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Refined Fuzzy Profile Matching∗

Gábor Ráczab, Attila Saliac, and Klaus-Dieter Schewed

Abstract

A profile describes a set of properties, e.g. a set of skills a person may
have or a set of skills required for a particular job. Profile matching aims
to determine how well a given profile fits to a requested profile and vice
versa. Fuzzyness is naturally attached to this problem. The filter-based
matching theory uses filters in lattices to represent profiles, and matching
values in the interval [0,1], so the lattice order refers to subsumption between
the concepts in a profile. In this article the lattice is extended by additional
information in form of weighted extra edges that represent partial quantifiable
relationships between these concepts. This gives rise to fuzzy filters, which
permit a refinement of profile matching. Another way to introduce fuzzyness
is to treat profiles as fuzzy sets. In the present paper we combine these two
aproaches. Extra edges may introduce directed cycles in the directed graph of
the ontology, and the structure of a lattice is lost. We provide a construction
grounded in formal concept analysis to extend the original lattice and remove
the cycles such that matching values determined over the extended lattice are
exactly those resulting from the use of fuzzy filters in case of crisp profiles.
For fuzzy profiles we show how to modify the weighting construction while
eliminating the directed cycles but still regaining the matching values. We
also give sharp estimates for the growth of the number of vertices in this
construction.
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1 Introduction

A profile describes a set of properties, and profile matching is concerned with the
problem of determining how well a given profile fits to a requested one. Profile
matching appears in many application areas such as matching applicants for jobs
to job requirements, matching system configurations to requirements specifications,
matching team players to game strategies in sport, etc.

A simple approach to profile matching considers profiles as sets of unrelated
items, which leads to measuring the similarity or distance of sets. Several ways
of definition of distances of sets were introduced such as Jaccard or Sørensen-Dice
measures [17], which turned out to be useful in ecological applications. However,
skills or properties included in profiles are usually not totally unrelated items, de-
pendencies between them exist and need to be taken into account. For example, in
the human resources area several taxonomies for skills, competences and education
such as DISCO [6], ISCED [13] and ISCO [14] have been set up. These taxonomies
organize the individual properties into a lattice structure. Popov and Jebelean
[26] proposed to define an asymmetric matching measure on the basis of filters in
such lattices. They represented a profile P with the lattice filter generated by P
on the basis that having a specialized skill imples the having a more general skill
like knowledge of Java assumes knowledge of Object Oriented Programming as in
Figure 4.

Besides such subsumption relationships captured by the lattice order other “hor-
izontal” relationships exist as well. For instance, a job applicant may have some
other skills with certain probabilities or of some (not complete) proficiency level,
e.g. we may reasonably assume that knowledge of Java implies knowledge of Net-
Beans up to a grade of 0.7 (or with probability 0.7). This kind of dependencies are
exploited in [27]. The idea is that a given profile is considered better than another
one for a given requested profile, if they match equally using the filter-based mea-
sure, but the first one has more items implied partially that match the requested
profile. In this way we get a refinement of the filter-based matchings using the
maximum weight of a path from the profile’s nodes to a vertex x. This process
results in a set of nodes with grades in [0,1], which can be interpreted as a fuzzy
set. Actually, it turns out to be a fuzzy filter [12, 18].

However, the introduction of extra edges may give rise to directed cycles, and
the elegance of the uniform filter-based matchings is destroyed. Therefore, we raised
the question in [28], if the extra edges can be used to modify the original lattice in
such a way that instead of using fuzzy filters ordinary filters in the modified lattice
can be exploited, which means that the refinement can be re-interpreted in the
context of the filter-based matching theory. The answer to this problem is positive,
as we explore in this article.

1.1 Our Contribution

In this article we develop an enriched theory of profile matching centered around
the idea from [27] using weighted extra edges in addition to edges defined by the
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order in a lattice to capture partial relationships between concepts in a profile. How
matching measures can be extended has been shown in our previous work [27].

We now provide a construction that gets rid of directed cycles caused by the
extra edges. In doing so we show that all matching results that can be obtained by
exploiting extra edges can also be obtained from an extended lattice without such
extra edges. That is, the theory of profile matching remains within the filter-based
approach that we developed in [21], which underlines the power and universality
of this theory. In particular, we emphasize how to obtain the lattices underly-
ing the matching theory from knowledge bases that define concepts used in given
and requested profiles, and accordingly we call the lattices also ontology lattices.
These knowledge bases are grounded in description logics, so the lattice exten-
sions provide also feedback for fine-tuning the knowledge representation, whereas
weighted extra-edges are not supported in the knowledge bases. In [21] it was also
shown that under mild plausibility constraints on human-defined matchings ap-
propriate weights can be defined such that the filter-based matchings preserve the
human-defined rankings, which further enables linear optimization to synchronize
matchings with human expertise. These results on learning matchings from human
expertise can now be carried over to the refined matching theory.

The extension is done by extending the original ontology lattice by new nodes
and weighting of the nodes. The result is a directed acyclic graph, whose structure
reflects the different possible path lengths between nodes of the ontology lattice.
A directed acyclic graph naturally represents a poset, although not a lattice in
general. In order to gain back the lattice structure formal concept analysis is used.

The concept of offers and applications from [27, 28] is extended to fuzzy sets.
That is we interpret such formulations as “knowledge of skill X is an advantage” by
giving a membership value to skill X in the offer a number from (0, 1), measuring
the importance of X. Similarly, applications are also considered as fuzzy sets where
the membership values signify the proficiency of the applicant in the given skill.

While the extension of given profiles is natural, e.g. for job applications the
consideration of skills derived from extra edges appears natural, as employers may
benefit from these skills, it is not so clear whether the requested profiles should
be extended as well. On one hand, profiles should be handled uniformly, as they
could represent both given and requested profiles. On the other hand, if requested
profiles, e.g. requirements in job offers, are also extended, then it may happen that a
high matching score may result only from derived skills, not from the ones originally
required, which may be considered as being misleading and disadvantageous. In the
present paper we discuss both scenarios, the latter one being treated by applying
different weighting functions for given and requested profiles.

