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Abstract

Automatic situation understanding in videos has improved remarkably in
recent years. However, state-of-the-art image processing methods still have
considerable shortcomings: they usually require training data for each object
class present and may have high false positive or false negative rates, making
them impractical for general applications. We study a case that has a lim-
ited goal in a narrow context and argue about the complexity of the general
problem. We suggest to solve this problem by including common sense rules
and by exploiting various state-of-the art deep neural networks (DNNs) as
the detectors of the conditions of those rules.

We want to deal with the manipulation of unknown objects at a remote
table. We have two action types to be detected: ‘picking up an object from the
table’ and ‘putting an object onto the table’ and due to remote monitoring, we
consider monocular observation. We quantitatively evaluate the performance
of the system on manually annotated video segments, present precision and
recall scores. We also discuss issues on machine reasoning. We conclude
that the proposed neural-symbolic approach a) diminishes the required size of
training data and b) enables new applications where labeled data are difficult
or expensive to get.

Keywords: situation understanding, event recognition, computer vision

1 Introduction

When we talk about situation understanding in AI, we usually imagine a scenario
with people acting in front of a camera and the task of the computer system is to
assign categories to the ongoing events. Our work presented in this paper is about
detecting one particular example of such events: an object being lifted up from or
put down on a table. In most cases the need to recognize such a scenario does not
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stand alone, rather it comes from a higher level goal or some kind of application
logic. Looking at this problem from a top-down perspective, it is generally true
that fulfilling one such higher level goal requires multiple lower level recognition
tasks to be solved and this hierarchy can go multiple levels.

We start from the concept of spatio-temporal pattern recognition that we will
use to conceptualize the complexity of such tasks. Pattern recognition in general,
is the process of analyzing data and making a decision, such as classifying a sample
to different categories, with the help of known regularities in the data [5]. In our
case, pattern recognition concerns spatio-temporal ones that we shall call event
recognition in the following.

In the case of classification we expect the data space to have 2 properties: 1)
the data points corresponding to a category are confined to a region of the space
possibly having lower effective dimensionality 2) the data space is locally smooth
around these confined regions, meaning that data points close to each other usually
belong to the same category. These concepts are analogous to the generalization
property. However the data space that we work in not necessarily holds these
properties but with the help of highly nonlinear transformations such a space can
be constructed. This is especially true in real-world applications where data comes
from sensors and it is represented in high dimensional space, like images.

Known regularities encoded in the machine can have two sources: a) human
knowledge about the data and b) a model trained by data with an algorithm. Hu-
mans can comprehend and give rules for categories for a data space of maximum
2-3 effective dimensions if it has the confinement and smoothness properties. Unsu-
pervised machine learning algorithms can perform nonlinear dimension reduction,
but for most real world problems supervised methods are needed, which require
training labels. (Also high dimensional data requires more advanced algorithms.)

Annotated training data is the most expensive component of the pattern recog-
nition process and its size rests on two main factors. First, high dimensionality
of the input exponentially increases the required training data, also known as the
curse of dimensionality [4].

Secondly, special target categories are less frequent in real life therefore collect-
ing the necessary amount of data requires more resources (time, money). Besides,
finding the regularities that characterize a special category in comparison to a more
general one from the same input requires more training data.

Consequently end-to-end machine learning from high dimensional data to very
special categories requires the most expensive kind of data, and the most advanced
algorithms.

Our scenario, and other examples of situation understanding, fit the description
above: the video recordings we work with, consisting of >1 million 3-channel pixels
for 25 fps, make a very high dimensional input. Collecting appropriate training
data that contains the variance of the possible samples requires many subjects in
many different scenarios from different viewpoints.

In our scenario the scene is recorded by a monocular RGB camera. Algorithm
development for such devices is motivated by the inexpensiveness and commonness
of them and it opens a path for a wide range of applications.
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Lifting up or putting down an object viewed from an arbitrary (but not mali-
ciously) placed camera is exposed to ambiguity even for human viewers of the scene
because of a) occlusion of body parts and objects (to add to the confusion occlusion
is caused by other body parts and objects) b) other type of hand movements simi-
larly executed c¢) illusory perceptions caused by the information loss of the camera
projection. So as data is the biggest obstacle how can we save on the costs of data
acquisition?

