

1 Introduction

Pawlak's indiscernibility relation (which is an equivalence relation) represents a
limit of our knowledge embedded in an information system. This relation defines
the base sets. They contain objects that are indiscernible from each other. In
many applications, it is common to replace the equivalence relation with tolerance
relation. In our previous study, we examined whether the clusters, generated by
correlation clustering, can be understood as a system of base sets. Correlation
clustering is a clustering method in data mining which creates a partition based
on a tolerance relation. The groups, defined by this partition, contain similar

∗This work was supported by the National Research, Development and Innovation Office of
Hungary under Grant No. TÉT 16-1-2016-0193.

aFaculty of Informatics, University of Debrecen, E-mail: {nagy.david}@inf.unideb.hu
bFaculty of Informatics, University of Debrecen, E-mail: {mihalydeak.tamas}@inf.unideb.hu
cFaculty of Informatics, University of Debrecen, E-mail: {aszalos.laszlo}@inf.unideb.hu

DOI: 10.14232/actacyb.24.1.2019.8

106 Dávid Nagy, Tamás Mihálydeák, and László Aszalós

objects. In our previous papers, we showed that it is worth to generate the system
of base sets from the partition. This way, the base sets contain objects that are
typically similar to each other and they are pairwise disjoint. To find the partition
in reasonable time, search algorithms must be used. So the system of base sets
is highly dependent on the used search algorithm. The structure of the paper is
the following: A theoretical background about the classical rough set theory comes
first. In section 3 we define correlation clustering mathematically. In section 4 we
present our previous work. In section 5 we present the search algorithm used in
our experiments. In section 6 we show a way to compare the algorithms. Finally
we conclude the results.

2 Theoretical Background

In practice, a set is a collection of objects that are similar in some sense. A set
is uniquely identified by its members. It means that if we would like to decide,
whether an object belongs to this set, then we can give a precise answer which is
yes or no. For instance, the set of even numbers is a crisp set because it can be
decided if an arbitrary number is even or odd. However, in some computer science
applications, researchers are interested in vague concepts. The notion of a brave
warrior is vague because we cannot give two disjoint classes: brave and not brave
warriors. One can consider a person brave due to their actions, but maybe someone
else would consider this person as not brave. So bravery is a vague concept.

Rough set theory was proposed by professor Pawlak in 1982 (see in [12]). The
theory offers a way to handle vague concepts. Each object of a universe can be de-
scribed by a set of attribute values. If two objects have the same known attribute
values, then these objects cannot distinguished. The indiscernibility relation gen-
erated in this way is the mathematical basis of rough set theory.

If we want to decide, whether an object belongs to an arbitrary set, based on
the available data, then our decision affects the decision about all the objects that
are indiscernible from the given object.

In this case, if we would like to check, whether an object is in an arbitrary set,
then the following three possibilities appear:

• it is sure that the object is in the set if all the objects, that are indiscernible
from the given object, are in the set;

• the object may be in the set if there some objects that are in the set and are
indiscernible from the given object;

• it is sure that the object is not in the set if all the objects, that are indiscernible
from the given object, are not in the set.

So the indiscernibility makes a set vague.
From the theoretical point of view, a Pawlakian approximation space (see in [12,

13, 14]) can be characterized by an ordered pair 〈U,R〉 where U is a nonempty set

Different Types of Search Algorithms for Rough Sets 107

of objects and R is an equivalence relation on U . In order to approximate an
arbitrary subset S of U the following tools have to be introduced:

• the set of base sets: B = {B | B ⊆ U, and x, y ∈ B if xRy}, the partition of
U generated by the equivalence relation R;

• the set of definable sets: DB is an extension of B, and it is given by the
following inductive definition:

1. B ⊆ DB;

2. ∅ ∈ DB;

3. if D1, D2 ∈ DB, then D1 ∪D2 ∈ DB.

• the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.

1. Dom(l) = Dom(u) = 2U

2. l(S) =
⋃
{B | B ∈ B and B ⊆ S};

3. u(S) =
⋃
{B | B ∈ B and B ∩ S 6= ∅}.

