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Sector Based Linear Regression, a New Robust

Method for the Multiple Linear Regression

Gábor Nagya

Abstract

This paper describes a new robust multiple linear regression method,
which based on the segmentation of the N dimensional space to N+1 sec-
tor. An N dimensional regression plane is located so that the half (or other)
part of the points are under this plane in each sector. This article also presents
a simple algorithm to calculate the parameters of this regression plane. This
algorithm is scalable well by the dimension and the count of the points, and
capable to calculation with other (not 0.5) quantiles. This paper also con-
tains some studies about the described method, which analyze the result with
different datasets and compares to the linear least squares regression.

Sector Based Linear Regression (SBLR) is the multidimensional general-
ization of the mathematical background of a point cloud processing algorithm
called Fitting Disc method, which has been already used in practice to pro-
cess LiDAR data. A robust regression method can be used also in many other
fields.

Keywords: linear regression, robust regression, quantile regression

1 Introduction

The linear regression is an important component in a lot of calculation in the science
and the engineering practice. This tool makes a relationship between one or more
independent and one dependent variables by a linear function according to a given
dataset.

The most popular method of the linear regression uses the least squares ap-
proach for fitting a line (or a plane in higher dimensions) to the given dataset.
The outlier points makes remarkable impact in the result of the least squares based
regression method.

There are some robust method of the linear regression [18, 21, 17, 22], for
example, the Random Sample Consensus (RANSAC) method [6, 4, 7] and the
Theil-Sen estimator [19, 23].The complexity of the RANSAC method is increased
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Figure 1: The sectors in case of N = 1. (The N = 1 is the number of the
independent values, the total dimension of the space is N + 1 = 2, because the
dependent value increases the dimension.) The area is divided to two parts (by the
dashed line). The centres of this sectors are displayed by dotted lines.

highly with the dimension in the multiple linear regression, because
(
N
M

)
different

planes can be fitted to M given points in an N dimensional space. Both of these
methods are not suitable for using with different quantiles.

This article describes the Sector Based Linear Regression (SBLR), a new robust
method for the multiple linear regression. The SBLR method runs O

(
MN3

)
time,

where M the number of the points of the dataset, and N is the number of the
independent variables. The dimension of the space will be N + 1 with the one
dependent variable. The SBLR can be used with different quantiles, for example
a regression line over the 10 percent (q = 0.1) of the points, as other quantile
regression methods [12, 23, 1].

2 Principles of the method

In the simple linear regression (one independent variable and one dependent vari-
able, N = 1), the regression line has two parameters, for example the a and the b in
the y = ax+ b equation. The plane can be divided into two parts (in the following:
sectors) by a line parallel to the y axis (Figure 1.). A regression line are searched
where the half (q = 0.5) or the other portion of the points are under the line in
both sectors (Figure 2.).

In case of the regression planes (two independent variables and one dependent
variable, N = 2), the plane of the two independent variable can be divided to
three 120 degrees angles as sectors (see Figure 3.). The division can be performed
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Figure 2: The principle of the SBLR method in case of N = 1 (one independent
and one dependent values). The half of the points (displayed by green dots) are
under, and the other half (displayed by red dots) are over the regression line in
both sectors.

by the azimuth, which can be calculate from the two independent variables. (The
atan2() function can calculate the azimuth in many programming languages.) The
determined portion of the points are under the regression plane in all of these three
sectors.

3 Extension to N independent variables

The method can be extended to any independent variables, the number of these
variables is denoted by N . The dimension of space will be N+1 with the dependent
variable.

The division of the sectors can be performed by the distances from the centres
of the sectors, the points are classified to the sector, whose centre is the closest
to the point. (The coordinates of the point are the independent variables of the
regression.) This method is usable in any dimension, if the centres of the sectors
are known.