Note the conceptual difference between horizontal connections represented by
extra edges and the membership values of skills in offers and applications. The extra
edges belong to the taxonomy used and are determined by the domain experts, while
fuzzy values are determined by the firms and individuals who apply the matching
measure to rank applications for offers.
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1.2 Organization of the Article

The remainder of this article is organized as follows. In Section 2 we provide a brief
introduction of the fundamentals of filter-based profile matching as developed in
our previous research (summarized in [21]), and then extend the approach by using
extra edges and fuzzy filters. Section 3 is then dedicated to the construction of
the lattice enlargement using formal concept analysis and the proof that matching
values using extra edges can be equivalently obtained by ordinary matching values
on the extended lattice. We also give node weightings that preserve the weights of
fuzzy filters assuming that requested profiles are also extended. Section 4 contains
the analysis for the case that requested profiles are not extended. Section 3.3
discusses related extremal problems concerning how the size of the constructed
enlargement relates to the size of the original lattice. It is included for the sake of
completeness, the proofs of the statements can be found in [28]. Finally, in Section
5 we discuss related work, and in Section 6 we conclude the article with a brief
summary.

2 Profile Matching Based on Lattices and Filters

In this section we briefly present the definitions underlying the matching theory
from [21] and its refinement from [27], as well as notations of fuzzy set theory used.
Matching theory is based on lattice L, and a profile is represented by a filter F in
the lattice. A matching measure is a function defined on pairs of filters. If µ is such
a matching measure and F , G are filters, then µ(F ,G) will be a real number in
the interval [0, 1], which is called a matching value. Matching measures in general
exploit weights assigned to concepts in the lattice L.

Let L(S,≤) be a lattice. Informally, for A,B ∈ S we have A ≤ B, if the property
A subsumes property B, e.g. for skills this means that a person with skill A will
also have skill B. A filter is a non-empty subset F ⊆ S, such that for all C,C ′ with
C ≤ C ′ whenever C ∈ F holds, then also C ′ ∈ F holds.

Let F ⊆ P(S) denote the set of filters. A weighting function on S is a function
w:P(S) → [0, 1] satisfying (1) w(S) = 1, and (2) w(

⋃
i∈I Ai) =

∑
i∈I w(Ai) for

pairwise disjoint Ai (i ∈ I).

Definition 1. A matching measure is a function µ:F × F → [0, 1] such that
µ(F1,F2) = w(F1 ∩ F2)/w(F2) holds for some weighting function w on L.

The matching measure µpj defined in [26] uses simply cardinalities:

µpj(F1,F2) = #(F1 ∩ F2)/#F2

Thus, it is defined by the weighting function w on S with w(A) = #A/#L, i.e.
all properties have equal weights. From Section 3 onwards we will tacitly assume
that properties have equal weight. This will simplify our presentation, and the
extension of our theory to matching measures with general weighting functions is
straightforward.
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Figure 1: Fragment of a graph with lattice edges (solid) and extra edges (dashed)
and assignment of degrees.

Let F(S) be the collection of fuzzy sets over S. For an X ∈ F(S) and s ∈ S let
µX(s) denote the membership value of s in X. We also write X = {x1: γ1, x2: γ2, . . .,
xn: γn} where γi = µX(xi). The support of fuzzy set X ∈ F(S) is supp(X) = {s ∈
S|µX(s) > 0}. For two fuzzy sets F,G of F(S) let F ∩G = {s: γs|s ∈ S and γs =
min{µF (s), µG(s)}, furthermore let ||F ||: =

∑
v:γv∈F γv, i.e. || · || denotes sigma car-

dinality and intersection is defined as the min t-norm. Note, that other cardinality
and intersection functions could be applied in the same way [35, 12]. We assume
that v: γv ∈ F means γv = µF (v) > 0.

We can extend the lattice with additional information in form of so called extra
edges that represent some kind of quantifiable relationship between skills. However,
these edges can form cycles in the hierarchy therefore we use directed graphs to
handle them instead of the lattice structure [27].

Let G = (V,E) be a directed graph where V = S and E = Elat∪Eext is a set of
lattice edges and extra edges such that for two nodes vi, vj ∈ V : (vi, vj) ∈ Elat iff vj
covers vi, i.e. vi < vj and there exists no vk such that vi < vk < vj . Furthermore,
(vi, vj) ∈ Eext iff there is an extra edge between vi and vj . Let wedge:E → [0, 1]
be an edge weighting function such that for all elat ∈ Elat:wedge(elat) = 1 and for
all eext ∈ Eext:wedge(eext) ∈ [0, 1] that represents the strength of the relationship
between start and end node of the edge. See Figure 1 for a fragment of such a
graph. Let pF (x, v) denote the set of directed paths from node x to node v using
edges of a subset F ⊆ E of edge set E of G.

Let application A and offerO be fuzzy sets over S and define a matching function
of an application A to an offer O using the graph in the following way. First, we
define function ext to extend the application and the offer with all the skills that
are available from them via directed path in G. For an arbitrary fuzzy set of skills
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X ∈ F(S) and a subset F ⊆ E of edges let

extF (X) = {v: γv|v ∈ S and γv = maxx′,p∈pF (x′,v)length(p) · µX(x′)}, (1)

where length of a path p = (v1, . . . , vn) is the product of the edge weights on

p, i.e. length(p) =
∏n−1
i=1 wedge((vi, vi+1)) and if pF (x′, v) = ∅, then naturally

length(p) = 0 for p ∈ pF (x′, v) .
Fuzzy filters were introduced in [18]. A fuzzy set Y over S is a fuzzy filter in

L = (S,≤) if for all t ∈ [0, 1] the level set Yt = {y ∈ Y : µY (y) ≥ t} is a filter in L.
A crisp version of the following was proven in [28].

Theorem 1. Let G = (S,E = Elat ∪ Eext) be a directed graph with edge weights
wedge:E → [0, 1] extending the lattice L(S,≤), and let X ∈ F(S) be a fuzzy set over
S. Then the extension extE(X) of X with respect to E is a fuzzy filter in L.

