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Abstract

The Internet of Things (IoT) paradigm is closely coupled with cloud tech-
nologies, and the support for managing sensor data is one of the primary
concerns of Cloud Computing. IoT-Cloud systems are widely used to man-
age sensors and different smart devices connected to the cloud, hence a large
amount of data is generated by these things that need to be efficiently stored
and processed. Simulation platforms have the advantage of enabling the in-
vestigation of complex systems without the need of purchasing and installing
physical resources. In our previous work, we chose the DISSECT-CF simu-
lator to model IoT-Cloud systems, and we also introduced provider pricing
models to enable cost-aware policies for experimentation. The aim of this
paper is to further extend the simulation capabilities of this tool by enabling
multi-cloud resource management. In this paper we introduce four cloud se-
lection strategies aimed to reduce application execution time and utilization
costs. We detail our proposed method towards multi-cloud extension, and
evaluate the defined strategies through scenarios of a meteorological applica-
tion.

Keywords: cloud computing, internet of things, simulation, Pliant system

1 Introduction

In the paradigm of the Internet of Things (IoT), sensors and smart devices are
connected to the Internet giving way to many opportunities to use cloud and IoT
services together [1]. Since more and more devices enter the network to form IoT
systems, the dataflow and the workload of the supporting services are increasing,
which also raise open issues such as resource usage and cost reduction or legal
compliance [5]. Hiring physical machines from virtual server parks fitting various
IoT scenarios could be very expensive, and the investigation of IoT-enabled cloud
service compositions is not always possible with real cloud providers. As a result, in
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many cases cloud simulators are applied to address the evaluation of such complex
environments.

While network simulators could be too complex to simulate IoT and cloud
systems together, due to detailed network configurations, special purpose cloud
simulators may be over-tailored to cloud-specific details making it hard to express
IoT needs. The number of IoT devices and usage areas are constantly growing,
and some cases require immediate intervention after data processing, such as heart
monitoring in smart homes, or traffic control in smart cities. This means we need
new solutions and techniques for data storage, access and processing, which can
be designed and evaluated in infrastructure cloud simulators extended with IoT
simulation capabilities. Therefore we have chosen DISSECT-CF to perform our
investigations [2].

In our earlier works we introduced IoT modeling to a traditionally cloud sim-
ulator, then combined provider pricing schemes with IoT cloud management in
DISSECT-CF [3] to enable cost-aware investigations. Since cloud federations [4]
provide a wider range of capabilities to users, the next step in our research was to
enable the usage of multiple cloud datacenters to serve certain IoT scenarios.

In this paper we introduce four cloud selection strategies aimed to reduce ap-
plication execution time and utilization costs. The default strategy uses random
cloud selection for the managed IoT devices, and we also propose a load balancing
and a cost minimizing strategy. Finally, for a more sophisticated strategy we apply
a fuzzy-based approach. We also evaluate our proposal through scenarios derived
from a real-life weather forecasting service.

The remainder of this paper is as follows: Section 2 discusses related approaches
in this field, and Section 3 summarizes relevant previous works of the authors.
Section 4 introduces our proposed cloud selection strategies, which are evaluated
in Section 5. Finally, we conclude the paper in Section 6.

2 Related work

In the field of cloud and IoT simulations, CloudSim [6] is one of the most widespread
solutions for modeling cloud system components including data centers and virtual
machines, as well as investigating cloud resource provisioning policies. When IoT
started to emerge, CloudSim has been extended to provide modeling capabilities
for IoT system components. Khan et al. [7] proposed an infrastructure coordina-
tion technique for large scale IoT systems built on top of CloudSim. It provides
customization for specific home automation scenarios, which limits the applicabil-
ity of their extensions. The iFogSim [8] also extends CloudSim to simulate IoT
and fog environments by measuring resource management techniques with several
metrics including latency, network congestion, energy consumption and cost. They
presented two case studies to demonstrate IoT modeling and resource management
policies: latency-sensitive online gaming, and an intelligent surveillance application
using distributed camera networks.

Besides CloudSim, we can find similar simulation approaches tailored to specific



Multi-Cloud Management Strategies for Simulating IoT Applications 85

needs. Zeng et al. [13] proposed IOTSim that supports the simulation of big
data processing with the MapReduce model exemplified with a real case study.
SimIoT [9] is based on the SimIC simulation framework [10], and it proposes several
techniques to simulate the communication possibilities between IoT sensors and
cloud components, but it is limited to compute activity modeling.