The N + 1 centres of the sectors are the vertices of a regular N dimensional
hyper-tetrahedron (N -simplex), whose centre is the origin of the N dimensional
Cartesian coordinate system. The coordinates of the vertices (denoted vNi,j , where
i is the index of the vertex from 0 to N + 1, j is the index of the coordinate from
1 to N , and N is the dimension of the space) can be calculated by the following
recursive function:

• if N = 0, the result is [[]] (a list which contains an empty list)
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Figure 3: The sectors in case of N = 2. This figure represents the plane of the two
independent variables, the coordinate of the dependent variable is perpendiculat to
this plane. The half (or other quantile) of the points are under the regression plane
in all sectors. (The points of the different sectors are displayed by different colors)
This case is used in the LiDAR data processing where the points are the points of
the LiDAR point cloud, the independent values are the horizontal coordinates of
the points and the dependent coordinate is the vertical coordinate.
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Figure 4: Calculate the coordinates of the vertices of an N -dimensional hyper-
tetrahedron. (where 1 ≤ N ≤ 3)

• if N > 0, the coordinates of the vertices are calculated by this expression:

vNi,j =


vN−1i,j

√
1− 1

N if i < N + 1 and j < N

− 1
N if i < N + 1 and j = N

0 if i = N + 1 and j < N

1 if i = N + 1 and j = N

(1)

If N = 1 then v11,1 = −1 and v12,1 = 1. If N = 2 then v21,1 = −
√
2
2 , v21,2 = − 1

2 ,

v21,1 =
√
2
2 , v21,2 = − 1

2 , v21,1 = 0 and v21,2 = 1. (Figure 4.)

These vertices are at 1 unit distance from the origin of the coordinate system.
The sectors centres are N

N+1 units from the origin, because this point is the nearest
to the centres of the sector. The sectors are indexed from 0 to N . The coordinates
of the sector centres are:

sNi,j =
N

N + 1
vNi+1,j (2)

The N + 1 dimensional regression hyperplane can be specified by N + 1 value
in two ways. One of them is a linear expression:

h = l0 + l1x1 + l2x2 + · · ·+ ljxj + · · ·+ lNxN (3)
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where xj is the coordinates of the position (the independent values, j indexed
from 1 to N), and lj is the N + 1 coefficients of the N dimensional hyperplane (j
indexed from 0 to N) in a N + 1 dimensional space.

The other way to define the independent values (the elevations of the plane) in
the N + 1 centres of the sectors (the vertices of the N dimensional regular hyper-
tetrahedron), which are denoted ci, where i is the index of the vertex from 0 to N .
The vector of ci values (denoted c) can be calculated simply from the vector of lj
values (denoted l):

c = Q · l (4)

And the l can be calculated from the c, if both sides of (4) are multipled left-
hand side by Q−1:

l = Q−1 · c (5)

The 4 and the 5 link between heights of sector’s centres and coefficients of the
linear equation of the hyperplane.

The Q is an N + 1×N + 1 size matrix:

Q =



1 sN0,1 · · · sN0,j · · · sN0,N−1 sN0,N
1 sN1,1 · · · sN1,j · · · sN1,N−1 sN1,N
...

...
. . .

...
. . .

...
...

1 sNi,1 · · · sNi,j · · · sNi,N−1 sNi,N
...

...
. . .

...
. . .

...
...

1 sNN−1,1 · · · sNN−1,j · · · sNN−1,N−1 sNN−1,N
1 sNN,1 · · · sNN,j · · · sNN,N−1 sNN,N


The Q−1 is the inverse of Q, and can be calculated in O

(
N3
)

time. Because the

Q contains only constant values (the coordinates of the sector centres, and 1 values),

the program has to calculate the matrix inversion only once. The multiplications
(in (4) and (5)) need O

(
N2
)

time.

4 The calculation method

There is a given dataset, which contains M points. Each point contains N inde-
pendent values (the coordinates in an N dimensional space) and one dependent
value (which is an extra dimension). In the following, pk,j notation is used for the
independent variables of the points, where k is the index of the point from 0 to
M − 1, and the j is the index of the coordinates from 1 to N . The pk,0 values are
the dependent variables.
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4.1 Normalization

The first step is the normalization of the coordinates to the [−1,+1] interval by the
xj = ajX+bj expression. If one regression will be calculated for all points, calculate
the normalized coordinates with aj = 2

max(xj)−min(xj)
and bj = −1−min (xj) aj .

In another case, the regression will be calculated a selected part of the dataset.
The points, which are nearest to a specified position (specified an r vector, whose

elements are rj) than a defined R radius (R2 ≤
∑N
j=1 (xj − rj)

2
). In this case, the

aj = 1
R and the bj = −rj .

In the following steps, the program uses these normalized coordinates.