U is the set of objects. B is the system of base sets which represents the
background knowledge. DB is the set of definable sets which defines how the base
sets can be used in the set approximation. The functions l and u give the lower
and upper approximation of a set. The lower approximation contains objects that
surely belong to the set, and the upper approximation contains objects that possibly
belong to the set. The set BN(S) = u(S) \ l(S) is called the boundary region of
the set S. If BN(S) = ∅ then S is crisp, otherwise it is rough.

Table 1 shows a very simple table containing 8 rows. Each of them represents
a patient and each has 3 attributes: headache, body temperature and muscle pain.
The base sets contain patients with the same symptoms (which means they are
indiscernible from each other) and it is the following:

B = {{u1} , {u2} , {u3} , {u4} , {u5, u7} , {u6, u8}}

Let us suppose that based on some background knowledge we know that the
patients u1, u2 and u5 have the flu. Let S be the following set of these patients:
{u1, u2, u5}. The approximation of the set S is the following:

• l(S) = {{u1} ; {u2}}

• u(S) = {{u1} ; {u2} ; {u5, u7}}

• BN(S) = {{u5, u7}}

Here, l(S) contains those patients that surely have the flu. Patient u5 is not in
the lower approximation because there is one other patient, u7, who is indiscernible
from u5, and we do not have information about, whether u7 has the flu or not. So
the base set {u5, u7} can only be in the upper approximation.

108 Dávid Nagy, Tamás Mihálydeák, and László Aszalós

Table 1: Information System

Object Headache Body Temp. Muscle Pain
u1 YES Normal NO
u2 YES High YES
u3 YES Very high YES
u4 NO Normal NO
u5 NO High YES
u6 NO Very high YES
u7 NO High YES
u8 NO Very High YES

3 Correlation Clustering

Data mining is the process of discovering patterns and hidden information in large
data sets. The goal of a data mining process is to extract information from a data
set and transform it into an understandable structure for further use. Clustering is
a data mining technique in which the goal is to group objects, so that the objects
in the same group are more similar to each other than to those in other groups. In
many cases, the similarity is based on the attribute values of the objects. In most
of them, some kind of distance is used to define the similarity. However, sometimes
only nominal data are given. In this particular case, distance can be meaningless.
For example, what is the distance between a male and a female? In this case, a
similarity relation can be used which is a tolerance relation. If this relation holds
for two objects, we can say that they are similar. If this relation does not hold, then
they are dissimilar. It is easy to prove that this relation is reflexive and symmetric.
The transitivity; however, does not hold necessarily. Correlation clustering is a
clustering technique based on a tolerance relation (see in [3, 4, 17]).

Let V a set of objects and T the similarity relation. The task is to find an
R ⊆ V × V equivalence relation which is closest to the tolerance relation.

A (partial) tolerance relation T (see in [15, 8]) can be represented by a matrix
M . Let matrix M = (mij) be the matrix of the partial relation T of similarity:

mij =

1 i and j are similar

−1 i and j are different

0 otherwise

A relation is called partial if there exist two elements (i, j) such that mij = 0.
It means that if we have an arbitrary relation R ⊂ V ×V we have two sets of pairs.
Let Rtrue be the set of those pairs of elements for which the R holds and Rfalse be
the one for which R does not hold. If R is partial, then Rtrue ∪Rfalse ⊂ V × V . If
R is total, then Rtrue ∪Rfalse = V × V .

Different Types of Search Algorithms for Rough Sets 109

A partition of a set S is a function p : S → N. Objects x, y ∈ S are in the same
cluster at partitioning p, if p(x) = p(y). We treat the following two cases conflicts
for any x, y ∈ V :

• (x, y) ∈ T but p(x) 6= p(y)

• (x, y) /∈ T but p(x) = p(y)

The goal is to minimize the number of these conflicts. If their number is 0, the
partition is called perfect. Given the T and R, we call the number of conflicts the
distance of the two relations. The partition given this way, generates an equivalence
relation. This relation can be considered as the closest to the tolerance relation.