We propose a process of breaking down a difficult event recognition task, which
is only solvable with very expensive data, into smaller problems that we can solve
with less resource such as freely available data and human knowledge. To the best
of our knowledge, this work is the first one that offers a non-obtrusive automated
solution to the quantification of picking up and putting down objects.

We describe our approach and the actual recognition pipeline implemented in
this paper in Section 2. We compared our method to ground truth annotations
on videos provided by Rush University Medical Center showing Autism Diagnostic
Observation Schedule, Second Edition (ADOS-2) sessions with different patients.
We report the results of our evaluation in Section 3. We discuss the results and
provide possible improvements for future work in Section 4.

2 Method

In this section we describe our methodology for designing our pattern recognition
pipeline. We refer to the related work Section 2.1. We outline the theoretical
approach in Section 2.2. We used multiple machine learning models, algorithms
and data trained or developed by other researchers, we describe these in Section
2.3. Our event recognition pipeline is depicted in Section 2.5.

2.1 Related work

There have been many advances in situation understanding and activity recognition
in recent years and many datasets have been created for sets of action categories
that can be used as benchmarks. In the early days the task was set as a classification
task [9] but it moved to a detection task as methods evolved [18]. Recently most
methods first extract sparse or dense timestamps and represent events by various
descriptors, then use these to recognize similar space-time intervals. Some use
strong video features such as histogram of gradients (HOG), motion history images
(MHI) [2], others utilize pose estimation [18] or object detection [21]. There are
supervised [8] and self-organizing solutions [3] as well, also wide usage of deep
learning methods [19]. It is common in them that they use training data and they
learn from samples of the event classes they aim to detect.

In contrast, our approach combines several detectors, put together by exploiting
human knowledge and it doesn’t require samples of the target event class, making
it a viable alternative.
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2.2 Approach

Our key idea is to transform our pattern recognition task to the composition of
multiple “smaller” tasks. With the help of our human intuition we include a more
general concept between the input data and our special category. The training data
for this general concept is cheaper to manufacture than what we would have needed
for our original task. The representation of this general concept has significantly
less dimensions than the dimensionality of the original input data, lowering the
required training data size for the second recognition task, which is identifying the
special concept in the general one.

For example our recognizable action, lifting up an object, is a special case of a
pose time series data of a person, so by utilizing a pose estimation algorithm like
the convolutional PoseMachine [23], we include a general concept, Pose series, and
we can define a new pattern recognition task where the input is the representation
for this new concept and our target category is our original target category. Pose
series will be represented by 17 joints, each with 2 dimensions multiplied by the
length of the series in image frames which is an enormous decrease compared to
the dimensionality of the original video data space.

This decomposition can be done arbitrary number of times introducing multiple
intermediate concepts. Each decomposition replaces a pattern recognition task with
two easier one in terms of data acquisition. Since information is lost when adding
an intermediate concept, “sibling” concepts that are between the same input- and
target data representations are necessary components. Eventually intermediate
concepts will comply to the important factors for the original recognition task.

Each recognition task can be solved in any possible way outlined previously: a)
supervised machine learning b) unsupervised dimension reduction ¢) human rules
to assign set of data to a target category. Omly a) requires training data where
a very beneficial possibility is to use off-the-shelf data (or even trained models)
created by others for a general concept that can be used for one’s target category
as well. From the perspective of expensive data acquisition the coupling of b) and
¢) can turn the tide from impossible to possible.

We stated previously that humans can formulate rules for comprehensible 2-3d
spaces and this knowledge acquisition can save the collection of training data. Di-
mension reduction on its own can’t really solve pattern recognition but can produce
the representation that is usable for human rule creation. If we can decompose the
original task in a way that such intermediate recognition task that is solvable with
dimension reduction and human rules emerges, we can omit a data acquisition step.