4.2 Separating into sectors

In the next step, the points will be separated into the sectors, and calculate the
initial value of the sector centres (ci). Each points put the sector whose centre is
the closest to the point. I use pi,k,j notation in the separated dataset, where i is
the index of the sector (from 0 to N) and k is the number of the point in the sector
from 1 to mi.

All of the sectors have to contain at least one point (∀ i mi > 0). If any sector
does not contain any point (∃ i mi = 0), the method can not work. This can happen,
when the number or the dispersion of the points is not suitable. The probability of
the any empty sector, when the dispersion is random (the P (point in the sector) =

1
N+1 in all of the sectors) is P (any empty sector) = 1−

(
1−

(
N
N+1

)M)N+1

.

The initial values of the sector’s centres (ci) are the defined quantile (q) of the
dependent variables of the sector’s points:

ci = quantile ([pi,1,0, pi,2,0, . . . , pi,mi,0] , q) (6)

These values determines the initial regression plane. (See the Figure 5. in case
of N = 1.)

4.3 The iteration steps

The key element of the method is an iteration step. The program goes from sector
to sector and calculates the new values of the sector’s centre.

Many N + 1 dimensional hyperplanes can be calculated, which are fitted to
the centres of the other sectors and each points of the sector. The row of the
sector’s centre in the Q matrix has to be changed to the coordinates of the point

([pi,k,1, pi,k,2, . . . , pi,k,N ]), and the ci value has to be changed to the pi,k,0 (k is
the index of the point in the sector) in the c vector, and use this modified (5) to
calculate the parameters of the hyperplane. After calculating of the hyperplane
parameters (lj), calculate and store the the elevation of this plane in the sector
centre by the (3):
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Figure 5: The initial step in case of N = 1. The median values are calculated
for both sectors. (upper figure) These values (displayed by diamonds) will be the
height of the initial regression line in the center of the sectors (dotted line). The
points are displayed by red dots over and green dots under the lines (the height of
the median, and the initial regression line). The initial regression line is fitted to
the centre points. (lower figure)
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hk = l0 + l1pi,k,1 + l2pi,k,2 + · · ·+ ljpi,k,j + · · ·+ lNpi,k,N (7)

The new value of the sector’s centre is the defined quantile (q) of these values:

cnewi = quantile ([h1, h2, . . . , hmi ] , q)

The program continues this process in the sector number (i + 1) mod N + 1
, and check the difference between the new and the old ci values. If the difference
less than a specified value (

∣∣coldi − cnewi

∣∣ < ε), a counter is increased one, otherwise
the counter set to zero. The iteration loop is repeated while this counter is less
than N + 1. (The first two step in case of N = 1 is presented in Figure 6.)

The changes of the heights of the sector’s centres typically will be less in the
iterations. This ensures convergence.

4.4 Completion

Finally, the parameters of the regression plane are calculated by the (5) from the
centres of the sectors. The received parameters are in a normalized coordinate
system. (See 4.1)

If only the elevation of the plane is needed in the origin of the normalized
coordinate system, the l0 is this. If the plane equation is needed in the original
coordinate system, the liai expression can be used.

5 Studying the SBLR algorithm

Some simple Python [20, 16, 14] programs were made to test the SBLR algorithm.
The sblr.py module is a simple implementation of the SBLR method. The test
programs use this module.

The test programs use random datasets, which are created by the random

Python module. This module can generate random numbers with several distri-
bution. In the following studies the test programs use the y = 3x − 5 linear base
function. The independent values (x) are generated by a uniform random value
between 0 and 10 (random.uniform(0,10)). The dependent values are calculated
by the y = 3x − 5 + error equation. The error is various random number with
1 standard deviation and 0 median. A specific part of the points are outlier; the
dependent variable of this points is a uniform random value between −7 and 27.

The test programs use different random numbers for the error value based on
the random Python module. The uniform distribution error is a random number be-
tween −

√
3 and

√
3 by the random.uniform(-1,1)*1.7320508075688772 expres-

sion. The normal distribution uses random.normalvariate(1,0), the lognormal
distribution uses random.lognormalvariate(1,0)-1 and the exponential distribu-
tion uses random.expovariate(1)-0.6931471805599453. The minus 1 and minus
0.6931471805599453 ' ln (2) need for the 0 median.
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Figure 6: The iteration steps in case of N = 1. The new values of the sector’s
centres are determined so that the half (or other quantile) of the sector’s points
will be under the line, which is fitted the new centre of this sector and the other
sector’s centre. The new line is continuous, the line of the last iteration is dotted.
The iteration is repeated until the change of the values are less than a limit (denoted
ε) in both sectors.
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Figure 7: The result of the SBLR method (dashed line) and the least squares linear
regression (dotted line) in a dataset with many outlier points.