The number of partitions can be given by the Bell number (see in [1]) which
grows exponentially. For more than 15 objects, we cannot achieve the optimal
partition by exhaustive search in reasonable time. In a practical case, a search
algorithm can be used which can give a quasi-optimal partition.

4 Similarity based rough sets

In practical applications, indiscernibility relation is too strong. Therefore, Pawlakian
approximation spaces have been generalized using tolerance relations (symmetric
and reflexive) which are similarity relations. Covering-based approximation spaces
(see [16]) generalize Pawlakian approximation spaces in two points:

1. R is a tolerance relation;

2. B = {[x] | [x] ⊆ U, x ∈ U and y ∈ [x] if xRy}, where [x] = {y | y ∈ U, xRy}.
The definitions of definable sets and approximation pairs are the same as before.
In these covering systems, each object generates a base set.

Correlation clustering defines a partition. The clusters contain objects that
are typically similar to each other. In our previous work ([10]), we showed that
this partition can be understood as the system of base sets which results in a
completely new approximation space. The approximation space also has several
good properties. The most important one is that it focuses on the similarity (the
tolerance relation) itself, and it is different from the covering type approximation
space relying on the tolerance relation.

Singleton clusters represent very little information because the system could not
consider its member similar to any other objects without increasing the number of
conflicts. As they mean little information, we can leave them out. If we do not
consider the singleton clusters, then we can generate a partial system of base sets
from this partition where singleton clusters are not base sets (see in [11, 9]).

In reasonable time, correlation clustering can only be solved by using search
algorithms. However, each algorithm can provide different clusters. So the system
of base sets can also be different. It is a natural question to ask, how the search
algorithms can affect the structure of the base sets. As the approximation based on
correlation clustering is a completely new way of approximating sets, it is crucial
to use the best possible search algorithm.

110 Dávid Nagy, Tamás Mihálydeák, and László Aszalós

5 Algorithms

Between 2006 and 2016, Advanced Search Methods was a compulsory subject for
some Computer Science master students. Initially, students learned about the well
known NP-hard problems (SAT, NLP, TSP, etc.) and various popular optimization
methods. Later, to help some physicists from University Babes-Bolyai in Cluj, one
co-author began to research the problem of correlation clustering. This problem
can easily be formulated (which equivalence relation is the closest to a given toler-
ance relation?), can be quickly understood, is freely scalable, but NP-hard, and if
we have more than 15 objects in a general case we can only provide an approximate
solution. That is why this problem got central role from 2010. In this year, the
students with the co-author’s lead implemented the learned algorithms, and used
correlation clustering to test and compare them. There were several didactic goals
of this development: they worked as a team, where the leader changed from algo-
rithm to algorithm, whose duty was to distribute the subtasks among the others
and compose/finalize their work. The implementations together gave thousand of
LOCs, so the students got experience with a real-life size problem. When designing
this system as a framework, the OOP principles were of principal importance, to be
able to apply it for other optimization problems. The system was completed with
several refactorisations and extended with methods developed directly for correla-
tion clustering, and several special data structures which allowed to run programs
several magnitudes faster. Finally the full source of the whole system with detailed
explanations was published at the Hungarian Digital Textbook Repository [2]. Ac-
cording to the students’ request the system was written in Java. Jason Brownlee
published a similar book using Ruby [5].

The following list shows the used algorithms in our experiments. Each of them
can be downloaded from [2]:

• Hill Climbing Algorithm

• Stochastic Hill Climbing Algorithm

• Tabu Search

• Simulated Annealing

• Parallel Tempering

• Genetic Algorithm

• Bees Algorithm

• Particle Swarm Optimization

• Firefly Algorithm

In the next subsections, there are some brief information about the used algo-
rithms and their parameters. The whole descriptions can also be seen in [2].