MobIoTSim [14] proposes a semi-simulated environment for investigating IoT
cloud systems. It aims at mimicking the behavior of IoT sensors and devices with
a mobile simulation environment. Sensor data management and system scalability
can be investigated with real interconnected gateway services.

Concerning IoT management algorithms, Moschakis and Karatza [11] intro-
duced workload models with interfacing various cloud providers and IoT systems,
enabling the investigation of the behavior of cloud systems that support the pro-
cessing of data originated from the IoT system. Silva et al. [12] focused on the
dynamic nature of IoT systems, therefore they investigated fault behaviors with
specific fault models. Unfortunately, the scalability of the introduced fault behav-
ior concepts are insufficient for large scale systems.

Several providers offer PaaS-level cloud services with the possibility of connect-
ing and managing IoT devices, we can find a detailed comparison of them in [15].
These solutions are usually tightly coupled for certain providers, and hide low-level
details of utilization, which is an advantage for end-users, but they are not suit-
able for modeling low-level infrastructure operations, and developing multi-provider
IoT-Cloud applications.

From these related works we can see that IoT-Cloud systems can be exam-
ined with several simulation tools, and supporting environments already exist for
investigating specific behavioral methods, such as resource selection, sensor com-
munication, big data management, energy efficiency and cost savings. Nevertheless,
the combination of these aims and closer relation to real world utilization patterns
still represent open issues. Our approach combines cost reduction based on real
world provider pricing and multi-cloud resource selection, applied in a real-world
usage scenario.

3 IoT-Cloud Simulation in DISSECT-CF

One of our main goals for choosing the DISSECT-CF cloud simulator for our inves-
tigations was its unified resource sharing mechanism. Timed events are the basic
elements of this simulator, which can be recurrent time-dependent events that have
a frequency value (e.g. 10 ms), which calls their methods regularly in every moment
based on the given value. There are non-recurrent time-dependent events as well,
that have only a delay value (e.g. 5 ms) denoting the time to be elapsed before its
function has to be called. Both type of events are controlled by the inside clock of
the simulator. With these build-in events we can simulate the management of IoT
systems including sensors and smart devices. The configuration of IoT system prop-
erties in the simulator can be done through an XML description file. We can set
the following attributes: network bandwidth, local repository size, operating time,
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Figure 1: Architecture of the IoT-extended DISSECT-CF simulator

number of sensors and frequencies of the data generating, storing and sending, and
the size of the generated files.

Two additional XML descriptions can be used to set provider pricing proper-
ties. Usually the cloud side pricing is used to calculate the costs of virtual ma-
chines (VMs) used to run an IoT application. It defines a fixed monthly cost per
VM instance, but some providers charge the hour per price for every instance an
application needs. To manage data coming from IoT devices and sensors, we need
to calculate the IoT side costs, that can also be set based on real provider pricing
schemes (e.g. Amazon, Azure, IBM and Oracle). In general, the IoT prices are
calculated after the generated data traffic in MB following the ”pay as you go” ap-
proach, while some providers charge after the number of messages exchanged in a
month, or set a monthly device per price or messages sent in a day. All these three
XML description formats and possible parameters are presented and discussed in
our previous work [3].

In general, a simulation is performed by executing the following steps: first,
a cloud is set up using an XML description (we used the model of a Hungarian
private cloud infrastructure called the LPDS Cloud of MTA SZTAKI [24]), then
the necessary amount of stations are initialized and the VM parameters are loaded
from additional XML files, which also describe the cloud and IoT costs. Next,
the IoT application is started with the deployment of an initial VM in the defined
cloud, followed by the start of metering and data generation processes of device
stations. IoT and cloud operations are continuously monitored to calculate the
resource consumption costs. During execution, a broker service checks if the cloud
repository received a scenario-specific amount of data, if so, then a compute task
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will be generated and deployed in a VM for data processing.
Finally, sensor data generation, compute task creation and execution are re-

peated till the end of the simulation, with possible starting and stopping of VMs.
At the end of the simulation we can retrieve information about end user costs
concerning the utilization of IoT and cloud resource consumption.