5.1 Comparsion to the least squares linear regression

The least squares method is the most common regression tool, but the any outlier
measurements can indicate significant difference in the result. (Figure 7.) A re-
gression line can be calculated by the least squares method, the sum of squares of
the differences between the points and the regression line will be the smallest with
this regression line.

A test program generated random datasets with different portion of outlier
points (from 0 to 75 percent). The test program generated 5000 datasets in all out-
lier portion (0%, 1%, 2%, ... 75%) and calculated regression lines in each dataset by
the SBLR and the least squares methods. The two regression lines were compared
to the original line, and calculate the averages of the distance from this line in the
[0, 10] interval. This number was the metrics of the fitting in these studies.

In each outlier portion, the test program stored 5000 fitting value; and another
program calculated the averages of these values in both methods in each outlier
portion. The Figure 8. shows the result of these studies with different number of
points.

Another studies compare the average distance with different count of the points
and different distribution of errors. The point numbers were the elements from an
arithmetic sequence from 50 to 2000 with step of 50. The studies made with differ-
ent errors (normal, uniform, lognormal and exponential) and different percentage
of outliers (0 and 2). The program generates 5000 random datasets in each case.
The result of these studies are seen in the Figure 9. and Figure 10.
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Figure 8: The average distance from the original line and the percentage of outliers
with different number of points (100, 200 and 500) by least squares (dashed line)
and SBLR method (dotted line). The range between 0 and 10 percent is zoom in
on the lower figure.
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Figure 9: The average distance from the original line (vertical axes) with differ-
ent number of points (horizontal axes) by least squares (dashed line) and SBLR
(continuous line) methods. The datasets do not contain outlier points.
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Figure 10: The average distance from the original line (vertical axes) with differ-
ent number of points (horizontal axes) by least squares (dashed line) and SBLR
(continuous line) methods. The datasets contain 2 percent of outlier points.
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In the asymmetric error distributions (exponential and lognormal), the SBLR
created better result than the least squares method without outlier points. If the
dataset has 2 percent of outlier points, the SBLR made better result in all of the
examined error distributions.

5.2 Examining the iteration steps

The computation time of the SBLR method grows linearly with the count of the
points (denoted M in this article). This computation time may be increased if the
iteration steps of the method grows with M .

Some test programs were created to study the correlation between the number
of the points and the iteration steps. The M was different values according to a
geometric sequence. The initial value of this sequence is 100 and the common ratio
is 4
√

2 ' 1.1892 (the result was rounded). The largest datasets had 102400 points.

The test programs created 1000 different random datasets with each M and each
distributions, calculated the regression lines and store the number of the iteration
steps with ε = 10−5. Another program analyzed the stored data and calculate the
means of the iteration steps. (Table 1.)

The number of the iteration step does not grow, moreover a little decrease,
when the M increased. The computation time of the SBLR method is O

(
MN3

)
.

The result is same when the 30 percent of the points are outlier. Other parameters
were not changed. (Table 2.)

5.3 The limits and possible errors of the SBLR method

The SBLR method can calculate only linear regression, and only one regression
in a dataset. The Ref. [10] presents a method, which can be found more linear
regression from one dataset.

The method can work if all sectors have at least one point. The good result
needs more points in all sectors to eliminate the impact of the outliers.

An outlier point may result wrong sector layout. The normalization step (see in
4.1) create a wrong result, where the outlier point is in a sector, and all the rest in
the other sector. This problem can be avoided, if the sector centre is determined as
the median of the values. In the practical applications (in the author’s practice),
this mistake has not occurred, because the points are selected from a bigger dataset
(see in 6.1), therefore it did not have far points in the independent coordinates.