Different Types of Search Algorithms for Rough Sets 111

5.1 Hill Climbing Algorithm

This method is very well-known. Each state in the search plane represents a parti-
tion. A state is considered better than another state if its number of conflicts is less
than that of the other state. In each step it is checked, whether there is a better
state in the neighborhood of the actual state. If there is not, then the algorithm
stops. If there is, then the next step goes from this point.

5.2 Stochastic Hill Climbing Algorithm

The original hill climbing search is greedy, it always moves to the best neighbor.
Stochastic hill climbing is a variant, where the algorithm chooses from the neighbors
in proportion to their goodness, allowing the algorithm to move in a worse direction
as well.

5.3 Tabu Search

Each state in the search plane represents a partition like in the previous algorithms.
The tabu search defines a list of banned states or directions to where it cannot move
at a time. This is called a tabu list or memory. There are many types of memories.
In our experiments, we used a short-term memory with the size of 50.

The neighborhood of the actual state consists of banned and permitted states.
In each step, there are two possibilities:

• If one of the neighbors is so good that it is better than the best state so
far, then it should go there even if it is banned. This is called the aspirant
condition.

• The algorithm moves to the best permitted neighbor of the actual state.

If the new state is better than the best state so far, then this state will be the
new best. The previous state will also be added to the tabu list, so the algorithm
could not go backwards immediately. If the list is full, then the last state will be
deleted. The algorithm stops if it reaches 1000th step and it returns the best state.

5.4 Simulated Annealing

Each state in the search plane represents a partition. In each step, the algorithm
chooses a neighbor of the actual state. Let f denote the number of conflicts in
the actual state and f ′ denote the number of conflicts in the neighbor. If f ′ < f ,
then the algorithm moves to the neighbor. If not, then it chooses this state with

the probability of ef−f′

T . The value T is the temperature value which is a crucial
parameter. It should decrease in each step. Determining the starting tempera-
ture value is a hard task. The common method for the issue is heating. In each
temperature (starting from 1), 500 attempts are made to move to a neighbor, and
the number of successful movements are counted. If the ratio of the number of

112 Dávid Nagy, Tamás Mihálydeák, and László Aszalós

successful movements and the number of attempts reaches 0.99, then the heating
procedure stops, otherwise the temperature value is increased. After the heating,
the annealing (search) step comes. It is important that, how much time the algo-
rithm spends in each temperature value. A minimal step count were defined and it
increases each time the temperature is decreased, until it reaches a maximal value
when the algorithm stops and returns the best state. The minimal step count was
set to 100 and the maximal was set to 1000. The temperature values are always
decreased by 97%.

5.5 Parallel Tempering

The simulated annealing runs on a single thread. This is parallelized version, where
threads can cooperate with each other. In this method, we used 3 threads.

5.6 Genetic Algorithm

In this algorithm, each partition is represented by an entity. In each search step,
there is a population of entities with the size of 100. In the beginning, each entity
represents a random partition. This population contains the actual generation of
entities and best entities from the old generation. In each step, the best 25 entities
stay in the population. The rest of the spaces are filled with the descendants of the
entities of the old generation. In step 1, the algorithm defines the new generation.
Step 2 is the reproduction step. A descendant is created in this step with the
crossover of 2 parent entities. In this paper, we have used one-point crossover. For
the crossover, not a random or the best element is chosen but an element from a set
defined by a parameter. The size of this set was 4. After step 2, each child entity
goes through a mutation phase (step 3) whose probability was 2/3. After each child
entity is created, the actual generation is overwritten by the new generation, and
the algorithm goes back to the step 1. The algorithm stops when it reaches the
2000th generation and returns the best entity of the population.