Virtual machines

Applications 

Repository 

Cloud broker 

IoT devices

Figure 2: Application execution in the extended DISSECT-CF simulator

4 The proposed cloud selection strategies

The main research question of this paper is how we can influence the behavior of an
IoT application, if the sensors can have different allocation strategies for multiple
clouds. In the earlier version of the extended DISSECT-CF we could exploit only
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one cloud datacenter to start VMs, therefore all sensors and smart devices were
connected to this specific cloud, and all the generated data of the sensors were
processed by virtual machines running in the same cloud (as we summarized in
the previous section). In this single cloud setup, a cloud can have a preloaded cost
calculation policy with a single pricing scheme. Smart devices usually have different
sensors and usage frequencies affecting data generation methods that can influence
cloud service operation and also the provider pricing. As a result, a single cloud
could be easily overloaded, and the unprocessed data could hinder the operation
of the IoT application causing longer response times, even service unavailability in
real-world services.

The formerly added components of the simulator by our previous work towards
IoT extension can be seen in Figure 1 denoted by grey background. Our current
contribution targets the top levels of the simulator architecture, and aims to enable
the use of multiple IoT Controllers and pricing schemes.

In this work we introduce the possibility of multi-cloud management for IoT
cloud simulations in DISSECT-CF. During the start of the simulation we can set up
different clouds using extended XML descriptions denoting sets of physical machines
and repositories with various properties. Another improvement is the introduction
of a cloud broker, which can manage different VM queues. These queues may
have virtual machines with different pricing policies, and within a simulation the
broker can decide, to which cloud (and to which VM queue) the IoT devices should
be connected, thus where the generated data should be sent and processed in an
application. This revised IoT Cloud management architecture is depicted in Figure
2, showing one cloud with three different applications mapped to three different
VM queues. These extensions make the simulator more flexible and capable of
performing scalability experiments involving multiple cloud providers.

In order to enable easy and repeatable system configuration, we defined a new
XML format to configure VM flavors with prices for the applications. An example
of this XML structure can be seen in Figure 3, which defines two flavors. With
this flavor model we can specify the required VM resources (cpu-cores, ram), the
cost of the VM (price-per-tick), the number of boot instructions affecting the boot
time (startup-process), the network traffic (network-load) and the local disk size
requirement (req-disk) of the new instance. Flavors can be identified by the name
attribute, and they must be unique in the configuration. In this example we defined
two different clouds (4 CPU cores with 4 GB RAM, and 2 CPU cores with 2 GB
RAM), which allocate almost 10 GBs of the local disc.

An example XML with two application descriptions is presented in Figure 4.
We defined a daemon service frequency (freq) to regularly check the repository for
unprocessed data. The tasksize attribute tells the highest amount of unprocessed
data that can packaged in one compute task to be executed by virtual machines.
The selected computing infrastructure is identified by the cloud tag, and finally,
the VM flavor to be used for executing the compute tasks can be specified in the
instance tag (by referring to the name attribute of the flavor model).

In this example both defined applications use the formerly defined flavors and
two different clouds (identified by ’Cloud1’ and ’Cloud2’ unique name). The fre-
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<?xml version="1.0"?>

<flavors>

<flavor name="amazon-large">

<ram>4294967296</ram>

<cpu-cores>4</cpu-cores>

<price-per-tick>0.000015</price-per-tick>

<core-processing-power>0.001</core-processing-power>

<startup-process>100</startup-process>

<network-load>0</network-load>

<req-disk>10000000000</req-disk>

</flavor>

<flavor name="azure-small">

<ram>2147483648</ram>

<cpu-cores>2</cpu-cores>

<price-per-tick>0.000001</price-per-tick>

<core-processing-power>0.001</core-processing-power>

<startup-process>100</startup-process>

<network-load>0</network-load>

<req-disk>10000000000</req-disk>

</flavor>

</flavors>

Figure 3: Sample description using the flavor XML model

quency value defines that the daemon service should repeat the virtual machine
handling functions (generate, shutdown and reboot the VM based on the actual
load of unprocessed data) every 5 minutes.

In the IoT paradigm the sensors are passive entities of the systems, thus their
performance is limited by the operation frequency (i.e., data generation, storing,
transfer to the cloud), up-time and network connection. Usually, large amounts
of sensor data are sent from the smart devices to cloud resources for further com-
putation and analysis. Since resource consumption can be costly, IoT application
owners can reduce their expenses by selecting a provider having a suitable pricing
scheme.

