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Automating the Refactoring Process

Gabor Sz8ke®

Abstract

To decrease software maintenance cost, software development companies
use static source code analysis techniques. Static analysis tools are capable
of finding potential bugs, anti-patterns, coding rule violations, and they can
also enforce coding style standards. Although there are several available static
analyzers to choose from, they only support issue detection. The elimination
of the issues is still performed manually by developers.

Here, we propose a process that supports the automatic elimination of
coding issues in Java. We introduce a tool that uses a third-party static ana-
lyzer as input and enables developers to automatically fix the detected issues
for them. Our tool uses a special technique, called reverse AST-search, to
locate source code elements in a syntax tree, just based on location infor-
mation. Our tool was evaluated and tested in a two-year project with six
software development companies where thousands of code smells were iden-
tified and fixed in five systems that have altogether over five million lines of
code.
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1 Introduction

Refactoring is a common practice for improving software maintainability. By defi-
nition, refactoring is “a change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing its observable behav-
ior” [6]. The original declaration introduces the understandability and changeabil-
ity aspect of refactoring. However, other research shows that the idea can also be
applied to other purposes [18], such as improving performance, security, and relia-
bility. Developers use it regularly to transform code into a more maintainable form.
About 70-80% of all structural changes in the code are due to refactorings [32, 2].
Industrial case studies [14] revealed that the refactoring definition in practice is not
confined to a rigorous definition of semantics-preserving code transformations and
that developers perceive that refactoring involves substantial cost and risks.

Many IDEs (integrated development environments) offer refactoring features to
provide assistance in these regular tasks. Eclipse, for instance, has a separate Refac-
tor menu where such operations are available, e.g., developers can rename a source
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code element (e.g., a variable) and the IDE will correct all its references. Similarly,
it is possible to extract local variables, methods, classes, or move elements, among
several other operations for refactoring purposes.

Tools which support automatic refactorings often assume that programmers
already know how to refactor, and they have knowledge about the catalog of refac-
torings [6], but this is typically not a reasonable assumption. As Pinto et al. found
in their study where they examined questions of refactoring tools on Stack Over-
flow, programmers are usually unable to identify refactoring opportunities, because
of lack of knowledge in refactoring, or do not understand of the legacy code. They
also claim that “refactoring recommendations is one of the features that most of
Stack Overflow users desire (13% of them)” [24].

In order, to offer refactoring recommendations to developers, some studies [5] use
static code analyzers to report problematic code segments. Static analysis tools are
capable of finding potential bugs, anti-patterns, and coding rule violations. Fontana
et al. compare the capabilities of refactoring tools to remove code smells, and they
identify only one tool (JDeodorant) which can support code smell detection and
then to suggest which refactoring to apply to remove the detected smells.

In this study, we introduce a process which suggests refactoring opportunities
for coding issues and it is able to automatically refactor them. Our solution uses
the PMD static analyzer to find Java coding rule violations. We created several
refactoring transformations that support fixing these coding issues.

To perform refactoring operations, we created a mapping between the textual
output of the static analyzer and the structural representation of the source code.
This task required us to create an algorithm that takes textual source code position
(i.e. start and end line) and type information (i.e. for loops) of the problematic
code segment and executes a search on the syntax tree to locate the related source
code element in the tree. To make reverse searching possible, we use a spatial
database. The database is created by transforming the source code into a geometric
space. Line numbers and column positions from the AST are used to define areas.
These areas are used in R-trees, where area-based searching is possible. To evaluate
our approach we created a tool that applies the proposed process. The evaluation
showed that our approach is adaptable in a real-life scenario, and it can provide
viable results. Our tool was used in a project where it assisted in more than 6,000
automated refactorings covering systems ranging from 200 to 2,500 kLLOC.

2 Overview

This study was part of an R&D project supported by the EU and the Hungarian
Government. The goal of the 2-year project was to develop a software refactoring
framework, methodology and software tools to support the “continuous reengineer-
ing” methodology, hence provide support to identify problematic code parts in sys-
tems and to refactor them so as to enhance maintainability. During the project, we
developed a semi-automatic refactoring framework [29] and tested it on the source
code of the industrial partners, having an in vivo environment and live feedback on
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the tools. This is why partners not only participated in this project to help develop
the refactoring tools, but they also tested and used the toolset on the source code
of their own products. This provided a good chance for them to refactor their code
and improve its maintainability.