Proof. Let s ∈ extE(X)t and s < s′ in L. Furthermore, let x ∈ S and p ∈ pE(x, s)
where the maximum in (1) is taken. Since s < s′ in L, there exists a directed
path p′ from s to s′ using only lattice edges. The concatenation of p and p′ is a
directed walk q in G from x to s′ such that length(p) = length(q), because lattice
edges have weight 1. Let q′ be the the walk from x to s′ of fewest edges such that
q′ ⊆ q. Then clearly q′ ∈ pE(x, s′) and length(q′) ≥ length(q) = length(p). Hence,
γs′ ≥ γs implying that s′ ∈ extE(X)t.

Example 1. For the graph in Figure 1 take the following fuzzy sets of skills

O = {Java: 1.0, Netbeans: 0.9, XML: 0.5} and

A = {Java: 1.0, PHP : 0.9, Eclipse: 0.7}

These generate the following fuzzy filters:

extE(O) = {Java: 1.0, Netbeans: 0.9, XML: 0.5, OOP : 1.0, PL: 1.0,

IT : 1.0, IDE: 0.9, Eclipse: 0.8,ML: 0.5}
and extE(A) = {Java: 1.0, PHP : 0.9, Eclipse: 0.8, OOP : 1.0, PL: 1.0,

IT : 1.0, Script: 0.9, IDE: 0.8, Netbeans: 0.7,

Javascript: 0.81, HTML: 0.9,ML: 0.9, XML: 0.63}

This gives rise to the intersection fuzzy filter

extE(A) ∩ extE(O) = {Java: 1.0, OOP : 1.0, PL: 1.0, IT : 1.0, IDE: 0.8,

Eclipse: 0.8, Netbeans: 0.7, XML: 0.5,ML: 0.5}

Assuming a weighting function w that assigns the same weight to all elements
we obtain the matching value µ(extE(A), extE(O)) = 6

7.1 .

It perfectly makes sense to use lattice edges to extend applications and offers as
lattice edges describe specialization relation between skills. Namely if an applicant
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possesses a special skill then he or she must possess the more general skills as well.
However extra edges are used in the extension as well to get more selective matching
functions that help differentiate applications.

Let us call nodes in supp(extE(X))\ supp(extElat
(X)) derived nodes for a fuzzy

set X ∈ F(S) of skills. We investigate two approaches or philosophies when extend-
ing profiles using the extra edges. The first one is symmetric, that is the case when
offers and applications are treated in the same way. In this case we use extension
function extE for both, offers O and applications A. The advantage is that we only
have to apply one weighting function and the proof of equivalence of different repre-
sentations is simpler than that of the other case. There is a disadvantage, though.
If offers are also extended with derived skills, then an application may obtain high
matching value just having those skills. However, it is not really advantageous for
an employer, as required skills are not in the application.

The second approach called the strict approach is when offers are only extended
with non-derived nodes, that is extE is used for applications but extElat

is used for
offers. This is the approach of [27]. The disadvantage of this case is that different
weighting functions have to be applied for applications and offers, consequently
the proofs of equivalences are more complicated. However, the point of view of
employers is better represented in the second way. An application has to have good
matching in target skills to score high, and the derived skills can be used to rank
applications scoring equally otherwise. Note, that supp(extElat

(X)) is exactly the
set of nodes contained in the lattice filter generated by the support supp(X) = {s ∈
S : µX(s) > 0} in the ontology lattice (S,≤).

We adapted the profile matching function proposed by Popov et. al. [26] to
fuzzy sets in [27]. We use the same function here except the different approaches
in extension of offers. So, let the matching value of A to O be

matchsym(A,O) =
||extE(A) ∩ extE(O)||

||extE(O)||
(2)

in case of the symmetric approach, and

match(A,O) =
||extE(A) ∩ extElat

(O)||
||extElat

(O)||
(3)

in case of the strict approach.

3 Lattice Enlargement

In this section, we present a graph transformation method to eliminate extra edges
from extended lattices preserving symmetric matching values of applications to
offers, and then we use formal concept analysis to restore lattice properties in the
transformed graphs.
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3.1 Extension Graph

Let G = (V,E) be a directed graph with weighting function wedge as defined above
and cij be the length of the longest path from vi to vj where vi, vj ∈ V are two
nodes. Let vi1j , . . . vikj be the nodes from where vj is available via directed path

such that ci1j ≤ · · · ≤ cikj . Let cj1 , . . . , cjlj denote the different values among

ci1j , . . . , cikj , i.e. cj1 < · · · < cjlj .

For all cj1 . . . cjlj , add new nodes Vj = {vj1 , . . . , vjlj−1
} (for simplicity let vjlj =

vj) to V and add new edges of weight one from vjlj to vjlj−1
, . . . , from vj2 to vj1 ,

and from vj1 to the top to E. The new edges form a directed path from vj to the
top. Let qj = (vjlj , . . . , vj1 , top) denote that path. Assign weight wjk = cjk − cjk−1

to vjk (k = 1, . . . , lj) where cj0 = 0. Note, that
∑l
k=1 wjk = 1 as it is a telescopic

sum. If the length of the longest path from vi to vj was cjk , then add a new edge
of weight one from vi to vjk . Finally, remove all extra edges from the graph. Now
each edge has weight one, so edge weights can be ignored.

Let G′ = ext(L, Eext) = (V ′, E′) denote the modified graph, called extension
graph, and wnode denote the node weighting function defined.

New nodes of Vj and new edges of qj can be considered as an extension of vj to
a chain because there do not start edges from intermediate nodes to other chains
so out-degrees of intermediate nodes are always one. We call vj the base node of
the chain. Base nodes of such chains are nodes of L, and G as well.

Let qj and qk be two chains with base nodes vj and vk, respectively. Then, an
edge from qk to qj in G′ can go

• from vk to vj and then it represents a directed path in G from vk to vj
containing lattice edges only;

• from vk to an intermediate node vji of qj and then it represents a directed

path pvkvj of G from vk to vj such that length(pvkvj ) =
∑i
s=1 wnode(vjs).

Note, that lattice edges in G are acyclic so the corresponding edges in G′ are acyclic
as well, and newly added edges between different chains start from base nodes of
chains only. So G′ is an acyclic graph.

Figure 2 shows an example of the construction of G′. There is the original
graph, called G, on the left. Blue (solid) edges represent lattice edges and orange
(dashed) edges with numbers on them represent extra edges and their weights.
There is the extension graph, called G′, on the right where green edges represent
the newly added edges, and numbers in the top right corners of nodes are weights
of the nodes.