The development of such a pipeline is an evolutionary process: we investigate
the effect of including and excluding components through quantified metrics and
qualitative analysis of samples of false positive and false negative recognitions.
Consequently our pipeline have many other variations with other intuitive ideas.
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2.3 External components

We briefly list the algorithmic components used in our pipeline. For further details
please refer to the literature:

¢ Convolutional Pose Machine[23]: A deep learning method for human pose
estimation. It provides estimation for key anatomical points of the human
body. We use this method mainly to extract elbow and wrist coordinates so
that we can further analyze the lower arm movement of the subject.

o Mask-RCNN]J11]: A variant of the popular Faster-RCNNJ[17] object detec-
tion method. Other than providing bounding boxes for many object cate-
gories it also provides fine-grained instance segmentation of the underlying
object.

e Hand detector: We used an R-FCNJ[6] based hand detector trained on a
hand dataset [16].

e Optical flow: We used FlowNet2.0[12] as optical flow algorithm.

2.4 Target event description

We consider a scenario where a person interacts with objects on a flat surface, most
likely a table viewed from a stationary camera. We decompose the event into three
required subevents.

Putting down an object:

1. the person holds an object in her hand away from the future release location
2. the person puts it down on the surface

3. the person releases the object and moves her hand away from the release
location

Picking up an object:

1. the object is on the table, and the person’s hand is away from the object
location

2. the person moves her hand towards the object and grabs it
3. the person takes the object away from its original position on the table

We introduced some limitations with these event definitions. We add three more
to the list:

1. only events shorter than 10 seconds are taken into consideration

2. the object needs to be visible in the video for at least a few frames at the
appropriate step (Put down 3., Pick up 1.)
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3. the location of the object (without the object being there) needs to be visible
for at least for a few frames at the appropriate step (Put down 1., Pick up 3.)

4. the required distance of the hand from the object location (pixel-wise on the
video) is approximately the same size as a hand.

These limitations makes our task more special which means that there will be
events that would fall into the category of picking up an object to a human observer
but we don’t consider the recognition of those.

2.5 Pipeline

As we described in Section 2.2 our goal is to build a pattern recognition pipeline
that minimizes data acquisition which is extremely expensive in the case of a very
special target category. We relied on our human intuition to decompose the original
task and developed it in an evolutionary fashion.

Our main idea is twofold: when an object is moved there are two frames from the
video of the stationary camera where the only difference of these images relevant
parts determine the object’s pixel representation; it "appears” or ”disappears”.
We also note that grabbing or releasing an object involves a temporary stop of
the hand’s movement. We combine these two ideas to an algorithm where we first
search for points in time when the hand is stopped, select these as candidates,
then search one frame preceding and one following the candidate point, where the
difference of the two frames shows the (dis)appearing object.

If a candidate is false, for example the person just rested her hand on the table
for a second without moving any object, then the difference of the retrieved images
will be zero, as both images show the part of the table unchanged.

We specify common sense assumptions and derive algorithmic components to:

1. select candidate positions
2. refine candidate positions by hand detection
3. select the two relevant frames

4. process the images to neglect irrelevant differences caused by interfering ac-
tions in the scene

5. take the image difference

In the following sections we describe each step in detail.

2.5.1 Candidate selection

We find timestamps of object grabbing by assuming that this action requires that
the hand stops for at least an instant. Thus we look for such changes in the speed
of the forearm which we measure by optical flow at regions estimated from elbow
and wrist joint coordinates. If the magnitude of average velocity in that region
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is at a local minima, then the timestamp is selected as a candidate for change
detection. The local minimas are found by using gaussian filter on the velocity
magnitude signal and then using a peak finding algorithm[7]. For each of the
candidate position we assume that the appearing/disappearing object is occluded
by the hand in the instant of releasing/grabbing.

2.5.2 Candidate refinement

We refine the candidates obtained in the previous step by using an R-FCN based
hand detection algorithm|[6]. If the hand detection fails, meaning the hand cannot
be find where the movement stopped then we discard this candidate position. A
possible situation where this can happen is that the hand is under the table. We
are using the bounding boxes obtained here as a Rol (region of interest) in the
following steps.