During the development of the framework, we found several interesting problems
and solutions to these problems which we think worth sharing.

Before going into details, we should overview the general refactoring process. As
Fowler says, refactoring is “a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its observable
behavior” [6]. Based on this definition if we model the code as a graph — which every
compiler does — a refactoring is a (behavior preserving) transformation on a graph.
More specifically, it can be viewed as a transformation on the abstract syntazx tree
(AST). Executing such transformation requires three components. They are:

e An AST as a representation of the source code.

e A transformation algorithm.

e Starting points (AST nodes) called the ,origin” where the transformation
algorithm begins.

First, we parse the source code with a parser which builds an AST. Second, we
create a transformation algorithm that will make modifications on the AST (i.e.
pull up a method from one class to its ancestor). Next, we pick a node on the AST
as the origin where the transformation algorithm will start working (i.e. selecting
the method to pull up). After the transformation is performed, we get a modified
(refactored) AST and the refactoring is complete.

Because our goal was to create automated refactorings, we extended the process
with a few additional steps. These steps allow us to interact with developers and
to make the transformations automatically. Our process works as follows:

Process 1.

1. We create an AST representation of the source code.

2. We use static analysis on the source code to find problematic code parts, i.e.

coding issues, rule violations, metric warnings. We list these issues as sug-

gestions to help the user in finding candidates for refactoring.

The user selects one of the issues as the target of the refactoring.

4. Based on the type of the issue chosen by the user, a refactoring algorithm is

selected that is capable of fixing the given type of issue.

Based on the selected issue a proper origin node is chosen from the AST.

6. The algorithm makes the transformation and modifies the AST, while keeping

track of what modifications it made. A modified AST is created.

We generate source code from the modified AST.

8. The newly refactored source code is shown to the user where he or she can
test the code and decide whether to accept or reject the refactoring.

o

©

=

Next, we will present these steps in greater detail and discuss our findings.
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3 Process Details

3.1 Building AST

To build an AST from the source code we use the SourceMeter [7] tool. SourceMeter
uses OpenJDK [21] as a backend to parse the code and build an abstract semantic
graph (ASG). ASG is an extended version of the AST with cross-edges and much
more [4]. This extra information was crucial in the automation process. Hence it
allowed us to create flawless transformations which otherwise wouldn’t be possible.
Thus Step 1 of Process 1 is covered.

3.2 Finding Refactoring Suggestions

Choosing which part of the source code to refactor is quite hard. To improve the
maintainability of the code, one can either start optimizing for metric values or
try to get rid of anti-patterns by introducing design patterns to the code. Any of
them might be a good solution. However, we will choose coding issues as the main
target of our automated refactorings because our preliminary study [27] suggested
that this is what developers want the most. To identify coding issues we choose
the well known PMD static source code analyzer. It is a widely used and accepted
tool among developers, especially for checking Java rule violations. Because all of
the participating project members had a Java code base, it was an optimal choice
to integrate it into the framework.

The output of PMD worked well in identifying coding issues and even in pre-
senting some of these to developers as refactoring suggestions. Let us examine the
sample in Listing 1. In this simple example, PMD finds 9 rule violations (with de-
fault settings). It finds issues like missing package declaration, missing comments,
short variable names, magic numbers, missing braces and the list goes on. Even in
this simple sample of code, there are many issues that can be fixed with computer
assistance.

To extract the issues we use the XML output of PMD. This file contains a list
of violations for each file with name, description, priority, and position information.
An example violation is shown in Listing 2. This is one taken from the list of issues
we got as output after running PMD on Listing 1. It clearly states that we should
use curly braces in the if statement in Line 3.

After presenting these kinds of issues to developers, they are usually able to
select one for refactoring. Thus Step 2 and 3 of Process 1 are covered.