As it can be seen, for example, node A of G has been transformed into the chain
qA = (A,A1, T op) since A is available via lattice edges (i.e. via maximum length
paths) from B,C,Bottom and it is available from D via the path pDA = (D,C,A)
whose length is 0.8 and A is not available from any other nodes. Therefore A1 got
the weight 0.8 and A got the weight 0.2.
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Figure 2: Lattice with extra edges and the generated extension graph

The extension graph defined above makes calculating matching value of crisp
offers and applications easy. The following was proven in [28], we include the proof
here for further use and sake of completeness.

Lemma 1. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, G′ = ext(L, Eext) = (V ′, E′) be the extension graph. Let O ⊆ S
be an offer and A ⊆ S be an application, that are crisp sets. Then,

matchsym(A,O) =
||extE(A) ∩ extE(O)||

||extE(O)||
=
||extE′(A) ∩ extE′(O)||

||extE′(O)||
, (4)

where extE′(X) denotes the set of vertices of G′ that are reachable from some nodes
in X via directed paths of G′.

Proof. Let u ∈ G′ and let qz = (zlz , . . . , z1, top) be the node chain with base node
z ∈ G that contains u, i.e. zlz = z and u = zi for some i ∈ [1 . . . lz]. First, we will
show for an arbitrary X ⊆ S that u ∈ extE′(X) iff z ∈ extE(X).

If u ∈ extE′(X), then there is a node a ∈ X ⊆ V ′ and a directed path pau =
(x1, . . . , xi, xi+1, . . . xn) from a to u in G′ where x1 = a and xn = u. If a = z
then z ∈ extE(X). Otherwise let xi+1 = zm be the first node of pau that is an
intermediate node of qz as well. Then for j ∈ [1 . . . i − 1]: xj , xj+1 are nodes of
G, and edges (xj , xj+1) of pau represent directed paths containing lattice edges
only in G. Note that lattice edges form an acyclic subgraph of G. Therefore the
concatenations of lattice edge paths pxjxj+1

represented by directed edges (xj , xj+1)
of G′ for j ∈ [1 . . . i− 1] is a path paxi in the lattice L from a to xi. Now, the edge
(xi, xi+1 = zm) of G′ represents a directed path pxiz from xi to z in G using some
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extra edges. The concatenation of paxi and pxiz is a directed walk from a to z in
G, so it contains a directed path paz, that is z ∈ extE(X).

On the other hand, if z ∈ extE(X) with grade γz, then there is a node b ∈ X
and a maximal length path pbz from b to z in G such that length(pbz) = γz.
In that case, there is an edge from b to zr in G′ for some r ∈ [1..lz] such that∑r
s=1 w

′
node(zr) = length(pbv) and also zr, zr−1, z1 ∈ extE′(X).

Consequently, extE′(A)∩extE′(O) contains fragments of chains generated from
base nodes that are available from both A and O in G. Sum of node weights in a
fragment equals to the minimum of the lengths of the maximal length paths starting
from A or O ending in the base node of the chain. Thus, ||extE(A) ∩ extE(O)|| =
||extE′(A) ∩ extE′(O)|| and ||extE(O)|| = ||extE′(O)||, i.e. equation (4) holds.

If offers O and applications A are allowed to be fuzzy sets, that is O,A ∈ F(S),
then the situation is more complicated. As an example consider the lattice and ex-
tension graph of Figure 2. If A = {D: 0.6} and O = {B: 0.9}, then extE(A) =
{A: 0.48, C: 0.48, D: 0.6, top: 0.6} and extE(O) = {A: 0.9, B: 0.9, D: 0.54, C: 0.432,
top: 0.9}, so extE(A) ∩ extE(O) = {A: 0.48, C: 0.432, D: 0.54, top: 0.6}. Observe
that for any X ∈ F(S) we have supp(extE(X)) = extE(supp(X)) that would sug-
gest defining ext′E′(X) = {v: γv|γv = maxµX(x)wnode(v) for x ∈ supp(X) and
∃ directed path from x to v in G′}. However, this definition would give

ext′E′(A) = {A1: 0.48, C2: 0.192, C1: 0.288, D: 0.18, D2: 0.06, D1: 0.36, top: 0.6}

and
ext′E′(O) = {A: 0.18, A1: 0.72, B: 0.9, C1: 0.432, D1: 0.54, top: 0.9}

resulting in

ext′E′(A) ∩ ext′E′(O) = {A1: 0.48, C1: 0.288, D1: 0.36, top: 0.6}.

Thus, ||ext′E′(A) ∩ ext′E′(O)|| 6= ||extE(A) ∩ extE(O)||.
In order to resolve this problem we charge the contributions of nodes of each

chain to the chain’s top node as follows. For x, v ∈ S define t(x, v) =
∑m
i=1 wnode(vi)

where (x, vm) is the edge of the extension graph G′ from x to the chain qv. If no
such edge exists then t(x, v) is defined to be 0. Note, that values t(x, v) can be
calculated as a preprocessing step for every pair x, v ∈ S, since they do not de-
pend on particular profiles. Let X ∈ F(S) and x ∈ supp(X), furthermore let

extfE′(X) = {v1: γv1 |v ∈ S and γv1 = maxx∈supp(X) µX(x)t(x, v)}. Considering

the previous example of A = {D: 0.6} and O = {B: 0.9}, we obtain extfE′(A) =

{A1: 0.48, C1: 0.48, D1: 0.6, top: 0.6} and extfE′(O) = {A1: 0.9, B1: 0.9, D1: 0.54,
C1: 0.432, top: 0.9}. Note that B1 = B and top1 = top as their chains contain
one element, respectively.