5.7 Bees Algorithm

This algorithm is based on the society of honey bees. Each partition is represented
by a ”bee”. There are two types of bees: scout bees and recruit bees. Scout bees
scout the area and they report back to the hive about their findings. Then the
necessary number (in proportion to the goodness of the finding) of recruit bees go
to the area to forage. In our case, the scouts are scattered across the search plane
and recruit bees were assigned only to the best of them. These bees are called elites.
The rest of the scout bees wander in the plane. It changes dynamically which scout
bees are considered as elite and how many recruits are assigned to them. The
recruits search around the elite bee to which they were assigned, and if they find
a better state, then the scout bees move to that position. In our experiments,
the number of scout bees was set to 50 and the number of elites was 5 and 1000
recruit bees follow the elites. In the beginning, the scout bees start from a random

Different Types of Search Algorithms for Rough Sets 113

position. The algorithm stops when it reaches the 2000th step and it returns the
partition represented by the best bee.

5.8 Particle Swarm Optimization

In this algorithm, each partition is represented by an insect (particle). Each insect
knows its best position and the best position of the swarm. The size of the swarm
was set to 50. In each step, each insect moves in the search plane. In the beginning,
the insects start from a random position. There are 3 possibilities for them to move:

• Randomly move

• Move towards its best position

• Move toward the best position of the swarm

The possibilities of the moves was set to 0.2, 0.3, 0.5 respectively. After reaching
the 6000th step, the algorithm stops and returns the insect with the best position.

5.9 Firefly Algorithm

In this algorithm, each partition is represented by a firefly. The fireflies are unisex
and their brightnesses are proportionate to the goodness of the partition they rep-
resent. In the beginning, the fireflies start from a random position, and in each step
each firefly moves to its brightest neighbor. If the brightest neighbor of a firefly
is itself, then it moves randomly. Brightness is dependent on the distance of the
insects. The intensity of a firefly is defined by the following formula: Id = I0

1+γd2 ,

where I0 denotes the starting intensity, γ is the absorption coefficient (was set to
0.03) and d is the distance between the two fireflies. After 10000 steps the algo-
rithm stops, and the result is the partition which is represented by the brightest
firefly. The number of fireflies was set to 50.

6 Comparing Algorithms

To compare the algorithms, we calculated the following values:

• Number of singleton clusters

• Standard deviation of the base set sizes

• Interquartile range of the base set sizes

• Execution time of the algorithm

In this paper, the authors refer to the cardinality of a base set as its size. As
previously mentioned, singleton clusters mean little information. The greater their
number is, the more unclear our knowledge becomes. For a search algorithm, the

114 Dávid Nagy, Tamás Mihálydeák, and László Aszalós

most optimal is, if it provides the least number of these clusters in order to have a
precise knowledge of the system.

The sizes of the base sets are also worth to be checked. For set approximations
it is more suitable, if the sizes do not vary much. So the standard deviation of the
base set sizes should be minimized as well as the interquartile range of the base set
sizes.

An important parameter is the execution time of the search algorithms. It is
especially crucial when there are a huge number of objects.

Most of the algorithms have many parameters, and changing them can result
in different outputs. Many possible combinations were tried during our research.
Dozens of tables were generated and these tables are not present in this paper, but
they can be downloaded from the following link: https://bit.ly/2sO4UoD

For comparing the parameters, the same graph (with 100 points, q = 0.6) were
used for each algorithm. Each algorithm was run three times to exclude the ran-
domness. In each case, the optimal parameter combination was the one which
minimized the above mentioned 4 values. If the differences between the standard
deviations, the interquartile ranges and the numbers of singletons were not signifi-
cant, then the judgment was made by the execution time.

7 Results

7.1 Erdős-Rényi graphs

Algorithm 1 Erdős-Rényi random graph generating method

Procedure ER(N, p)

1: for i = 1, . . . , N do
2: for j = 1, . . . , N do
3: Generate a random x value between 0 and 1
4: if x < p then
5: There is an edge between objects i and j
6: end if
7: end for
8: end for

In this part our experiments, we used Erdős-Rényi graphs (see in [7, 6]). This
random graph generating method is very simple. Its pseudo-code can be seen in
Algorithm 1. In our experiments, we used p = 0.5 , p = 0.6 and p = 0.7. Half of the
generated edges denoted the similarity between the two objects and half of them
the difference. The graphs are only used for defining a similarity relation. Any
other kinds of graphs can be used. 100, 200, 300 and 400 points were generated.
For each test case, each algorithm was run 3 times on the same graphs, then the
averages of the values, described in section 6, were determined. The results can