6 Application possibilities

The SBLR has a lot of application possibilities. This method may be used in
projects, where need a robust linear regression. The SBLR may be useful, when
quantile regression are needed in any dimension spaces.
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Table 1: The average number of iteration steps with different distribution of errors
and different number of points (without outliers)

Count of points
distribution of the errors

normal lognormal exponential uniform

100 9.369 9.561 9.453 9.473

119 9.305 9.394 9.273 9.281

141 9.148 9.299 9.293 9.237

168 9.252 9.255 9.176 9.265

200 9.177 9.374 9.234 9.305

238 9.010 9.199 8.909 9.087

283 8.893 9.098 8.879 9.004

336 8.891 9.011 8.869 9.022

400 8.718 9.030 8.764 8.829

476 8.526 8.887 8.624 8.842

566 8.572 8.833 8.566 8.772

673 8.351 8.773 8.459 8.609

800 8.394 8.725 8.346 8.564

951 8.221 8.578 8.319 8.485

1131 8.164 8.477 8.239 8.280

1345 8.056 8.391 8.145 8.272

1600 8.028 8.437 8.149 8.188

1903 7.921 8.317 8.008 8.023

2263 7.842 8.206 7.949 7.982

2691 7.748 8.230 7.863 7.855

3200 7.730 8.152 7.868 7.898

3805 7.600 8.071 7.763 7.634

4525 7.474 8.003 7.627 7.593

5382 7.407 7.966 7.615 7.632

6400 7.371 7.888 7.560 7.511

7611 7.255 7.868 7.544 7.382

9051 7.059 7.768 7.453 7.301

10763 7.070 7.811 7.363 7.170

12800 6.997 7.730 7.307 7.127

15222 6.952 7.654 7.175 7.034

18102 6.833 7.521 7.174 7.008

21527 6.720 7.501 7.152 6.921

25600 6.629 7.468 7.067 6.828

30444 6.611 7.441 6.973 6.704

36204 6.553 7.329 6.926 6.603

43054 6.433 7.311 6.929 6.618

51200 6.294 7.234 6.815 6.481

60887 6.215 7.146 6.827 6.384

72408 6.201 7.079 6.752 6.275

86108 6.093 7.046 6.662 6.172

102400 6.002 6.990 6.685 6.128
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Table 2: The average number of iteration steps with different distribution of errors
and different number of points (with 30 percent outliers)

Count of points
distribution of the errors

normal lognormal exponential uniform

100 9.738 9.776 9.740 9.729

119 9.678 9.601 9.583 9.614

141 9.484 9.502 9.472 9.492

168 9.570 9.557 9.439 9.611

200 9.409 9.498 9.338 9.482

238 9.275 9.349 9.438 9.453

283 9.264 9.277 9.195 9.305

336 9.157 9.146 9.184 9.251

400 9.142 9.068 9.279 9.262

476 9.118 9.121 9.001 9.203

566 8.919 8.926 9.012 9.096

673 8.908 8.907 8.865 9.005

800 8.841 8.755 8.932 9.019

951 8.800 8.781 8.815 8.804

1131 8.744 8.786 8.848 8.787

1345 8.617 8.725 8.794 8.816

1600 8.732 8.547 8.827 8.736

1903 8.545 8.552 8.690 8.570

2263 8.494 8.517 8.670 8.481

2691 8.524 8.525 8.648 8.417

3200 8.395 8.527 8.640 8.328

3805 8.290 8.357 8.572 8.265

4525 8.221 8.352 8.439 8.179

5382 8.210 8.355 8.429 8.236

6400 8.116 8.359 8.334 8.065

7611 8.016 8.191 8.327 7.996

9051 7.988 8.209 8.253 7.844

10763 7.959 8.147 8.114 7.873

12800 7.817 8.087 8.141 7.705

15222 7.887 8.051 8.134 7.715

18102 7.804 8.005 8.057 7.586

21527 7.681 7.909 8.056 7.523

25600 7.727 7.925 7.938 7.451

30444 7.680 7.912 7.948 7.373

36204 7.506 7.843 7.880 7.291

43054 7.509 7.786 7.851 7.218

51200 7.354 7.733 7.800 7.107

60887 7.336 7.746 7.707 7.076

72408 7.320 7.646 7.712 6.973

86108 7.257 7.631 7.652 6.918

102400 7.144 7.549 7.622 6.894
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Figure 11: The application of the SBLR method in LiDAR data processing with
different R and q values.

