
Acta Cybernetica 23 (2018) 1039–1054.

An Efficient Method to Reduce the Size of

Consistent Decision Tables

János Demetrovicsa, Hoang Minh Quangb,
Vu Duc Thic, and Nguyen Viet Anhb

Abstract

Finding reductions from decision tables is one of the main objectives in
information processing. Many studies focus on attribute reduct that reduces
the number of columns in the decision table. The problem of finding all
attribute reducts of consistent decision table is exponential in the number
of attributes. In this paper, we aim at finding solutions for the problem
of decision table reduction in polynomial time. More specifically, we deal
with both the object reduct problem and the attribute reduct problem in
consistent decision tables. We proved theoretically that our proposed methods
for the two problems run in polynomial time. The proposed methods can be
combined to significantly reduce the size of a consistent decision table both
horizontally and vertically.

Keywords: attribute reduct, object reduct, consistent decision table, rough
set theory, relational database theory

1 Introduction

Rough set theory was first represented by Pawlak in 1982. Since then, rough set
theory [9] has found many interesting applications in areas such as knowledge ac-
quisition, decision analysis, knowledge discovery from databases, expert systems,
inductive reasoning and so on. The theory seems to be particularly important
when applied for information systems (sometimes called data tables, decision ta-
bles, attribute-value systems, or condition-action tables) for knowledge represent-
ing, knowledge reduction, dependency reasoning and many other research problems.

Knowledge reduction [6, 17] is considered one of the most fundamental and
important research tasks when working with information systems. The knowledge

aComputer and Automation Institute Hungarian Academy of Sciences, E-mail:
demetrovics@sztaki.mta.hu

bInstitute of Information Technology - Vietnam Academy of Science and Technology, E-mail:
{hoangquang,anhnv}@ioit.ac.vn

cThe Information Technology Institute (ITI) - Vietnam National University, Hanoi, E-mail:
vdthi@vnu.edu.vn

DOI: 10.14232/actacyb.23.4.2018.4

1040 J. Demetrovics, H.M. Quang, V.D. Thi, and N.V. Anh

reduction problem relates to the general concept of independence and knowledge
core. It is about removing redundant attributes from the information system in
such a way that the set of remaining attributes preserves only part of knowledge
that is really useful. However, as proved in [11], the problems of generating the
minimal reduct and minimal dependency are both NP-hard. Thus, the problem of
finding all reducts as well as finding the minimal reduct using rough set theory may
only be effective on small data sets. Knowledge reduction can be categorised into
to finding reducts or relative reducts [7]. The concept of a reduct is built based on
the idea of information systems and is easy to apply in applications. In contrast,
the concept of a relative reduct is built based on decision systems. In fact, there are
various definitions of reducts. The positive region reduct [8] is the most popular
one, which is defined based on lower and upper approximation sets for defining
an attribute reduct, for examples, Shannon’s information entropy based reduct [8],
classical rough set model based reduct[10], reduct based on discernibility matrix
and discernibility function [16], reduct based on heuristic search [17].

Most of reducts implied that they are attribute reducts and not object reducts.
[7] defines a reduct based on a distance measure with three evaluation metrics:
finding optimal, maximal exceeding, average exceeding. Some authors introduce
the concept of variable precision rough set [6] in which the concept of β lower
distribution reduct and β upper distribution reduct are used. In these works, the
equivalent definitions are given and the relationships among β lower, β upper distri-
bution reducts and alternative types of knowledge reduction in inconsistent systems
[16] are investigated. Moreover, with some special threshold, β lower and β upper
distribution reducts are equivalent to the maximum distribution and the possible
reduct, respectively. The authors use discernibility matrices associated with the
β lower and upper distribution reducts from which the approaches to knowledge
reduction in variable precision rough set can be obtained. [4] propose to use fuzzy
rough set and information granulation for finding attribute reduct, and obtain dif-
ferent semantics in numerical attribute reduct and categorical attribute reduct. [4]
derive several attribute significance measures based on the proposed fuzzy-rough
model. From this, authors construct a greedy forward algorithm to find attribute
reduct as feature subset selection. [4] also propose two strategies in attribute subset
selection such as wrapper and filter for granular computing by using fuzzy infor-
mation granules from numerical features and transforming numerical attribute into
fuzzy linguistic variables. Some studies find attribute reducts according to the def-
inition of concept lattices [1]. By combining rough set theory and formal concept
analysis, these studies obtained reduction of a context by deleting rows (object
oriented concept lattice) or columns (attribute oriented concept lattice) or both.
Then, based on granular computing theory, they use the information granules or
discernibility matrix and discernibility function to explore the attribute reduct.
Therefore, the relationships between the attribute reducts of the concept lattices
and the attribute reducts of the information system in rough set theory are found.
Because of non-polynomial time complexity, most of algorithms mentioned above
have to use a heuristic approach to search for reducts.