3.3 Selecting the Right Transformation for the Job

After the user selected an issue, the next step is to find the right transformation.
Many researchers are working on solutions to automate this process using machine
learning techniques [11, 19, 22|. However, we used a much simpler approach. We
created several general refactoring transformations, i.e. for moving, adding, delet-
ing, and swapping source code elements. We created a mapping between PMD
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Listing 1: Example code

1+ public class Example {

2 public static int limiter (int x) {
3 if (x > 10)

4 return 10;

5 return x;

6 }

7}

Listing 2: PMD’s XML report

<file name="Example.java">

<violation beginline="3" endline="4" begincolumn="3" endcolumn="
13" rule="IfStmtsMustUseBraces" ruleset="Braces" class="
Example" method="limiter" priority="3">

Avoid using if statements without curly braces

</violation>

</file>

violations and the transformations. For example, to fix the curly braces issue, we
mapped it to an insertion transformation where a block element will be injected
below the if statement (See the illustration in Figure 1). Each mapping defines
different parameters based on the type of issue. The transformation in the former
example requires an if statement as a parameter. Thus Step 4 of Process 1 is
covered.

Figure 1: Simplified illustration of a refactoring on the AST of Listing 1.
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Listing 3: PMD highlight

1+ public class Example {

2 public static int limiter (int x) {
s if (x > 10)

4 return 10;

5 return x;

6 }

1}

Listing 4: SourceMeter highlight

1+ public class Example {

2 public static int limiter (int x) {
s if (x > 10)

4 return 10;

5 return x;

6 }

7}

3.4 Selecting a Proper Origin

After the user has selected an issue to fix and we chose the right transformation,
the next step in the process is to choose an origin point on the AST, which we can
give as a parameter to the transformation algorithm. In other words, one has to
perform a search on the AST to find an element that matches both the description
provided by the PMD report and the type of the parameter the transformation
algorithm requires.

The report provides only a few key point for a violation, i.e. beginning line
and column, ending line and column, class, and method. Also, the source file is
available in the file tag. If we look at the example in Listing 2 and the results
on the example in Listing 1, we get the problematic code part highlighted. The
highlighted part in Listing 3 shows the particular if statement that needs braces.
Although this highlighted segment is a good visual aid for the developer to find
where the violation is, it is problematic for the computer to find nodes in the AST
based on little more than position information.

A way to address the problem is to store position information for each source
code element in the AST during the parsing process. Fortunately, SourceMeter
does this already. Now that we know the positions on the AST, we can attempt
to match the violation location information to the ones we have on the AST. It
may come as no surprise that a simple equality match did not work. PMD and
SourceMeter have different parsers and therefore it is more unlikely they will have
the same position information for each and every source code element. Listing 4
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shows the position SourceMeter has identified for the if statement in question.
Looking at both highlighted cases reveals that a simple approximation will not
suffice to get a match. To handle the problem, we took a different direction which
we call reverse AST-search.

Reverse AST-Search

This idea was born when we decided to take a different direction and start looking
at the source code elements, not as just data or nodes in a tree. In the text editor,
they look like as little areas or patches. Since they all have begin and end lines and
columns, they can be viewed as coordinates on a map. This led us to the idea of
transforming the source code into a geometric space.

We took line numbers and column positions from the AST and used them to
define areas. These areas form rectangles where the corner points are the begin
and end positions of the source elements. The rectangular areas are then used to
build a spatial database, where area-based queries are possible.

Spatial Databases and R-trees A spatial database [25] is a database that is
optimized to store and query data that represents objects defined in a geometric
space. Common database systems use indexes to quickly look up values and the
way that most databases index data is not optimal for spatial queries. Instead,
spatial databases use a spatial index to speed up database operations. To create
spatial index data, we decided to use R-trees [10].

An R-tree is a data structure where the key idea is to group together information
based on spatial data and index these groups by using their minimum bounding
rectangles!. Next, these groups are bound together at the next level of the tree by
their minimum bounding rectangles, and so on. This way, a query cannot intersect
any of the objects contained because all the objects within a bounding rectangle
occur together. The input of a search is a rectangle called a query boxr. Every
rectangle in a node (starting from the root node) is checked to see whether it
overlaps with the search rectangle or not. If it does, the same thing happens with
its corresponding child nodes. The search goes on recursively until all matching
nodes get visited. Meanwhile, when a leaf node is found and it overlaps with the
query box it is added to the result set.

R-tree applications cover a wide spectrum, ranging from spatial and temporal
to image and video databases. In industry, it is used where multi-dimensional data
needs to be indexed. For example, a common application is in digital maps where
R-trees are used to link geographical coordinates to POIs [15].