In this paper we defined four different strategies to perform cloud provider se-
lection (to be done during each IoT device (or sensor) start-up), which can be
denoted by setting the strategy field of the XML description of each device partic-
ipating in the simulation. The strategy for a smart device is defined in the device
XML description format presented in Figure 5 with the strategy tag. Also the
network settings (maxinbw, maxoutbw, diskbw) of the local repository (reposize)
are set with data caching function (data-ratio). We can configure the life time of
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<?xml version="1.0"?>

<applications>

<application tasksize="2500000">

<name>Weather-1</name>

<freq>300000</freq>

<cloud>cloud1</cloud>

<instance>azure-small</instance>

</application>

<application tasksize="2500000">

<name>Weather-2</name>

<freq>400000</freq>

<cloud>cloud2</cloud>

<instance>amazon-large</instance>

</application>

</applications>

Figure 4: Sample description using the application XML model

the device (starttime, stoptime), the number of sensors it has (sensor), the size of
the generated data (filesize) and the generation and sending frequency (freq). The
device settings can be applied for a group of devices using the number attribute.
In this example (Figure 5) the configuration file defines 487 devices running for 6
hours and each device generates 50 bytes of data by its 8 sensors. Detailed XML
samples and schemes can be found in [20].

We propose four different strategies for multi-cloud management: (i) random,
(ii) cost-aware, (iii) runtime-aware and (iv) Pliant. In the next subsections we
introduce these strategies.

4.1 Basic strategies

With the random strategy the cloud broker chooses one of the available applica-
tions running in the simulated clouds randomly for an actual IoT device (sensor or
station).

The cost-aware strategy looks for the cheapest available VM in a cloud (based
on their static pricing properties), thus it compares the prices of the required VM
flavors for a given device. Its algorithm orders the VMs by their price-per-tick
value. This solution may be more suitable for IoT applications having relatively
small data processing needs or less susceptible for the processing time, because
cloud providers usually offer lower resource capacities for less costs.

In the runtime-aware strategy, the corresponding algorithm ranks the available
VMs (residing in different clouds) by a specific value defined by the ratio of the
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<?xml version="1.0" encoding="UTF-8"?>

<devices>

<device starttime="0" stoptime="21600000"

number="487" filesize="50">

<name>test1</name>

<freq>60000</freq>

<sensor>8</sensor>

<maxinbw>1000</maxinbw>

<maxoutbw>1000</maxoutbw>

<diskbw>1000</diskbw>

<reposize>60000</reposize>

<data-ratio>1</data-ratio>

<strategy>random</strategy>

</device>

</devices>

Figure 5: Sample description using the device XML model

number of already connected devices and the number of the available physical
machines of the hosting cloud. This is a dynamic strategy taking into account
the actual load of the available clouds. Applications having longer data processing
needs may prefer this strategy.

4.2 The Pliant strategy

Fuzzy sets were introduced in 1965 with the aim of reconciling mathematical mod-
eling and human knowledge in the engineering sciences. Fuzzy logic means that we
can not decide whether the value is true or not. The true lies between the true and
false value. Fuzzy logic offers a very valuable flexibility for reasoning [17]. Most of
the building blocks of the theory of fuzzy sets were proposed by Zadeh, especially
fuzzy extensions of classical basic mathematical notions like logical connectives,
rules, relations and quantifiers. Over the last century, fuzzy sets and fuzzy logic
[16] have become more popular areas for research, and they are being applied in
fields such as computer science, mathematics and engineering. This has led to a
truly enormous literature, where there are presently over thirty thousand published
papers dealing with fuzzy logic, and several hundreds books have appeared on the
various facets of the theory and the methodology. However, there is not a sin-
gle, superior fuzzy logic or fuzzy reasoning method available, although there are
numerous competing theories.

The Pliant system is a kind of fuzzy theory that is similar to a fuzzy system [18].
The difference between the two systems lies in the choice of operators. In fuzzy
theory the membership function plays an important role, but the exact definition
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of this function is often unclear. In Pliant systems we use a so-called distending
function, which represents a soft inequality. In the Pliant system the various oper-
ators, which are called the conjunction, disjunction and aggregative operators, are
closely related to each other. In the Pliant system we have a generator function
and using this function we can create aggregation operator, conjunctive operator
or disjunctive operator. In the Pliant systems the corresponding aggregative oper-
ators of the strict t-norm and strict t-conorm are equivalent, and DeMorgans law
is obeyed with the corresponding strong negation of the strict t-norm or t-conorm.

The Pliant system has a strict, monotonously increasing t-norm and t-conorm,
and the following expression is valid for the generator function:

fc(x)fd(x) = 1, (1)

where fc(x) and fd(x) are the generator functions for the conjunctive and disjunc-
tive logical operators, respectively. This system is defined in the [0,1] interval.