Theorem 2. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, G′ = ext(L, Eext) = (V ′, E′) be the extension graph. Let O ∈ F(S)
be an offer and A ∈ F(S) be an application . Then

matchsym(A,O) =
||extE(A) ∩ extE(O)||

||extE(O)||
=
||extfE′(A) ∩ extfE′(O)||

||extfE′(O)||
. (5)



Refined Fuzzy Profile Matching 253

Proof. There is a directed edge (x, vm) from a node x ∈ S to vm ∈ V ′ iff there exists
a directed path from x to v in G by the construction of the extension graph. Fur-
thermore,

∑m
i=1 wnode(vi) the length of the longest path from x to v in G. Thus, for

any X ∈ F(S) we have v: γv ∈ extE(X) ⇐⇒ v1: γv ∈ extfE′(X).This together with
v ∈ supp(extE(A) ∩ extE(O)) ⇐⇒ v ∈ supp(extE(A)) ∩ supp(extE(O)) ⇐⇒ v ∈
supp(extfE′(A)) ∩ supp(extfE′(O)) ⇐⇒ v ∈ supp(extfE′(A) ∩ extfE′(O)) completes
the proof.

Note, that G′ is acyclic by its construction but does not necessarily define a
lattice. There is a natural way to define a lattice, namely a concept lattice from G′

in which matching values of crisp applications to crisp offers are preserved.

3.2 Concept Lattices

First, we define a formal context and formal concepts based on G′. Let (V ′1 , V
′
2 , T

′)
be a formal context, where V ′1 = V ′2 = V ′ and (vi, vj) ∈ T ′ iff vj is available from
vi via directed path supposing that the relation is reflexive. Consider the element
of V ′1 as start points and the element of V ′2 as end points of directed paths in G′.
Let I ⊆ V ′1 and J ⊆ V ′2 and let us define their dual sets IDs and JDe as follows:

IDs = {b ∈ V ′2 | (a, b) ∈ T ′ for all a ∈ I}
JDe = {a ∈ V ′1 | (a, b) ∈ T ′ for all b ∈ J}

A concept of the context (V ′1 , V
′
2 , T

′) is a pair 〈I, J〉 such that I ⊆ V ′1 , J ⊆ V ′2 and
IDs = J , JDe = I. I is called an extent of 〈I, J〉, and J is called an intent of 〈I, J〉.

Table 1: Formal context (V ′1 , V
′
2 , T

′)

Bot B C C1 C2 D D1 D2 A A1 Top
Bot X X X X X X X X X X X
B X X X X X X
C X X X X X X X X
C1 X X
C2 X X X
D X X X X X X X
D1 X X
D2 X X X
A X X X
A1 X X
Top X

Table 1 shows the formal context (V ′1 , V
′
2 , T

′) that was generated based on graph
G′ of Figure 2. Labels of rows and columns represent the elements of V ′1 and the
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elements of V ′2 , respectively. There is an X in row i column j if (i, j) ∈ T ′, i.e. j is
available from i via directed path in G′.

Lemma 2. If G′ is an acyclic graph, then

1. For every concept 〈I, J〉 of the context (V ′1 , V
′
2 , T

′): I ∩ J = {v} for some
v ∈ V ′ or I ∩ J = ∅

2. For every v ∈ V ′: there is a concept 〈Iv, Jv〉 in the context (V ′1 , V
′
2 , T

′) such
that Iv ∩ Jv = {v}.

Proof.

1. Indirectly, suppose that for a concept 〈I, J〉 of (V ′1 , V
′
2 , T

′) and for two different
nodes u, v ∈ V ′: u, v ∈ (I ∩ J) holds. In this case (u, v) ∈ T ′ and (v, u) ∈ T ′
hold as well. It would mean that there is a cycle in G′ which is a contradiction
as G′ is acyclic.

2. For a node v ∈ V ′ let Jv = {v}Ds be the set of all nodes that are available
from v via directed path (including v itself). Let Iv = JDe

v , then v ∈ Iv. If
Iv = {v}, then 〈Iv, Jv〉 is the concept we are looking for.
Otherwise, suppose that for a node u such that u 6= v: u ∈ Iv = JDe

v =
({v}Ds)De . That means (u, v) ∈ T ′, i.e. v is available from u. As T ′ is a tran-
sitive relation {v}Ds ⊆ {u, v}Ds . However {u, v}Ds ⊆ {v}Ds because {u, v}Ds

cannot contain such node that is not available from all nodes of {u, v}. Fol-
lowing this construction we can get that if JDe

v = Iv = {u1, . . . , ui, v}, then
IDs
v = {u1, . . . , ui, v}Ds = {v}Ds = Jv. Therefore 〈{u1, . . . , ui, v}, {v}Ds〉 is a

concept such that {u1, . . . , ui, v} ∩ {v}Ds = {v}.

Let B(V ′1 , V
′
2 , T

′) be the set of all formal concepts in the context, and ≤ be
a subconcept-superconcept order over the concepts such that for any 〈A1, B1〉,
〈A2, B2〉 ∈ B(V ′1 , V

′
2 , T

′): 〈A1, B1〉 ≤ 〈A2, B2〉, iff A1 ⊆ A2 (or, iff B2 ⊆ B1).
(B(V ′1 , V

′
2 , T

′),≤) is called concept lattice [10] and let cl((L, Eext)) denote the con-
cept lattice obtained from the extension graph ext(L, Eext).

Figure 3 1 shows concept lattice of the context (V ′1 , V
′
2 , T

′) from Table 1. Con-
cepts 〈Iv, Jv〉 where Iv ∩ Jv = {v} are labeled with v. For example, 〈IC2 , JC2〉 =
〈{Bot, C,C2, D}, {C2, C1, T op}〉. But, concepts 〈I, J〉 such that I ∩ J = ∅ are
unlabeled like the 〈{Bot,B,C}, {A,A1, C1, D1, T op}〉 parent of concepts B and C.

Another, larger example of concept lattice is shown on Figure 4 obtained from
the ontology with added extra edges from [27] shown on Figure 1.

It is worth mentioning that the concept lattice cl((L, Eext)) generated from
ontology L endowed with extra edges Eext coincides with the Dedekind-McNeille
completion [8] of the poset obtained as transitive closure of acyclic directed graph

1The concept lattices were generated using the Concept Explorer tool. Web page: http:

//conexp.sourceforge.net/

http://conexp.sourceforge.net/
http://conexp.sourceforge.net/
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Figure 3: Concept lattice of context (V ′1 , V
′
2 , T

′)

ext(L, Eext). Indeed, the collection of upper bounds of a subset S of elements of
the poset is exactly the collection of the vertices reachable from the vertices of S
via directed paths in the directed graph. We use the concept lattice formulation for
two reasons. First, a direct construction is obtained skipping the step of construct-
ing the poset from the directed graph ext(L, Eext). Second, the concept lattice
structure allows us to define node weights properly.