Building Spatial Index for the AST To create a spatial database for the
source code, we used the si method in Algorithm 1. The method requires C, an
AST element with position information. This might be a root node or a class node,
say. When the algorithm commences, it creates an R-tree for storing the spatial

IThe “R" in R-tree is for rectangle.
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index (Alg. 1 Line 1) and begins to traverse the descendants of the C element
(Alg. 1 Line 2). Note that every kind of traversal is acceptable since the position
of the elements do not depend on each other.

Algorithm 1 Building Spatial Index for the AST.
Funct si(C)
Require: C'is an AST element

1: Let Z be a new R-Tree

2: for all ¢ € descendants(C) do

3:  Let Psarey,,. > Pstart,,,» Pend,,, . » Pend,,, be the position coordinates of ¢
4: if Pstart”"e = Pend”"e then

5: Add rectangle {Psiart,,, . s Pstart,,,» Pend,,,.> Pend,,, } to Z(c)
6: else

7 Add rectangle {Pstart,,, . Pstart,,,» Pstart,,,., 0} to Z(c)

8: Add rectangle {Pepna,., 0, Pend,, ., Pena,,, } to Z(c)

9: if ]Demjl””E — Pstart”,,w > 1 then

10: Add rectangle { Psare,,,. + 1,0, Peng,,,. — 1,00} to Z(c)
11: end if

12:  end if

13: end for

14: return 7

For each source code element c, the algorithm takes into account their position
P; namely, start line, start column, end line, end column (Alg. I Line 3). Next,
using these positions rectangles are created. To be precise, it creates one, two or
three rectangles, depending on the length of the current source element. If the
element position is confined within a single line, one rectangle is created (Alg. 1
Line 5), which is a line on the 2D plane. In the case of multiple lines, we have a
multiline element, which is an element that starts at a line in a column, and it ends
in another line in a column. All positions between these two positions are part of
the element. For example, in Listing 4 the if statement is a two-line element and
the highlight indicates the positions belonging to the statement. To handle this,
we create two rectangles. The first line has no end column (Alg. 1 Line 7), and the
second begins at zero (Alg. 1 Line 8). If there more lines between them, we create
a rectangle that covers all the space between the two lines (Alg. 1 Line 10).

Each time a rectangle is created it is added to the R-Tree with a binding to the
AST element. This way when the spatial query function starts running, we will get
AST elements instead of rectangles. Once all the descendant source code elements
get visited, we can return the resulting R-tree, and the spatial index is ready.

When we tested the algorithm in the example in Listing 1, we got the search
space shown in Listing 5. Note that every node that has multiple lines are separated
into more rectangles, such as the if statement.
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Listing 5: Search space for the example in Listing 1 with the rectangles and the
type of their referred source code element
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The Search Algorithm Once we have built our spatial index, we can use it to
locate a node in the AST based on position information. We created a method
that uses inputs such as the ASG from SourceMeter, the parameter type of the
transformation, and the violation position from the PMD report in order to search
the geometric space. The Reverse AST-search Algorithm (rasta for short) is listed
in Algorithm 2 below.

Algorithm 2 The reverse AST-search algorithm.
Funct rasta(C, P, t)
Require: C'is an AST element
Require: P is a position
Require: ¢ is a type
: Set the candidate list R := {}
: Compute si(C)
: Let S be the set of all AST nodes whose have intersecting rectangles with P
: for all s € S do

if type(s) is t then

Store s in R

end if
end for
return R

© ® NP RN

The purpose of the algorithm is to find the source code element that is high-
lighted in PMD’s report. The function begins by creating a list of the source code
element candidates. Next, it builds a spatial index with the C' AST parameter
(Alg. 2 Line 2). The newly constructed index is used in the next step to query the
candidates. As mentioned earlier, the spatial database requires a rectangle, called
the query box as a search parameter. The query box in our case is the “highlight”
from the PMD’s output. We use this box to ask the R-tree which previously added
rectangles intersect with the parameter. The R-tree returns with a set of AST
nodes whose rectangles satisfied the query (Alg. 2 Line 3). As an example, List-
ing 5 shows which source code elements (highlighted lines) remain after the query
has been performed with the Rect(3,3) (4,13) box as the parameter.