The operators of the Pliant system are
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where α > 0.
The operators c, d and n fulfill the DeMorgan identity for all ν, a and n fulfill

the self-DeMorgan identity for all ν, and the aggregative operator is distributive
with the strict t-norm or t-conorm. The ν value express the expected value of the
given context. This means that if the given x value is greater than ν, then the
operators increase the value of x. The opposite is true when x is smaller than ν.
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Table 1: Normalization parameters

Parameter Lambda Shift

General VM cost -1.0/96.0 15
Cost of the application -1.0 (maxPrice-minPrice)/2
Workload -1.0 maxWorkload
Number of VM -1.0/8.0 3
Number of stations -0.125 sumStations/appSize
Number of active stations -0.125 sumStation/activeStation
VM memory size 1.0/256 350
VM CPU 1.0/32 3

These algorithms calculate a score for each cloud using the environment prop-
erties. The calculation step includes a normalization step, where we apply the
Sigmoid function. In the normalization step it should be mentioned that if the
normalized value is close to one, it means it is a more valuable property, and if
the normalized value is close to zero, it means it is a less prioritized property. For
example, if the CPU utilization of the VM is high, the normalization algorithm
should give a value close to zero.

In a previous work [19], we used the Pliant system approach to schedule applica-
tions to VMs in a cloud by minimizing energy consumption. There we experienced
that uncertainty could be well tolerated with this approach, and better results can
be achieved with this model than traditional approaches.

In this work we create a new algorithm that can predict, which cloud could
be the best for managing a given IoT device. This algorithm is also based on
the Pliant logic, therefore for each cloud (i.e. for each VM queue in a cloud) it
calculates a score number. The first step of the algorithm is to normalize the
data into the [0,1] interval. We apply a Sigmoid function for this purpose. We
define the following properties for each cloud VM: general VM cost, current cost
of application, workload, number of running VMs in the hosting cloud, number of
devices that are already connected to a cloud, memory size and number of CPUs.
In Table 1 we can see the exact values of the normalization functions.

After the normalization step we modify the normalized value to emphasize the
importance of the result. This means that if the given x value is greater than our
expectation (ν) than we will increase the value of x. the opposite is true when the
given x is smaller than ν. To achieve this we will modify the normalized value by
using the Kappa function shown in Figure 6 with ν = 0.4 and λ = 3.0 parameters:

κλν (x) =
1

1 +
(

ν
1−ν

1−x
x

)λ (7)

Finally, to calculate a cloud score number for the given application. For this
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Figure 6: The Kappa function

manner we can use conjunction, disjunction or aggregation operator. The conjunc-
tive operator is similar as the and operator. This means that if one of the value
is small, then the result will be also small. The opposite is true for disjunctive
operator, that is similar to or operator. If on of the value is large, the result will
be also large. The aggregation operator lies between the disjunctive or conjunctive
operator, that is why we use this operator:

aν,ν0(x1, · · · , xn) =
1

1 + 1−ν0
ν0

ν
1−ν

∏n
i=1

1−xi

xi

, (8)

where ν is the neutral value and ν0 is the threshold value of the corresponding
negation. Here we don’t want to threshold the result so both parameters have the
same value 0.5. The result of the calculation is always a real number that lies in
the [0,1] interval. So we calculate the score for all clouds (i.e. VM queues of clouds)
to find which one is the most suitable for a given device.

5 Evaluation with weather forecasting scenarios

One of the earliest examples of sensor networks comes from the field of weather
prediction, therefore we chose to model meteorological services based on available
public information. Not only the managing architecture, but the generated sensor
data is also modeled, which are in most cases: temperature, humidity, barometric
pressure, rainfall and wind properties. In our model the weather conditions are
regularly refreshed by the service websites in every 5 minutes, but the sensors are
able to generate data in every minute, which needs caching not to overload the
service. In this paper our proposed algorithms address the optimization of cloud
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Table 2: Detailed Bluemix, Azure and Amazon pricing-based private cloud config-
urations used in the evaluations

Cloud Bluemix

Flavor Small Medium Large
Hourly price (Euro) 0.0378 0.149 0.295

CPU (Cores)/RAM (GB) 1/1 4/2 8/4

Cloud Azure

Flavor Small Medium Large
Hourly price (Euro) 0.019 0.0579 0.297

CPU (Cores)/RAM (GB) 1/1.75 2/3.5 8/14

Cloud Amazon

Flavor Small Medium Large
Hourly price (Euro) 0.0229 0.0415 0.3327

CPU (Cores)/RAM (GB) 1/2 2/4 8/32

Table 3: Detailed multi-cloud configuration for the evaluations

Cloud Physical machines

LPDS-1 1 PM - 32 cores, 128 GB RAM
4 PMs - 8 cores, 12 GB RAM

LPDS-2 1 PM - 64 cores, 128 GB RAM
1 PMs - 48 cores, 128 GB RAM
1 PMs - 32 cores, 128 GB RAM
9 PMs - 8 cores, 12 GB RAM