6.1 LiDAR data processing

SBLR can be used in any application, where a robust linear regression method is
required. If the distribution of the measurement error is skewed, the method can
use a different q value than 0.5.

This method has been used for processing the LiDAR point clouds. In this case
(N = 2), the two independent value are the horizontal coordinates, the dependent
variable is the elevation, and the measurements are the points of the LiDAR point
cloud. (See the Figure 3.) The classical X, Y , and Z coordinates of the points are
denoted x1, x2 and h in this case in the equation of a fitting plane, and pk,1, pk,2
and pk,0 in the point of the cloud.

The regression plane is fitted to a part of the total LiDAR cloud, which is cut
by a circle shape with R radius. The regression plane fits to this part of the cloud,
because this method is called “Fitting Disc” method. [15] This principle may be
used in other cases, where the connection is not linear between the independent and
the dependent values: select the points, which are nearest than a radius (R) from
an examined position, and fit a linear, N dimensional plane to this part, which is
approximately linear. (See in the Figure 12., in a two-dimensional illustration.) The
Fitting Disc method is a local application of the Sector Based Linear Regression.

Digital Elevation Models can be created, if the SBLR based Fitting Disc method
is applied in each point of the DEM grid. The result depends from R and q values,
for example the Figure 11. In the forest areas the appropriate result needs very low
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Figure 12: The LiDAR data processing with SBLR in a two-dimensional illustra-
tion. The ground surface is evaluated by q = 0.1 parameter, because the majority
of the points are in the trees and bushes, over the ground surface.

q values; and the very low q values need long R radius, because some points must
be under the plane. If the intention is at least on average n points under the plane

in each sectors, the radius is R =
√

3n
qdπ , where d is the density of the LiDAR point

cloud in points/m2.
The SBLR based Fitting Disc method can be applied to recognize planes in a

point cloud, for example the roofs of the buildings. In these cases the plane of the
detected object (for example a roof) can be calculated by SBLR from a segment of
the point cloud.

6.2 Other possibilities

A linear regression plane can be fitted to the data of the pixels of a picture near
a position (like the LiDAR data processing) and calculated a filtered color by this
regression plane. This filtering method is same as the Two-Dimensional Median
Filtering Algorithm [8].

The SBLR can be used for any data processing task, where a linear regression
is needed in an N -dimensional space. This method can be used well with a lot of
outlier data or a random error with asymmetric distribution.

The SBLR is a linear case of the quantile regression [13, 12, 11]. The quantile
regression is used in different disciplines, for example ecology [3] or economy [2, 5].

A robust linear regression method can provide a robust method to determine the
parameters an affine transformation by control points. This calculation needs two
independent linear regression for the two coordinates (in case of the two-dimensional
affine transformation), because each equations of the affine transformation are a lin-
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ear regression, where the independent variables are the coordinates of the reference
system one, and the dependent variable is a coordinate of the reference system two.

7 Conclusions and future work

The Sector Based Linear Regression is a robust method for fitting an N dimensional
hyperplane to a dataset which has N independent and 1 dependent variables. The
studies of this article focused to the simple N = 1 case, and the practical application
(LiDAR data processing) uses the N = 2 case, but the method can be applied in
any dimension. This method provides quantile regression, it is useful in some cases
(for example the LiDAR data processing, when the majority of the points are over
the ground surface).

The processing time of the SBLR method is increased only linear with the size
of the input data (the number of the points, denoted by M in this article). This
advantage makes it ideal for big data processing applications.

This article presents the principle of the method, an algorithm for the SBLR,
and some studies and application possibilities of the method. A simple implementa-
tion of the SBLR method has been made. The source code of this Python 3 module
is attached to this article. In the future, i would like to implement the method in
other programming languages, and improve the efficiency of the program.

The principle of the Sector Based Linear Regression can be adapted to non-
linear regressions. The area must be divided more sectors in these cases, because
the non-linear curves need more parameters.
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9 Additional files

This article contains two animated GIF files. The sblr.gif shows the SBLR
method during operation in case of N = 1. The fitdisc.gif presents the test
area of the Figure 11. in many other cases of R and q parameters of the Fitting
Disc method.

The implemented SBLR algorithm is already attached sblr.py Python 3 mod-
ule. This module provides the SBLR calculations in any Python 3 program.
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