Even with a small sample like Listing 5, the resulting set of the query can be
quite big. To narrow the result set we use the third parameter, namely the type of
the input parameter of the refactoring transformation, to filter the results (Alg. 2
Line 5). The filtering is achieved by going through the result set and by insert-
ing only those source code elements onto the candidate list whose type matches
(actually, whose type is compatible with) the input type. After the filtering, the
candidate list is returned as the result of the function.

To continue with the example in Listing 5, we have to filter the result set with the
input parameter type of the refactoring transformation. In Section 3.3 we identified
this source code element type as an if statement. Even with a quick glance, we can
see that there are two rectangles where their type is an if statement. Since both
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of the two rectangles refer to the same if element, the algorithm terminates. We
have found an origin where the refactoring transformation can begin its operation.

Heuristics As we saw previously, the best case scenario is when the algorithm
ends up having only a single element in the list of candidates. This happens when
the result set has only one source code element with the type of parameter. In
this case, it is evident which element was highlighted as the source of the violation.
Nevertheless, there are times when the candidate list has multiple source code
elements of the same type. In such cases, we have to select the proper element as
the origin, otherwise the refactoring will be executed wrongly.

To remove ambiguity we decided to use a “distance” measure to find the best
candidate. We defined the distance as the number of characters between the posi-
tion of the source code element and the highlight. More specifically, on one hand, it
is a metric of the number of characters between the start position (line and column)
of the source code element and the start position (line and column) of the highlight.
On the other hand, it is the number of characters between the end position (line
and column) of the element and the end position (line and column) of the highlight.
The distance is just the sum of the two. To calculate this value we use the original
source file where the exact number of characters could be measured.

This method allows us to select the proper source code element from the list of
candidates in almost every case. Still, there is a certain mathematical probability
that the calculated distances will be equal for all candidates. However, because
the chance of this event is astronomically small (it never even happened once in
our exhaustive testing period, see Section 4), we chose to notify the user with a
message that the refactoring failed because of ambiguity.

Alternative Method The algorithm above uses two-dimensional information
to back-propagate code smells to AST elements and handles code as lines and
columns. However, source code can be viewed as a linear sequence of characters as
well. Here, a simple one-dimensional data structure and interval operations could
replace the fairly complicated two-dimensional approach. Despite this mechanism
being seemingly simpler, it would require different input data. Both the given
inputs — the AST and PMD — work with two-dimensional data. This would mean
that we would either require the source file as input or the AST and PMD must
provide one-dimensional data.

e The latter requirement would be needed from both tools to replace position
information with char-sequence index or store it as additional data. This new
data would cause an increase both in the processing time and storage space
for the tools for information that probably no one else will ever use. Still, if
char-sequence index data is available as input, the one-dimensional approach
is preferable.

e The former requirement would introduce an additional parameter to the algo-
rithm; namely, the original source file. In the case where source code is given
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it is possible to handle the text as one-dimensional data and map the source
code elements to char-sequence indexes. However, this approach has several
drawbacks. First, every search would need to read the source file, which is
an i/o intensive task. This is required to calculate the end of line positions.
Next, the mapping of two dimensional data to character sequence indexes
would have to consider whitespace. For example, when reading a tab charac-
ter from the file, the algorithm has to know it is 2, 4, 8 (or other) characters
long. Both parsers could have mixed tab size settings, which would make the
mapping difficult. This would also affect the two-dimensional approach, but
since a line just contains only a few tabs it easier to match the source code
elements in a line than in the entire file.

The reverse AST-search algorithm works only with an AST and PMD’s report
as input. These tools and inputs are treated as third-party from the algorithm’s
point-of-view. Since these inputs have two-dimensional data and source code is not
available, the one-dimensional mechanism would not suffice. Nevertheless, from
the point-of-view of the refactoring process, the source file is given; but we still
choose the two-dimensional approach because it provides more accurate matches in
real-life scenarios.

Summary The reverse AST-search algorithm enabled us to select the proper
origin, which is a source code element in the AST that is the input of the refactoring
transformation later on. Thus Step 5 of Process 1 is covered.

3.5 Executing the Refactoring

Now that we have covered each preceding step, we have all the components and
we are ready to perform the refactoring. As mentioned earlier in Section 3.3, the
refactoring algorithms are defined as smaller, multiple generic transformations. The
type of the PMD violation determines which transformation(s) will be executed.
There are some complex cases where a simple transformation will not suffice and
fixing will require multiple operations.