A crisp offer O = {o1, . . . , ok} ⊆ S = V ⊆ V ′ generates a filter FO ⊆
B(V ′1 , V

′
2 , T

′) in the concept lattice such that FO = {〈I, J〉 | ∃〈Io, Jo〉 ≤ 〈I, J〉 such
that Io ∩ Jo = {o} for some o ∈ O}. Similarly, a crisp application A generates a
filter FA in the concept lattice.

Let wcon:B(V ′1 , V
′
2 , T

′)→ [0, 1] be a concept weighting function such that for a
concept 〈I, J〉 of B(V ′1 , V

′
2 , T

′):

wcon(〈I, J〉) =

{
wnode if I ∩ J = {v} for some v ∈ V ′,
0 otherwise.

Let wfil be a filter weighting function such that for a filter F ∈ P(B(V ′1 , V
′
2 , T

′)):
wfil(F ) =

∑
〈I,J〉∈F wcon(〈I, J〉).

The following was proven in [28].
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Figure 4: The concept lattice corresponding to the ontology lattice with added
extra edges of Figure 1.

Theorem 3. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges and cl((L, Eext)) = (B(V ′1 , V

′
2 , T

′),≤) be the concept lattice con-
structed from G and wfil be the filter weighting function. Let O ⊆ S be an offer
and A ⊆ S be an application. Then,

matchsym(A,O) =
wfil(FA ∩ FO)

wfil(FO)
. (6)

The case of fuzzy offers and applications has the same complication as was with
the extension graph. Similarly, we can salvage by charging the contributions of
named concepts to the “top one with the same name”. That is, we define t(x, v) =∑
〈Ix,Jx〉≤〈Ivi ,Jvi 〉≤〈Iv1 ,Jv1 〉

wcon(〈Ivi , Jvi〉) if 〈Ix, Jx〉 ≤ 〈Iv1 , Jv1〉 and 0 otherwise,

for all pairs x, v ∈ S. This again, is a preprocessing step. For X ∈ F(S) let

wfX(〈Iv1 , Jv1〉) = {〈Iv1 , Jv1〉 = maxx∈supp(X) µX(x)t(x, v)} and wfX(〈Ivi , Jvi〉) = 0

for i > 1, as well as wfX(〈I, J〉) = 0 if I ∩ J = ∅. Furthermore, for the filter
FX of the concept lattice B(V ′1 , V

′
2 , T

′)) generated by supp(X) let fuzzfil(FX) =

{〈I, J〉:wfX(〈I, J〉)|〈I, J〉 ∈ FX} be a fuzzy set. Then the following can be proven
along the lines of the proof of Theorem 2.

Theorem 4. For a given offer O ∈ F(S) and application A ∈ F(S) we have

matchsym(A,O) =
||fuzzfil(FA) ∩ fuzzfil(FO)||

||fuzzfil(FO)||
. (7)
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3.3 Extremal problems

It is a natural question how the size of the original ontology lattice L = (S,�)
relates to the sizes of the extension graph ext(L, Eext) and the concept lattice
cl((L, Eext)) obtained from ext((L, Eext)).

The proofs of the following statements can be found in the conference paper
[28]. First, let us consider ext(L, Eext).

Proposition 1. Let L = (S,�) be an ontology lattice of n + 2 nodes. Then for
G′ = ext(L, Eext) = (V ′, E′) we have |V ′| ≤ n2 + 2. Furthermore, this estimate is
sharp, that is for every positive integer n there exists ontology Ln = (Sn,�) and
set of extra edges Eext such that ext(Ln, Eext) has n2 + 2 vertices.

The extremal example is shown on Figure 5.

Figure 5: Extremal example

Our next goal is to bound the size of concept lattice cl((L, Eext)). The main
question is how many “dummy” vertices are generated, that is concepts 〈I, J〉 such
that I ∩ J = ∅.

Theorem 5. Let L = (S,�) be an ontology lattice of n + 2 nodes. Then for
a set Eext of extra edges |cl((L, Eext))| ≤ 2n + n2 − n + 1 and this estimate is
sharp, that is there exist Ln = (Sn,�) and and set of extra edges Eext such that
|cl((Ln, Eext))| = 2n + n2 − n+ 1.

We have the same extremal example shown on Figure 5 as before.
Another interesting question could be how the average or expected size of ex-

tension graph and the concept lattice relates to the size of the original ontology
lattice. This is the topic of further investigations. The first task is finding a rea-
sonable probability distribution for the extra edges.

4 Strict Approach

As it was mentioned above, extra edges can be used based on different philosophies
when extending offers. In this section we investigate how strict matching values of
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applications to offers can be preserved in the extension graph and in the concept
lattice.

4.1 Preserving Strict Matching for crisp offers and applica-
tions

The main problem of preserving strict matching values in the extension graph is
if extra edges are used to extend the offer, then extra nodes might appear in the
extended offer whose weights are greater then 0. However, to address this problem,
special node weighting functions can be defined depending on the offers.

For an offer O ⊂ S let wOnode be a node weighting function that preserves the
weights of the nodes that are available from O via lattice edges in G, and the nodes
that were generated from such nodes in G′, and it assigns 0 to the other nodes, i.e.
for a node v ∈ V ′ let

wOnode(v) =

{
wnode(v) if ∃vj ∈ extElat

(O): v ∈ Vj ,
0 otherwise.

For X ⊂ S let extOE′(X) = {v : wOnode(v)|∃x ∈ X such that pE′(x, v) 6= ∅} Note,
that computing wOnode is a preprocessing step that has to be done once for all offers,
and then wOnode can be reused to calculate matching values of applications to the
given offer.

With these weighting function a similar result can be shown as in Lemma 1.