2.5.3 Image selection

In this step we select two frames, I, and I;,, that will be used at the image
differencing step. We search backwards and forward in time to find frames where
the object is not occluded by the hand, to find I;, and I;,. This is done by simply
checking if the bounding boxes of the hand moved significantly since the frame
in which the object was grabbed. The search has a max duration parameter in
both directions, if the hand doesn’t leave the Rol in that time span, the candidate
position is discarded. This parameter is set to 120 frames (4.8 seconds for a 25 fps
video).

2.5.4 Interference removal

We found that the selected frames and Rol given by previous steps contains dif-
ferences other than the object we were looking for. These differences come from
different sources: effect of actors interfering in the Rol (e.g. body parts, shadow,
other manipulated object). To neutralize these effects we create a binary mask on
the Rol that neglects pixels that belongs to these phenomena. In fact we estimate
multiple binary masks with different strategies and take the union of the relevant
pixels found by each method. These are the following:

2.5.5 Interference removal - Body occlusion

We found that in many cases there were body parts inside the Rol which accounted
for many of the changes that could be found between the two frames. We used
Mask-RCNNTJ1][11] for filtering out pixels corresponding these parts.

2.5.6 Interference removal - Long-term optical flow

There are changes between I;, and I;, that correspond to small movements over a
longer period of time. A possible example is when the edge of the paper moved on
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which the object was placed. To account for these differences we use optical flow
between I, and I,.

2.5.7 Interference removal - Short-term optical flow

There can be ongoing actions inside Rol in I, and I;, which we would also like
to filter out. These events are typically hand movements or some other object
movement. The optical flow between a frame at time instant ¢ and ¢t — 1 helps in
removing any these effects inside the Rol (e.g. hand is still there but moving). This
could be done for any ¢ and ¢t — k time instants, however we found k£ = 1 to be
sufficient.

2.5.8 Image difference

We combine the binary masks obtained from previous steps to I, and I, then
taking their difference as follows [13]:

01
Ifinal(xv y) = ||It1 (‘T7 y) - <0'2(1t2 (£C7 y) - N2) + :u’1> ”2
where 1,01 and po, o9 are the mean and standard deviation of I;, and Iy, respec-
tively.
After calculating the difference image, we perform the following steps to produce
the final mask:

1. threshold If;nq to keep changed part of the images
2. drop small continuous blobs of the difference image for noise reduction

If the remaining covered area of the final mask is larger than 1% of the image
area then we keep the difference as the object threshold, otherwise we discard the
candidate position.

3 Evaluation

3.1 Data

We evaluated our pattern recognition pipeline on video segments that show a child
taking part in an ADOS-2 diagnostic interview. This test includes different types of
playful activities conducted by a clinician who is also present in the same room. The
clinician interacts with the child during these games. Some of these tests contain
objects that are moved from one place to another. We selected two activities
"Puzzle game” and ”Storytelling with toys” from three subjects. Segments for
these games lasts 2-3 minutes and 10 minutes respectively. The dimensions of
the puzzle pieces are around 5 cm x 3cm x 0.5cm colored blue and purple. The
toys used for storytelling are dolls, plastic animals and tools of various sizes, their
largest dimension ranges from 5 cm to 25 cm and colored diversely (examples can
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(a) Selected image (b) Selected image (c) Final mask ap-
Iﬁl It2 plied to Itl

Figure 1: A few examples from our evaluations. The algorithm starts by finding
instants when a hand stops , see, column (b). Frames selected before and after
the time instants of the hand stops are shown in columns (a) and (c), respectively.
Column (d): masked images after applying the derived filters and taking the image
differences. (See text for more information).

be seen on Figure 1). The room (size: 2.5 m x 2.5 m) has the same layout in all
recordings with a single table, two chairs and optionally some cabinets holding the
different tools for the different tasks. A single light source illuminates the room to
standard indoor lighting.

Videos were recorded with a resolution of 1920x1080 pixels. Ground truth
annotations of the precise temporal extent of the events were created with our own
video annotator tool. Annotations were created and verified by our colleagues using
a detailed description (Section 2.4), basically a set of rules about the relevant events,
i.e. ”picking objects up” and ”putting objects down”. We would like to emphasize
that the ADOS-2 interviews were designed, conducted and recorded independently
from our work, meaning that the properties of our proposed system had no effect
on how the data was collected.