Different Types of Search Algorithms for Rough Sets 115

Table 2: Average standard deviations of the base set sizes for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF
200
q=0.5

37 31 32 13 12 40 15 34 27

400
q=0.5

63 61 51 15 24 82 21 66 49

200
q=0.6

37 35 37 18 19 39 15 35 31

400
q=0.6

69 63 61 21 23 83 26 65 49

200
q=0.7

37 31 26 18 20 38 15 39 30

400
q=0.7

68 61 66 14 19 78 18 63 55

be seen in the following tables and can be downloaded from the following link:
https://bit.ly/2sOqMA6.

From Table 2 the average standard deviations of the base set sizes can be read.
Even for a small number of points, the differences are apparent. The simulated
annealing provided the best result in most cases. Its parallel version has almost
the same output. The bees algorithm also returned a rather acceptable result.

In Table 3 the distance of the sizes of the biggest and the smallest base sets
can be seen. The values show almost the same tendency as in the last table. The
simulated annealing, the parallel tempering and the bees algorithm proved to be
the most acceptable. For 400 points, the other the algorithms provided twice or
three times as large values as the other 3 which is not suitable.

In Table 4 the average numbers of singletons are listed. Here, the differences
are not so significant as before. The number of points does not affect it very much.

In Table 5 the average run-time of the algorithms can be seen in seconds. The
values here vary the most. It is obvious that the simulated annealing was the
least affected by the increasing number of points. For 200 points, the hill climbing
algorithm and its stochastic version provided the fastest output. Although, as soon
as the number of points was increased, they could not compete with the simulated
annealing. For 400 points, the simulated annealing was more than 20-35 times
faster than the other two. The particle swarm optimization was the slowest of all
the algorithms. For a huge number of points, it is basically pointless to be used.

7.2 Random two-dimensional points

In this part of our experiments, random two-dimensional points were generated.
The base of the tolerance relation was the Euclidean distance of these objects (d).
We defined a similarity (S) and a dissimilarity threshold (D). S was set to 50 and

116 Dávid Nagy, Tamás Mihálydeák, and László Aszalós

Table 3: Average interquartile ranges of the base set sizes for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF
200
q=0.5

105 92 80 48 45 98 49 92 82

400
q=0.5

176 189 144 57 78 213 65 186 193

200
q=0.6

105 94 97 46 46 98 47 89 92

400
q=0.6

192 173 178 87 62 209 81 193 197

200
q=0.7

104 94 74 52 64 104 49 104 88

400
q=0.7

198 179 191 50 53 228 81 186 210

Table 4: Average numbers of singletons for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF
200
q=0.5

0 0 0 1 0 1 0 1 1

400
q=0.5

0 0 0 2 2 2 0 2 7

200
q=0.6

1 1 1 1 1 1 0 1 2

400
q=0.6

0 0 0 3 3 1 1 1 3

200
q=0.7

1 0 0 1 1 1 0 1 2

400
q=0.7

0 1 0 2 3 1 1 1 4

Different Types of Search Algorithms for Rough Sets 117

Table 5: Average execution time for Erdős-Rényi graphs

Points HC SHC TABU SA PT GE BEE PSO FF
200
q=0.5

5 7 163 3 16 82 53 569 274

400
q=0.5

142 181 1549 6 39 360 247 7971 1167

200
q=0.6

4 6 170 3 17 91 66 734 317

400
q=0.6

156 248 1665 6 40 457 274 8611 1287

200
q=0.7

3 8 156 3 17 87 59 818 283

400
q=0.7

138 256 1652 7 43 404 284 9878 1336

D was set to 90. The tolerance relation R can be given this way for any objects
A,B:

ARB =

+1 d(A,B) ≤ S
−1 d(A,B) > D

0 otherwise

We generated 100, 150, 200, 300, 500 points and each algorithm was run 3 times
for each point set and calculated the averages of the values described in section 6.
In the following tables, we can see the results.