Lemma 3. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, G′ = ext(L, Eext) = (V ′, E′) be the extension graph, Let O ⊆ S
be an offer with wOnode and let A ⊆ S be an application. Then,

match(A,O) =
||extE(A) ∩ extElat

(O)||
||extElat

(O)||
=
||extE′(A) ∩ extOE′(O)||

||extE′(O)||
(8)

Proof. The proof is analogous to Lemma 1’s. However, extE′(A) ∩ extE′(O) may
contain chain fragment (vyk , . . . , vy1) of a chain qy = {vyl , . . . , vy1 , top} with base
node vy where vy is only available from O via extra edges in G, i.e. vy ∈ extE(O) \
extElat

(O). But wOnode assigns 0 to such vyk , . . . , vy1 nodes by definition. Therefore
||extE′(A)∩extOE′(O)|| =

∑
u∈extE′ (A)∩extE′ (O) min(wnode(u), wOnode(u)) = ||extE(A)

∩extElat
(O)|| and analogously, ||extElat

(O)|| = ||extOE′(O)||. Thus equation (8)
holds as well.

The same issue appears if we want to preserve strict matching values of crisp
applications to crisp offers in the concept lattice as we solved in case of the extension
graph, namely extended offer might contain new nodes with weight greater than 0.
However, the offer specific weighting functions solve this issue as well.

We extend wOnode for concepts, namely let wOcon be a concept weighting function
generated by an offer O such that for a concept 〈I, J〉:

wOcon(〈I, J〉) =

{
wcon(〈I, J〉) if I ∩ J = {v} such that ∃vj ∈ extElat

(O): v ∈ Vj ,
0 otherwise.
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Let wOfil be the filter weighting function based on wOcon, i.e for a filter F ∈
P(B(V ′1 , V

′
2 , T

′)): wOfil(F ) =
∑
〈I,J〉∈F w

O
con(〈I, J〉).

With these weighting functions, we can prove the following theorem similarly
to Theorem 3.

Theorem 6. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges and cl((L, Eext)) = (B(V ′1 , V

′
2 , T

′),≤) be the concept lattice con-
structed from G and wfil be the filter weighting function. Let O ⊆ S be an offer
with wOcon and wOfil concept and filter weighting functions, respectively and let A ⊆ S
be an application. Then,

match(A,O) =
wOfil(FA ∩ FO)

wOfil(FO)
(9)

Proof. Analogously to Theorem 3’s proof and based on Lemma 1 it is enough to
prove that

wOfil(FA ∩ FO)

wOfil(FO)
=
||extE′(A) ∩ extOE′(O)

||extOE′(O)||
. (10)

However, FA and FO contain concepts for all nodes of extE′(A) and extE′(O)
respectively. But wOcon assigns 0 to such 〈Iv, Jv〉 concepts where v ∈ V ′ is not
contained in any chain whose base was available from O in G using lattice edges
only. Therefore wOfil sums up the same values as wOfset, i.e. equation (10) holds as
well.

4.2 Strict matching for fuzzy offers and applications

If offers and applications are allowed to be fuzzy sets, that is O,A ∈ F(S), then we
are confonted with the same problem as we saw in the symmetric case. Consider
the lattice and extension graph of Figure 2. If O = {D: 0.6} and A = {B: 0.9},
then extElat

(O) = {D: 0.6, top: 0.6} and extE(A) = {A: 0.9, B: 0.9, D: 0.54, C: 0.432,
top: 0.9}, so extE(A) ∩ extElat

(O) = {D: 0.54, top: 0.6}. If again we apply defini-
tion for the extension graph mechanically we would get ext′E′(X) = {v: γv|γv =
maxµX(x)wnode(v) for x ∈ supp(X) and pE′(x, v) 6= ∅} for applications and
ext′E′(X) = {v: γv|γv = maxµX(x)wOnode(v) for x ∈ supp(X) and pE′(x, v) 6= ∅}.
However, this definition would give

ext′E′(O) = {D: 0.18, D2: 0.06, D1: 0.36, top: 0.6}

and

ext′E′(A) = {A: 0.18, A1: 0.72, B: 0.9, C1: 0.432, D1: 0.54, top: 0.9}

resulting in

ext′E′(A) ∩ ext′E′(O) = {D1: 0.36, top: 0.6}.

Thus, ||ext′E′(A) ∩ ext′E′(O)|| 6= ||extE(A) ∩ extE(O)||.
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To avoid this anomaly we again charge the contributions of node weights to the
top elements of chains, as in the symmetric case. Recall that for x, v ∈ S

t(x, v) =

m∑
i=1

wnode(vi), (11)

where (x, vm) is the edge of the extension graph G′ from x to the chain qv. If no

such edge exists then t(x, v) is defined to be 0. Also for X ∈ F(S), extfE′(X) =
{v1: γv1 |v ∈ S and γv1 = maxx∈supp(X) µX(x)t(x, v)} was introduced. Now, let
x, v ∈ S. Define tO(x, v) by replacing wnode(vi) by wOnode(vi) in (11). Further-

more for X ∈ F(S), let extfOE′ (X) = {v1: γv1 |v ∈ S and γv1 = maxx∈supp(X) µX(x)
tO(x, v)}. The proof of the following theorem is straightforward analogue of that
of Theorem 2

Theorem 7. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, G′ = ext(L, Eext) = (V ′, E′) be the extension graph. Let O ∈ F(S)
be an offer and A ∈ F(S) be an application . Then

match(A,O) =
||extE(A) ∩ extElat

(O)||
||extElat

(O)||
=
||extfE′(A) ∩ extfOfE′(O)||

||extfOE′ (O)||
. (12)

5 Related Work

The aim of profile matching is to find the most fitting candidates to given profiles.
Due to its various applications areas, it has become a widely investigated topic
recently. Profiles can be represented as sets of elements and then numerous set
similarity measures [3], such as Jaccard or Sørensen-Dice, are applicable to compute
matching values.

There exist methods assuming that elements of profiles are organized into a
hierarchy or ontology. For example, Lau and Sure [16] proposed an ontology-based
skill management system for eliciting employee skills and searching for experts
within an insurance company. Ragone et al. [29] investigated peer-to-peer e-market
place of used cars and presented a fuzzy extension of Datalog to match sellers and
buyers based on required and offered properties of cars. Di Noia et al. [5] placed
matchmaking on a consistent theoretical foundation using description logic. They
defined matchmaking as information retrieval task where demands and supplies are
expressed using the same semi-structured data in form of advertisement and task
results are ranked lists of those supplies best fulfilling the demands.