In order to fix the missing curly braces (the issue in Listing 1), the transforma-
tion inserts a block statement into the then clause of the if statement and rewires
every former member of the then clause to make a member of the block statement.
See Figure 1 as an illustration of a process like this.

Once the refactoring transformation completes its operations, a new, modified,
issue-free AST is created. Thus Step 6 of Process 1 is covered.

3.6 Generating Source Code and Creating Diffs

In the previous step, we completed the refactoring at the model level. Even though
the refactoring process came to an end, there is one more thing to do. Because
our main goal is to assist developers, the next task is to translate the AST back to
source code where they can readily interpret the changes.
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Listing 6: Refactored code

1+ public class Example {

2 public static int limiter (int x) {
3 if (x > 10) {

4 return 10;

5 }

6 return x;

7 }

s

3.6.1 Generating Source Code

The source code generation is realized by systematically going through the AST
and writing code to a text file according to the underlining source code element.
For example, if we start at a file, if there is a package declaration we write the
package keyword following the name of the package and a semicolon to close the
statement. This is followed by import statements and so on. The generation goes
on until every source code element is visited and the code is fully reconstructed
from the AST.

In the case of the example in Listing 1, after the refactoring transformation
we get the code shown in Listing 6. As expected, both curly braces appeared and
therefore the return statement got a block around it. In consequence, the PMD
rule violation got fixed, and our code maintainability improved. Thus Step 7 of
Process 1 is covered.

3.6.2 Keeping Track of Modifications

Previously, we showed how to fully reconstruct the code from the AST. However,
generating the whole code base is unnecessary. It is sufficient to recreate only
those code segments where the changes occurred. There are, however, multiple
ways to reduce the amount of generated code. An easy solution would be to create
only those files which were affected by the refactoring. Our only concern, in this
case, was that our code generation cannot reproduce exactly (100%) equivalent
source code. This happens because though SourceMeter stores source code element
positions and even comments, it does not store data concerning whitespaces and
indentation. Despite this, we created the source code generator in such a way that it
“pretty prints” the code, but what is considered “pretty” is subjective. For example,
in Listing 6 the beginning bracket is positioned after the method declaration, but
someone may prefer it to be on the next line. On one hand, it is possible to make this
configurable. On the other hand, there are other remaining issues, such as whether
there are two spaces between the public and the static keywords or whether they
should be written in separate lines.

To reduce the former anomalies, we sought to minimize generation even within
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files themselves. Our approach keeps track of which nodes and at what level they are
modified when the refactoring operation is running. We mark those nodes that get,
for instance, inserted, deleted, and swapped. Furthermore, we mark those nodes
which we visited during the operation but did not modify them. For example,
in Listing 6 we put a block statement into the then clause of the if statement
and rewired the former content (the return) of the then clause as a statement
of the block node. We marked this block statement as inserted, and the return
as unmodified. The latter was required because marking a node is a recursive
operation which will mark the entire subtree of that node as well. By marking
the return statement as unmodified will leave this subtree unaffected and cause
efficiency benefits.

Keeping track of modifications allowed the generator to only modify those places
where it was necessary. Only the new or modified source code elements get gener-
ated, and every other part of the source code gets copied from the original source
file. In the example, this works in the following way. The generator starts travers-
ing the refactored AST from root to bottom, in a preorder strategy. While it finds
unmodified nodes, it just copies the source code from the original file into the refac-
tored file. This is based on the position information stored in the AST. This goes
on until it finds a modified node in this case, an inserted block statement. Next,
it generates the block statement. More precisely, it generates only the starting
bracket, because there are still unvisited descendants of the block node in the AST.
When the traversal goes to the next child, it finds an unmodified node again. It
does so the same way as before, it copies the code from the original source code,
only this time, it will insert the copied code with an increased indent, because the
generator keeps track of the fact that we are now in a block statement. After every
descendant has been visited and copied, we arrive back at the leave-visit for the
block statement. The generator inserts the closing bracket into the right place, and
a visit continues. Since every other node is unmodified, everything else is copied,
and the generation is complete.

Generating only the required code parts created nearly the same code as the
original, with most indentation and whitespaces in the right place. This was an
important request from developers because interviews showed that they did not
want to bother with fixing the indentation [30].