Statistics of each video segment’s length and ground truth coverage is on Table
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Table 1: Length of input videos and coverage of ground truth annotations in our
data

Subject 1 2 3 All
Length (s) 150 120 120 390

Ground Truth 31.7% | 53.6% | 39.3% || 40.8%
coverage

Length (s) 640 | 540 | 615 | 1795

Ground Truth 6.9% | 20.1% | 14.4% || 13.4%
coverage

Puzzle

Storytelling with toys

3.2 Methodology

We report the performance of our pipeline on these videos with precision and recall
metric scores. We show each component’s added value for the pipeline with metrics
to justify its need in the pipeline by running different versions of our pipeline that
include different combinations of components. We name and describe them as
follows:

1. P1: Each handstop candidate is considered a positive detection (Section 2.5.1)
2. P2: The candidates of P1 are filtered by candidate refinement (Section 2.5.2)

3. P3: Before and after image is retrieved. The remaining candidates are con-
sidered a positive detection (Section 2.5.3).

4. P4a: Filter the candidates of P3 by the image difference of I;, and I, (Section
2.5.8)

5. P4b: Only apply long-term optical flow filtering described in (Section 2.5.6)
and image difference (Section 2.5.8)

6. P4c: Only apply short-term optical flow filtering described in (Section 2.5.7)
and image difference (Section 2.5.8)

7. P4d: Only apply body-occlusion filtering described (Section 2.5.5) and image
difference (Section 2.5.8)

8. P4: Apply all inference removing filters and image difference utilizing the full
pipeline.

P1 selects candidate time instances from the video and all other pipeline ver-
sions filter these initial candidates. Each pipeline’s output is a list of candidate
time instance that can be compared to the ground truth annotations with pattern
recognition metrics, like precision and recall.

Since certain pairs of pipeline versions differ only in one algorithmic component
(P1-P2, P2-P3, P3-P4a, P3-P4b, P3-P4c, P3-P4d, P3-P4) the difference in their
performance shows the effect of adding said component to the pipeline. FEach
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| Pda
P4b
P1 — Pz P3 H > P4
Pdc
- P4d

Figure 2: Overview of the stages described in Section 3.2. The stages until P3
are built linearly. Stages after this correspond to the different inference removal
algorithms and are considered to be run in parallel. Finally the results are combined
and image difference is taken in P4.

components filters the output of the previous one and we can treat it and evaluate
it as a binary classification tasks.

The pipeline versions P1-P3 are built linearly by adding components, P4a-P4
are combinations of the 3 inference removal methods (Section 2.5.4).

3.3 Results

We report precision and recall scores for our evaluations (Table 2). Since taking
an object happens over time, the ground truth annotations consist of intervals. We
do not differentiate between left and right hand events, but we consider parallel
annotations. On the other hand our method detects time instants.

We consider all positive predictions that fall into a ground truth interval to be
true positives, and all ground truth interval that contain a positive prediction is
handled as recalled.

P1 starts with a large number of candidate points measuring in good recall but
poor precision scores. Progressing to P3, the candidates are filtered and we can see
that precision increases and recall decreases. Comparing P4a-P4 we can see that
the combinations of the 3 interference removal components has the best precision
and precision and recall values vary when we remove only one type of inference
(P4b-P44d).

Our full pipeline (P4) shows reasonable recognition capability when the dataset
of the two activities are aggregated (precision 0.51, recall 0.49). When we consider
the datasets separately, the ”Puzzle” activity dataset has 0.7 precision with 0.68
recall, and ”Storytelling with toys” has 0.41 precision with 0.41 recall.
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Table 2: Precision and recall scores for each of pipeline variations for our datasets.
The pipelines differ on which algorithmic components they contain, explained in
Section 3.2.