LPDS-3 2 PM - 64 cores, 128 GB RAM
2 PMs - 48 cores, 128 GB RAM
2 PMs - 32 cores, 128 GB RAM
18 PMs - 8 cores, 12 GB RAM

side costs with enhanced allocation of the stations (i.e. devices). Which means we
can define more cloud providers with their own pricing schemes, but we use only
one IoT provider (therefore the IoT side cost cannot be optimized).

5.1 Scenario No1

In the first scenario we chose to model the crowd-sourced meteorological service of
Hungary called Idokep.hu [21]. In this scenario we aimed to model its real-world
operation: all stations have 8 sensors (represented by a device in our model), the
message size of the sensors can be set up to 0.05 KBs, and the sensors generate
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Table 4: Evaluation results of the scenario No1

Strategies Cost-aware Random Runtime-Aware Pliant

App-1 cost 0 1.119 1.119 1.119
App-2 cost 0 2.027 2.027 2.027
App-3 cost 0 16.167 16.223 16.223
App-4 cost 0 1.842 1.842 1.842
App-5 cost 0 7.300 7.300 7.300
App-6 cost 0 14.426 14.426 14.426
App-7 cost 1.769 0.974 0.972 0.974
App-8 cost 0 2.827 2.822 2.82 7
App-9 cost 0 14.478 14.454 14.478

Total cost (Euro) 1.769 61.164 61.188 61.219
No. of used VMs 5 9 9 9

Total tasks 227 2619 2616 2619
Timeout (min) 1.76 4.01 4.05 2.06

data in every minute. The start-up period of the stations were selected randomly
between 0 and 20 min. In order to exemplify the usage of different cloud selection
strategies, we defined periodic start-up and shut-down dates for certain stations
(e.g. to represent malfunctions or failures). We simulate a whole day of operation
(from 0:00 a.m. to 24:00 a.m.), and we start the simulation by setting up 200
stations at 0:00 a.m. At 2:00 a.m. we start 100 more, and at 10:00 a.m. 200 more
to scale the total number of operated stations up to 500. At 2.00 p.m. we shut
down 200 stations to scale down the number of running station to 300 by 10 p.m.
At the end of the day the total number of running stations return to 200. This
means the total number of operated meteorological stations in this scenario are 500
(which denotes a relatively small scale, nation-wide system).

With these station management timings we run four different test cases: (i) all
stations use the random strategy, (ii) all stations use the cost-aware strategy, then
(iii) all stations use the runtime-aware strategy. Finally, (iv) we used the Pliant
strategy in the last experiment. For this evaluation we configured three clouds
based on the LPDS-1 cloud description from Table 3, and every cloud can run
application instances (to execute compute tasks) in three VM flavors defined in
Table 2 (that makes 9 possible application instances in total).

We executed the formerly defined scenario with the four test cases. The results
of the experiments can be seen in Table 4. After executing this scenario the ap-
plications processed 173.75 MBs of data. The so-called timeout parameter denotes
how much time it took for the application to terminate (i.e. to perform all remain-
ing data processing operations) after the last station stopped working (at 24:00
a.m.). As we can see from these results, the cheapest solution is the cost-aware
strategy (1.769 Euros) with these simulation parameters, it also has the shortest
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Figure 7: Timeline comparing task allocations of pliant and cost-aware strategies
in Scenario No1

timeout (1.76 minutes) and it utilized the least virtual machines. This strategy
only used 5 instances of the cheapest VM while the other strategies used 1 VM
instance in every running application. Since the stronger virtual machines (having
higher costs) processed the tasks faster than the weaker ones (as expected), they
had to generate tasks more frequently. In general, choosing the cheapest VM for
an application may result in serious delay in real time systems, but in this case our
simulated system can operate with weaker resources in real time due to the small
amount of sensor data to be processed. The beginning of the simulation there is
no virtual machine running, which can serve any task execution request, thus each
simulation has to wait at most 5 minutes to deploy one and allocate tasks, which
means all timeout values of the strategies are acceptable.