3.6.3 Creating Diffs

As soon as the generation process ended, it become possible to present the refac-
tored code to the developers. However, reviewing entire unannotated files is not
a welcomed idea by developers. Since this is the output of an automated process,
users like to check what changes the automation process will apply.

To meet the need of the users, we will only show their a patch (unified diff file)
as output. This patch file contains the differences between the refactored source
file and the original one. This enables the developer to review what changes the
automation process made on the code. Besides this, it allows the user to make
a decision at the end of the process of whether to accept or reject the suggested
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Listing 7: Output diff file

--- Example.java (original)
+++ Example.java (refactored)
©eo -1,7 +1,8 @@
public class Example {
public static int limiter(int x) {

- if (x > 10)
+ if (x > 10) {
return 10;
+ }
return Xx;
}
}

refactoring. If it is the former, the user can apply the diff on the original source
code, and this will transform it into the refactored code. Thus Step 8 of Process 1
is covered.

For example, Listing 7 shows the diff file for the refactoring of the example in
Listing 1. Note that this introduces which lines are marked for deletion (starting
with a “~”) and which ones are marked as added (starting with a “+”).

4 Evaluation

Previously, in Section 2 we mentioned that we were able to test our approach on
a number of systems with the assistance of software engineering companies in an
EU project. These companies were founded only in the last two decades and some
of their projects were initiated before the millennium. Their projects consisted
of about 5 million lines of code altogether, written mostly in Java, and covered
different IT areas like ERPs (enterprise resource planning and business process
management), ICMS (integrated collection management systems) and online PDF
Generation. Participating companies received an extra budget to improve their
source code by refactoring. First, they did the task manually, and later, after we
had developed the automated tool, they used the tool to commit thousands of
automatic refactorings.

At the end of the project, our tool was tested exhaustively. The companies
participating in the project performed around 6,000 refactorings altogether which
fixed over 11,000 coding issues. Interviews with the developers revealed that they
found it to be easy to work with the tool in a lots of situations and they intend to
keep using it in the future. An in-depth analysis of the results was discussed in a
previous study [30] and a summary of our observations is available as an experience
report [28].
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5 Discussion

5.1 Performance

Our refactoring tool was implemented in Java. One of the requirements for our
tool was for it to be quick-acting from a user perspective. This required that we to
optimize each step for speed. The most important optimization we preformed was
with the Reverse AST-search algorithm.

Building the spatial database for the whole system was an unnecessary overhead.
To reduce the search space, we built the spatial index based on the issue the user
had selected. The rule violation has information about which source file it is in.
Only these file elements were added to the R-tree and it greatly reduced the search
space. As a comparison, building the entire search space on a PC? for the log4j?
project took 221 ms and used 46 MB of memory, while building only one file took
53 ms and memory used was less than a kilobyte.

Further optimizations helped to speed up the process as well. For example, the
the filtering step moved a few steps ahead in the Reverse AST-search algorithm’s
execution order. Filtering was applied while building the search space. Only those
AST nodes were added to the R-tree where the type of node matched the type of
refactoring transformation parameter. This way, executing a single search operation
takes less than a millisecond.

The above improvements besides some other tweaks made our tool quick and
this appealed to developers. We did not make detailed measurements of the tool’s
performance in our studies, but in general the tool performed well.

5.2 Threats to Validity

We have identified a few validity threats that might affect the the internal and
external validity of our results. Here, we discuss the validity of our findings.

Usage of Java

We have only considered Java as the target of our actions. Some of the other lan-
guages may require different approach. Nevertheless, our process is readily adapt-
able to most text-based programming languages.

Application of a Third-Party Tool

We provided support to the developers in identifying coding issues with a third-
party static analyzer, namely PMD. Naturally, this was a great help in identifying
problematic code fragments, but it might have introduced many unnecessary steps
during the refactoring process. There is a risk here that by using other analyzers or
by using our own, we might skip the AST-search part. For example, if we were to
develop our own issue finder tool, we could directly report the AST node where the

?Intel i7 3.40 GHz with 8 GB ram
Shttp://logging.apache.org/logdj/1.2
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problem is located. However, our process makes our refactoring tool independent
of a single third-party static analyzer. The way, it is constructed makes it capable
to switch to another analyzer with only a slight modification.