ADOS-2

. Metric Evaluation pipelines
activity
P1 P2 | P3 | P4a | P4b | P4c | P4d || P4
Precision | 0.45 | 0.62 | 0.60 | 0.61 | 0.65 | 0.61 | 0.68 || 0.70
Puzzle

Recall 0.95 (092 | 0.77 | 0.77 | 0.75 | 0.75 | 0.71 || 0.68
Storytelling | Precision | 0.16 | 0.19 | 0.21 | 0.22 | 0.26 | 0.22 | 0.38 || 0.41
with toys | Recall 0.92 | 0.87 | 0.62 | 0.62 | 0.56 | 0.62 | 0.41 || 0.41
All Precision | 0.20 | 0.25 | 0.28 | 0.29 | 0.35 | 0.29 | 0.49 || 0.51
Recall 0.93 | 0.89 | 0.67 | 0.67 | 0.62 | 0.67 | 0.51 || 0.49

“ a1
(a) Ity (b) Iy, (c) Finals mask applied to
I,

Figure 3: A semi-failure case from our evaluations. (a) and (b) shows the images
selected before and after the hand stop time instant respectively. (c) shows the
masked image after applying our filters. The object is correctly discovered, but
also many other area are also segmented, most of them corresponding to shadow.

Furthermore, we carried out an analysis of the performance of each component
by estimating their ability to correctly classify candidates as true or false positives
in their respective place in the pipeline.

4 Discussion and outlook

For any ‘detector’, low precision and high recall means that it is more general than
intended, covering other events as well, while high precision and low recall means
that it is too specific, covering only a subset of the targeted events. In the first
case, one needs to integrate more knowledge into the pipeline. In the high precision
case semi-supervised machine learning, where the annotated samples are collected
with the help of the high precision detector on available non-annotated data, may
become feasible. This made possible by tuning the individual deep neural network
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components providing lower scores with the samples gained via consistence seeking
[14].

We can see from the results that our pipeline’s intermediate and final perfor-
mance has higher metric values on the ” Puzzle” dataset. We must take into account
the ground truth to video length ratio (Table 1) for the two dataset. On ”Puzzle”
one has 40.8% chance with a random time instance to find a ground truth interval
while the same chance is 13.4% for the other dataset. Thus the detection of our
target events in the ”Puzzle” scenario are easier.

We emphasize that adding each component increases precision, conclusively we
are successful in adding knowledge to our pipeline by combining rules and trained
deep neural networks. Our components still have shortcomings which we analyzed
qualitatively. First, one of the limitations for our method is how we deal with
shadows. See the example in Figure 3. This case is not covered by any of our
filters at this point. Secondly, we found that there are multiple cases when the
detected time instance of hand stop (interpreted as grabbing or releasing) is very
close to a ground truth interval but outside of it. In future we consider representing
the machine detections as intervals between the before-after images instead of time
instances, and use IoU (Intersection-over-Union) measure for evaluations. This
would make the detections easier to cluster or drop unlikely ones resulting in less
false positives and less multiple detections of the same ground truth interval.

We also minimize the collection of new training samples as proposed in [14].
Our example is the monitoring of the manipulation of unknown objects and detect-
ing "picking up” and ”putting down” these objects. In turn the problem treated
belongs to the family of ‘zero-shot learning’ tasks. First, we considered the general
driving principles of the process and transformed them into concrete rules by taking
into account trained deep neural networks dealing with hand detection, body pose
estimation and motion information extracted from optical flow estimation.

We carried out a detailed analysis of the proposed method on real world scenar-
ios. We found that considerable complexity arises in this relatively simple problem
and that it can be overcome by applying rules. We also note that information
pieces, e.g., information about depth are missing and could be included. Due to
novel developments in deep learning technologies, such as

1. the estimation of 3D distance of objects [10] and that of
2. 3D body configurations [15, 22], as well as the
3. precise estimation of hand configurations from monocamera recordings [20]

our approach on zero shot learning guided by neural-symbolic approach and the
belonging self-training capabilities will become more precise and fit the stringent
requirements of remote monitoring in the near future.

We plan to conduct a larger scale experiment in the future where we can address
the mentioned issues and analyze the algorithm further on more data. We will also
try to improve our pipeline by adding depth information estimated from RGB
recordings using the listed deep learning algorithms.
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