The random, runtime-aware and Pliant strategies use unnecessarily more ex-
pensive virtual machines, which results in more than 60 Euros of cost in every case,
but we can see the advantage of the pliant strategy: it tries to minimize the timeout
value. In this case, it achieved a timeout of 2.06 minutes, which is the second best
result. It shows that our Pliant strategy focused more on execution time reduction
than cost savings.

Figure 7 shows the allocated tasks of an application running in the simulation
with the pliant and cost-aware strategies for the first 12 hours. Every box denotes
a different task and boxes having the same color were processed by the same virtual
machine. The lengths of the tasks refers to their execution time. We can see that
the tasks of the cost-aware strategy processed relatively medium amount of data
resulting in many, not too narrow boxes on the timeline. In case the amount of
unprocessed data was growing, the system started to scale up the number of utilized
virtual machines. Meanwhile the pliant strategy worked with stronger and faster
virtual machines, which resulted also in many tasks with small amount of data, but
using only the same, best fit VM. This explains the difference between the number
of total tasks of these strategies. Next we investigate a scenario of a higher scale.
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Table 5: Evaluation results of the scenario No2

Strategies Cost-aware Random Runtime-Aware Pliant

App-1 cost 0 3.563 3.544 3.542
App-2 cost 0 3.745 3.707 3.721
App-3 cost 0 12.396 12.451 12.451
App-4 cost 0 5.799 5.796 5.783
App-5 cost 0 9.384 8.324 8.748
App-6 cost 0 12.157 12.132 12.034
App-7 cost 26.419 3.061 3.063 3.090
App-8 cost 0 5.156 5.243 5.166
App-9 cost 0 11.261 11.187 11.112

Total cost (Euro) 26.419 66.527 65.451 65.651
No. of used VMs 109 180 170 173

Total tasks 1722 1830 1819 1838
Timeout (min) 631 86 86 71

5.2 Scenario No2

In the second scenario we aimed to simulate a larger, world-wide system. An
international meteorological service called OpenWeatherMap [22] is operated by the
Openweather IT company [23], which was established in 2014 by a group of experts
in Big Data and image processing. As their website suggests, they manage over
40000 meteorological stations all over the world. Our goal with this scenario is to
investigate how IoT applications behave in such large-scale environments. Similarly
to the first scenario, we used three clouds configured with Amazon, Azure and IBM
Bluemix cloud provider pricing defined in Table 2, but we modified the physical
parameters of the simulated private clouds (to be able to cope with the higher
number of stations) as defined by LPDS-2 in Table 3. The number of running
weather stations has been increased to 40000, each of them works with 8 sensors
and generate 50 bytes of data every minute. We run this scenario to simulate 6
working hours. In the beginning we started 10000 stations, then we added 10000
stations more in the next hours to reach 40000 stations by the fourth hour.

The results of the second scenario is shown in Table 5. After executing this
scenario the applications processed 4.008 GBs of data. In the previous scenario
the cost-aware strategy was good choice both cost and runtime, but problems may
occur for systems with higher scale. In this case the cheapest schedule was pro-
vided by the cost-aware strategy with 26.419 Euros, but it had 631 minutes (∼10.51
hours) timeout, which is almost twice longer than the simulated working time (i.e. 6
hours). For applications which are not sensitive to low latency, the cost-aware strat-
egy can be still an acceptable opportunity to decrease costs, but for time-dependent
applications (e.g. smart systems, weather forecasting systems) other strategies are
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Table 6: Evaluation results of the scenario No3

Strategies Cost-aware Random Runtime-Aware Pliant

App-1 cost 0 3.512 3.552 3.552
App-2 cost 0 3.724 3.731 3.804
App-3 cost 0 13.283 12.479 12.451
App-4 cost 0 6.233 5.830 5.824
App-5 cost 0 9.197 8.523 8.386
App-6 cost 0 12.428 12.157 11.960
App-7 cost 26.489 3.085 3.071 3.070
App-8 cost 0 5.224 5.185 5.195
App-9 cost 0 11.904 12.251 12.152

Total cost (Euro) 26.489 66.429 66.784 66.397
Used VMs 172 183 184 185
Total tasks 1722 1905 1889 1893

Timeout (min) 526 36 36 36

needed. Nevertheless, the cost-aware strategy utilized the lowest number of VMs,
too. The random and the runtime-aware strategies have the same timeout (with
86 minutes), but the runtime-aware approach operated with less virtual machines
(with 10 VMs) and saved around one Euro compared to the random one. The
pliant strategy was even better with almost the same price, since it reached the
most favorable timeout (with 71 minutes).