In Table 6 the average standard deviations of the base set sizes can be seen.
In case of a small number of points, the difference was not so considerable, but it
became larger as the number of points was increased. In every case, the simulated
annealing provided the most acceptable result. It is interesting that the parallel
tempering fell short against the simulated annealing for a small number of points.
However, in the 500 points test case the difference was negligible. Local search
algorithms (hill climbing, its variant, tabu search) were rather good for a small
number of points. In almost every situation, the firefly algorithm, genetic algorithm
and particle swarm optimization provided the worst result.

Table 7 shows the interquartile ranges of the base set sizes. The outcome was
quite similar as in the previous table. For a small number of points, the difference
was not so high. For 500 points, it can be more noticeable. Like before, the firefly
algorithm, genetic algorithm and particle swarm optimization ended up in the last
places, and simulated annealing proved to be the most optimal.

Table 8 shows how many singleton clusters appeared. The results were quite the
same in all cases. In is interesting that most of the algorithms were not affected by
the increasing number of points. In the 500 points test case, some differences can
be observed. In this case, the simulated annealing and its parallel version provided

118 Dávid Nagy, Tamás Mihálydeák, and László Aszalós

Table 6: Average standard deviations of the base set sizes

Points HC SHC TABU SA PT GE BEE PSO FF
100 7.6 8.1 7.5 7.1 7.6 8.9 7.6 7.7 7.6
150 11.8 10.2 10.4 7 11 14.5 8.7 12.2 11.5
200 13.1 16.2 12.8 10.3 13.2 17.8 12.7 13.8 13.3
300 25.7 28.9 27.2 17.1 18.4 31.4 23 29.1 28.9
500 46.6 34.4 39.4 26.5 27 51.4 34.2 47.8 48.4

Table 7: Average interquartile ranges of the base set sizes

Points HC SHC TABU SA PT GE BEE PSO FF
100 23 24 22 21 26 23 23 26 23
150 27 25 35 20 31 37 21 37 33
200 38 38 38 30 41 47 37 40 35
300 67 68 70 48 61 74 64 71 68
500 111 94 99 73 81 119 103 117 116

a rather inadequate result compared to the others. However, this difference was
not so high.

In Table 9 the average execution time is listed in seconds. As expected, these
values were the most dependent on the number of points. For less than 200 points,
the hill climbing algorithm and its stochastic variant provided the fastest run-time.
However, after 200 points they could not compete with the simulated annealing
which could find the quasi-optimal partition in less than 5 seconds for each test
case. The parallel tempering also proved to be quite fast, but not as fast as its
single-threaded variant. The other algorithms executed in an unreasonable time
which is unacceptable for a great number of points. Especially the particle swarm
optimization proved to be very slow, it finished running after 3.5 hours for 500

Table 8: Average numbers of singletons

Points HC SHC TABU SA PT GE BEE PSO FF
100 1 1 0 0 0 0 0 0 1
150 1 1 2 0 1 2 0 2 2
200 1 1 0 0 0 1 0 1 2
300 0 1 1 2 1 0 0 1 3
500 2 1 0 5 4 1 3 1 5

Different Types of Search Algorithms for Rough Sets 119

Table 9: Average execution time

Points HC SHC TABU SA PT GE BEE PSO FF
100 0.2 0.3 15.6 1.1 5.4 15.7 15.5 32.5 54.1
150 0.5 0.4 43.5 0.7 7.3 14.5 11.9 130.8 58.3
200 6.4 9.5 172.4 3 16.8 92.7 66.3 564 281.1
300 40.1 43.5 647.4 4.7 25.2 207 161.1 1937.8 579.6
500 69.4 108.5 3550 3 50.8 207.4 135.9 13251 612.3

points.