6 Related Work

Since Opdyke introduced the term refactoring in his PhD dissertation [20] and
Fowler published a catalog of refactoring ‘bad smells’ [6], many researchers have
studied this technique to improve the maintainability of software systems. Just a
few years later, Wake [31] published a workbook on the identification of ‘smells’,
and suggested ways of recognizing the most important ones and some possible ways
to fix them by applying the appropriate refactoring techniques. Five years after
the appearance of Fowler’s book, Mens et al. [16] published a survey with over 100
related papers in the area of software refactoring. But the popularity of the topic
continues to this day.

Automation techniques can support the regular task of refactoring and they
are intensively studied by researchers. Ge et al. implemented the BeneFactor tool
which detects developers’ manual refactoring and reminds them that automation is
available; and then it performs the refactoring automatically [9, 8]. Vakilian et al.
proposed a compositional paradigm for refactoring (automate individual steps and
letting programmers manually compose the steps into a complex change) and im-
plemented a tool available that support it. Henkel et al. implemented a framework
which captures and replays refactoring actions [12]. Jensen et al. used genetic
programming for automated refactoring and the introduction of design patterns
[13]. Also, there are many approaches to support specific refactoring techniques,
like extract method [3, 26], refactoring to design patterns [1] and performing clone
refactoring [33].

In a recent study, Fontana et al. examined refactoring tools designed to re-
move code smells [5]. They evaluated the following tools: Eclipse,* Intelli] IDEA,?
JDeodorant,® and RefactorIT.” In the case of JDeodorant, they said that this “is
the only software currently available [that is| able to provide code smell detection
and then to suggest which refactoring to apply to remove the detected smells.” To
evaluate the other refactoring tools, they relied on the code smell identification
of iPlasma® and inCode®. In an earlier study, Pérez et al. also identified smell
detection and automatic corrections as an open challenge for the community, and
proposed an automated bad smell correction technique based on the generation of
refactoring plans [23]. Code-Imp is an automated refactoring platform designed for
the Java language by Moghadam at el. [17]. It can apply a range of refactorings,

4nttps://www.eclipse.org/
Shttp://www.jetbrains.com/idea/
Shttp://www.jdeodorant.com/
"http://sourceforge.net/projects/refactorit/
8http://loose.upt.ro/reengineering/research/iplasma
9http://www.intooitus.com/products/incode
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it supports several search types, and implements over 25 software quality metrics
that can be combined in a variety of whys to form a fitness function.

There are many IDEs available with automatic refactoring capabilities and they
support typical code restructurings (e.g. renaming variables, classes) and some
common refactorings from the Fowler catalog. For instance, IntelliJ IDEA was one
of the first IDEs to implement these techniques and it is able to support many
languages (e.g. PHP, JavaScript, Python), not just Java which it was originally
designed for. Eclipse and NetBeans'® also implement similar algorithms. However,
these IDEs have only limited support for the automatic refactoring of programming
flaws. Eclipse calls these Quick Fizes. For example, it can organise imports, remove
dead code and optimize string concatenations. NetBeans calls them Java Hints.
These are able to fix things such as missing switch cases, suspicious equals calls or
a dead branch. NetBeans also reports Java code metrics flaws, like Class has too
many methods or Method with multiple return points. Moreover, it is possible to
create custom, user-defined Java Hints.

The IDEs mentioned above use an incremental build system to bound text
to certain source code elements. In contrast, our approach uses a reverse AST-
search method to locate AST nodes. What is more, the above tools are IDEs with
refactoring capabilities, while our tool is a server-side refactoring framework and
its IDE plugins are simply interfaces that communicate with the server.

7 Final Remarks

In this article, we presented an automated process for refactoring coding issues.
We used the output of a third-party static analyzer to find refactoring suggestions.
Then we created an algorithm that is capable of locating a source code element
in an AST based on textual position information. The algorithm transforms the
source code into a searchable geometric space by building a spatial database. After,
we conducted an exhaustive evaluation which confirmed that our approach can be
adapted to a real-life scenario, and it definitely provides viable results.

In the future, we plan to use a reverse AST-search to create a mapping between
multiple, different structured ASTs. Also, we would like to investigate how effec-
tively our approach can be used to determinate what source code element the user
is examining, just by looking at their text selection.
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