Guedj [11] claims that applying semantic matching technologies has the problem
that requesting to the user to weighing the skills is a barrier to an usability and an
efficiency of such methods on the user point of view and propses a first approach to
solve this problem. Tinelli et.al [33] combine the representation power of a logical
language with the information processing efficiency of a DBMS and implement it in
the platform I.M.P.A.K.T. Shen et.al. [32] use AI to jointly model job description,
candidate resume and interview assessment.Yan et.al. [36] realize that interviewers
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and job seekers have preferences and propose to learn job-resume matching methods
with the hidden preference information incorporated. Pitukhin et.al. [25] take “one
sided” question: they present methods to gather and rank job offers from the point
of view of the applicant, starting from the assumption that there are many offers
that could not be properly assessed by hand.

With respect to foundations of a profile matching theory the first promising
attempt to take hierarchical dependencies into account was done by Popov and
Jebelean [26], which defines the initial filter-based measure. However, weights are
not used, only cardinalities, which correspond to the special case that all concepts
are equally weighted. The matching theory in [21] is inspired by this work, but
takes the filter-based approach much further. To our best knowledge no other
approach in this direction has been tried, though sophisticated taxonomies in the
recruitment domain such as DISCO [6], ISCO [14] and ISCED [13] already exist.
Ontologies have also been used in the area of recruiting in connection with profile
matching (see [7] for a survey). However, while it is claimed that matching accuracy
can be improved [23], the matching approach itself remains restricted to Boolean
matching, which basically means to count how many requested skills also appear
in a given profile [22].

In [27] an extension to the matching theory has been proposed, which exploits
relations between the concepts in a profile that are not covered by the lattice, i.e. the
presence of a particular concept in a profile may only partially imply the presence of
another concept. Such additional links between the elements of the lattice may be
associated with a degree (or probability) and even cycles may be permitted. This
leads to an enriched matching theory by means of values associated to paths, which
enables an interpretation using fuzzy filters [12]. For the probabilistic extension this
research exploits probabilistic logic with maximum entropy semantics in [1, 15], for
which sophisticated reasoning methods exist [30]. In the meantime this research
has been taken further showing that it is possible to compute an extended lattice
such that matching measures for profiles in the extended lattice capture exactly
the same as the path values [28].

We also assumed a structure among elements of profiles that can be represented
by an ontology, which then fulfills lattice properties, so profiles can be represented
as filters. However, we extended the ontology lattice with extra edges to capture
such relationships that subsumptions cannot express. Then we showed how these
edges are usable to refine the ontology.

There are several methodologies to learn ontologies from unstructured texts or
semi-structured data [2, 31]. Besides identifying concepts, discovering relationships
between the concepts is a crucial part of ontology construction and refinement.
Text-To-Onto [20] uses statistical, data mining, and pattern-based approaches over
text corpus to extract taxonomic and non-taxonomic relations. In [34], various
similarity measures were introduced between semi-structured Wikipedia infoboxes
and then SVMs and Markov Logic Networks were used to detect subsumptions
between infobox-classes.

We presented a method to refine an ontology based on extra edges that rep-
resent some sort of quantifiable relationship between concepts in a profile. These
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relationships can be given by domain experts, computed from statistics, or result
from data mining techniques. For example, in [37] the authors used association
rules and latent semantic indexing over job offers to detect relationships between
competencies. In our method we defined profile extensions and weighting functions
as well to preserve matching values of profiles computed from edge weights.

Formal concept analysis (FCA) [9] is also used to build and maintain formal
ontologies. For example, Cimiano et al. [4] presented a method of automatic acqui-
sition of concept hierarchies from a text corpus based on FCA. In [19], the authors
used FCA to revise ontology when new knowledge was added to it. In our method
we used FCA to restore lattice properties after added new nodes and edges to it
based on extra edges. However as we focused on preserving matching values of
profiles during the transformations, we adapted our profile weighting functions to
the modified ontology lattice as well.

6 Conclusions

In this article the approach of [28] was extended to fuzzy sets of offers and appli-
cations. We refined the matching theory with profiles represented by filters in a
lattice. Such a lattice can be obtained from a knowledge base as shown in [24]. The
basis for the theory is the definition of weighted matching measures on pairs of such
filters. For instance, in the field of human resources profiles correspond to skills sets
of job applicants as well as to requirements in job offers. Learning matching weight
from human expertise as well as efficient querying have been handled in [21]. We
now investigated how ontology lattices can be extended by additional information
and used for matching. We defined matching functions to find the most suitable
applicant to a job offer, however, our results are applicable in other fields as well.

First, profiles are represented as filters in an ontology lattices, which capture
subsumption relations between concepts. Then, we extend such an ontology lattice
by additional information in the form of extra edges describing additional quan-
tifiable relations between the concepts. A directed graph is built from the lattice
endowed with extra edges to handle directed cycles that the new edges might have
introduced, and matching functions are defined based on reachable nodes from the
nodes in a profiles.

Two approaches were presented to extend profiles with derived nodes. In the
first one, both the given and the requested profiles were extended, as profiles should
be handled uniformly. In the second approach, only the given profiles were ex-
tended, which helps to distinguish cases, where the given requirements are met
directly from those, where the requirements are only met by the combination of
several concepts that all contribute partially to the requirements. For instance, in
the human resources field the second strict approach may help employers to better
differentiate among job applicants.

We presented a method that eliminates directed cycles from the graph. It
constructs an extension graph by adding node chains to the original lattice based
on directed paths between nodes in the directed graph and node weights got also
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modified as part of the construction. The extension graph is a directed acyclic
graph and therefore a poset but it is not necessary a lattice. We further exploited
formal concept analysis to extend the poset to a concept lattice so that filters of this
lattice could be used to calculate matching values. Different node weightings were
used to preserve the original matching values in the two approaches. Comparisons
of the sizes of the ontology lattice and the generated acyclic directed graph, as well
as the concept lattice were also given.

This shows that the matching theory from [21] is rather powerful, as it captures
de facto the fuzzy extensions.
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