8 Conclusion

In [10] the authors introduced a partial approximation space relying on a similarity
relation (a tolerance relation technically). The genuine novelty of approximation
spaces is the systems of base sets: it is the result of correlation clustering, and
so similarity is taken into consideration generally. Singleton clusters have no real
information in approximation process, these clusters cannot be taken as base sets,
therefore the approximation spaces are partial in general cases (the unions of base
sets are proper subsets of the universes.) The partition, and so the system of base
sets, gained from correlation clustering depends on the used search algorithm. In
the present paper, we used several algorithms and we showed a way to compare
them. In our experiments, we used two different types of random graphs. For
these types of graphs, the simulated annealing proved to be best choice. In almost
every test case, it provided the most suitable result. However, its most important
property is that it was the least affected by the increasing number of points, so it
can also finish in reasonable time even for large amounts of points.

References

[1] Aigner, Martin. Enumeration via ballot numbers. Discrete Mathematics,
308(12):2544 – 2563, 2008. DOI: 10.1016/j.disc.2007.06.012.

[2] Aszalós, László and Mária, Bakó. Advanced Search Methods. Educatio
Társadalmi Szolgáltató Nonprofit Kft., 2012. in Hungarian.

[3] Bansal, Nikhil, Blum, Avrim, and Chawla, Shuchi. Correlation clustering.
Machine Learning, 56(1-3):89–113, 2004.

[4] Becker, Hila. A survey of correlation clustering. Advanced Topics in Compu-
tational Learning Theory, pages 1–10, 2005.

120 Dávid Nagy, Tamás Mihálydeák, and László Aszalós

[5] Brownlee, Jason. Clever Algorithms: Nature-Inspired Programming Recipes.
Lulu.com, 1st edition, 2011.

[6] Erdös, P. and Rényi, A. On random graphs i. Publicationes Mathematicae
Debrecen, 6:290, 1959.

[7] Erdös, P. and Rényi, A. On the evolution of random graphs. In Publication
of the Mathematical Institute of the Hungarian Academy of Sciences, pages
17–61, 1960.

[8] Mani, A. Choice inclusive general rough semantics. Information Sciences,
181(6):1097–1115, 2011.

[9] Mihálydeák, Tamás. Logic on similarity based rough sets. In Nguyen,
Hung Son, Ha, Quang-Thuy, Li, Tianrui, and Przyby la-Kasperek, Ma lgorzata,
editors, Rough Sets, pages 270–283, Cham, 2018. Springer International Pub-
lishing.

[10] Nagy, Dávid, Mihálydeák, Tamás, and Aszalós, László. 10.1007/978-3-319-
60840-2 7, Similarity Based Rough Sets, pages 94–107. Springer International
Publishing, Cham, 2017.

[11] Nagy, Dávid, Mihálydeák, Tamás, and Aszalós, László. Similarity based rough
sets with annotation. In Nguyen, Hung Son, Ha, Quang-Thuy, Li, Tianrui, and
Przyby la-Kasperek, Ma lgorzata, editors, Rough Sets, pages 88–100, Cham,
2018. Springer International Publishing.

[12] Pawlak, Zdzis law. Rough sets. International Journal of Parallel Programming,
11(5):341–356, 1982.

[13] Pawlak, Zdzislaw et al. Rough sets: Theoretical aspects of reasoning about
data. Systern Theory, Knowledge Engineering and Problem Solving, Kluwer
Academic Publishers, Dordrecht, 199l, 9, 1991.

[14] Pawlak, Zdzis law and Skowron, Andrzej. Rudiments of rough sets. Information
sciences, 177(1):3–27, 2007.

[15] Skowron, Andrzej and Stepaniuk, Jaroslaw. Tolerance approximation spaces.
Fundamenta Informaticae, 27(2):245–253, 1996.

[16] Yao, Yiyu and Yao, Bingxue. Covering based rough set ap-
proximations. Information Sciences, 200:91 – 107, 2012. DOI:
http://dx.doi.org/10.1016/j.ins.2012.02.065.

[17] Zimek, Arthur. Correlation clustering. ACM SIGKDD Explorations Newslet-
ter, 11(1):53–54, 2009.