5.3 Scenario No3

In the third scenario we configured our private cloud to be the strongest, having
twice as many resources as in the second scenario (detailed in the LPDS-3 parameter
setup of Table 3), while the rest of the configuration (the applications and the
stations) remained untouched, thus the final amount of generated (and processed)
data was the same as in the previous scenario.

Table 6 shows the results of the third scenario. With the increased physical
resources the running time have decreased, but the cost-aware strategy still required
526 minutes (∼8.76 hours) timeout, after the last station stopped working.

If we take a look at the figures, we can see that most strategies benefited from
the stronger clouds: they all managed to reduce the timeout significantly. The
cost-aware strategy remained the cheapest one, but the number of used virtual
machines increased the most against the other strategies compared with the second
scenario. The amount of unprocessed data grew faster, than the number of available
virtual machines, thus when the application operated with the maximum number
of stations the stronger resources could provide more virtual machines to reduce
timeout. Comparing the other three strategies, it shows minimal deviation in the
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Table 7: Evaluation results of the scenario No4

Strategies Cost-aware Runtime-Aware Pliant

Total cost (Euro) 10.442 41.765 38.84
Used VMs 81 51 51
Total tasks 685 1384 1242

Timeout (min) 41 31 24.9

used virtual machines or the costs. The pliant approach uses the most virtual
machines (185), but it was the cheapest with 66.397 Euros, but all strategies has
the same timeout value with 36 minutes. This means that by increasing the number
of resources, the strategies behave differently.

5.4 Scenario No4

In the previous scenarios the station allocation strategies had to choose only 2-4
times to select VM-queues for the applications processing sensor data of the sta-
tions. One of advantages of the pliant approach is that it is able to take into account
more features of the underlying systems, but for this strategy these scenarios were
too static, having only a small number of decision points. Thus in the last, fourth
scenario we defined a more dynamic scenario, where we managed 11500 stations
in the following way. Every half an hour, 500 stations were started to operate
and the whole simulation run for 12 hours. The pliant algorithm had to decide
more often than in the former cases. Our aim with this scenario is to prove that
this sophisticated algorithm is able to decrease both the costs and the runtime at
the same time. The results can be seen in Figure 7. The processed data for the
whole experiment is 1.54 GBs. For this scenario we used a different cloud setup as
well. We configured three clouds based on the LPDS-1, LPDS-2 and LPDS-3 cloud
description of Table 3, respectively.

As expected the cheapest solution is the Cost-aware algorithm with 10.442 Eu-
ros, which also has the highest timeout with 41 minutes. This strategy used the
highest number of virtual machines, which is also a disadvantage, if the cloud
provider calculates the cost based on the number of VMs. Comparing the other
strategies (here we neglected the random approach), the pliant and the runtime-
aware strategies used the same number of virtual machines, but the Pliant algorithm
managed to reduce both the cost and the runtime most effectively.

6 Conclusion

Cloud Computing solutions act as supporting services for the IoT world. Applica-
tions in this newly emerged field are continuously growing, and further research is
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still needed to resolve open issues, to optimize system management and to reduce
utilization costs for both providers and end-users.

In this paper we introduced four cloud selection strategies aimed to reduce
IoT application execution time and usage costs. We evaluated these strategies
through scenarios derived from a real-life weather forecasting service. The results
have shown that we can achieve significant cost savings or makespan reduction in
multi-cloud systems by using one of our proposed strategies.

Our investigations showed that if the components of IoT-Cloud systems (includ-
ing sensors, smart devices and virtual resources) change often, a static scheduling
and placement algorithm (ignoring the actual load, the type of virtual machines
and the number of physical resources) can provide increased latencies and costs.
Our presented a dynamic approach based on the Pliant method can adapt to the
actual state of the underlying, possibly multi-cloud systems, therefore it can find
better placement of devices resulting in lower costs and response times.

Our future work will address IoT scenarios from other smart domains (e.g.
smart farming), as well as the modeling of additional sensor and device types. We
also plan to extend our cloud selections algorithms to minimize IoT side costs, and
to introduce energy-aware algorithms for smart device management. We also plan
to perform experiments with models of recent infrastructures (e.g. Agrodat [25],
MTA Cloud [26] or the Cloud for Education [27]).

The presented scenarios and the source code of the IoT extended DISSECT-CF
with the mentioned XML description formats and the XML Schema Document files
are available at [20].
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