In this paper we propose two methods for dealing with the problem of finding all

An Efficient Method to Reduce the Size of Consistent Decision Tables 1041

reduct attributes (or non-redundant attributes), columns of the consistent decision
table are involved at least in one of attribute reducts, and the problem of finding
an object reduct that removes redundant objects, rows of the consistent decision
table are no effect to finding set of all attribute reducts over decision attributes.
The proposed methods are proved theoretically having polynomial complexity in
running time. Moreover, by combining the two methods, we can obtain a consistent
decision table that its size is reduced in both horizontal and vertical dimensions.
Our ideas are based on some basis concepts of relational database theory [2, 3, 12]
and rough set theory [8, 11]. In relational dabase theory, the basis important
concept is the concept of minimal keys and antikeys. They form the so-called
Sperner-systems. We consider decision tables that can be regarded as relation
tables in relational database theory. Decision tables and relation tables are tables
containing rows and columns. A decision table has an attribute set that can be
divided into the condition set and the decision set. It is obvious that there is a
correspondence between function dependencies in a relation and dependencies in a
decision table. By applying methods of finding keys and antikeys, we construct keys
and antikeys for a consistent decision table. Some results in relation about keys
and antikeys have polynomial time complexity. By using these results of minimal
keys and antikeys and based on the maximal equality set definition, we build an
algorithm for finding a reduct of consistent decision table in polynomial time. To
the best of our knowledge, this is the first time some interesting results in the
relational database theory are directly applied in efficiently finding reducts from
decision tables.

The rest of the paper is organized as following. In Section 2, we give necessary
notions and definitions regarding the relational database theory and rough set the-
ory which will be later used in the paper. In Section 3, we describe our proposed
methods for object reduct and attribute reduct from a consistent decision table. In
Section 4, we give a case study to illustrate our proposed methods. We summarize
the paper in Section 5.

2 Preliminaries

In this section we show some basis concepts of relational database theory [2, 3, 12]
and rough set theory [8, 9, 11, 13].

2.1 Relational database theory

Definition 1. Let R = {a1, ..., an} be a finite set of attributes and let D(ai) be
the set of all possible values of attribute ai, the relation r over R is the set of

tuples {h1, ..., hm} where hj : R →
⋃

ai∈R
D(ai), 1 ≤ j ≤ m, is a function that

hj(ai) ∈ D(ai).

Definition 2. Let r = {h1, ..., hm} be a relation over R = {a1, ..., an}. Any pair
of attribute sets A,B ⊆ R is called functional dependency (FD) over R, and it is

1042 J. Demetrovics, H.M. Quang, V.D. Thi, and N.V. Anh

denoted by A→ B if and only if

(∀hi, hj ∈ r)((∀a ∈ A)(hi(a) = hj(a))⇒ (∀b ∈ B)(hi(b) = hj(b))).

Definition 3. The set Fr = {(A,B) : A,B ⊂ R,A → B} is called a full family
of functional dependencies in r. Let P (R) be the power set of attribute set R. A
family F ⊆ P (R) × P (R) is called a f-family over R if and only if for all subsets
of attributes A,B,C,D ⊆ R the following properties hold:
1) (A,A) ∈ F .
2) (A,B) ∈ F, (B,C) ∈ F ⇒ (A,C) ∈ F .
3) (A,B) ∈ F,A ⊆ C,D ⊆ B ⇒ (C,D) ∈ F .
4) (A,B) ∈ F, (C,D) ∈ F ⇒ (A ∪ C,B ∪D) ∈ F .

Clearly, Fr is an f-family over R. It is also known that if F is an f-family over
R, then there is a relation r such that Fr = F . Let us denote by F+ the set of all
FDs, which can be derived from F by using rules 1)-4).

Definition 4. A pair s = 〈R,F 〉, where R is a set of attributes and F is a set of
FDs on R, is called a relation schema. For any A ⊆ R, the set A+ = {a : A →
{a} ∈ F+} is called the closure of A on s. It is clear that A → B ∈ F+ if and
only if B ⊆ A+. Similarly, A+

r = {a : A → {a} ∈ F+} is called the closure of A
on relation r.

Definition 5. Let r be a relation, s = 〈R,F 〉 be a relation scheme and A ⊆ R.
Then A is a key of r (a key of s) if A → R (A → R ∈ F+). A is a minimal key
of r (s) if A is a key of r (s) and any proper subset of A is not key of r (s). The
set of all minimal keys of r (s) is denoted by Kr (Ks). A family K ⊆ P (R) is a
Sperner-system on R if for any A,B ∈ K implies A 6⊂ B. It is clear that Kr (Ks)
are Sperner-systems.

Definition 6. Let K be a Sperner-system over R as the set of all minimal keys of
s. We defined the set of antikeys of K, denoted by K−1, as follows:

K−1 = {A ⊂ R : (B ∈ K)⇒ (B 6⊂ A) and if (A ⊂ C)⇒ (∃B ∈ K)(B ⊆ C)} .

It is easy to see that K−1 is the set of subsets of R, which does not contain
the element of K and which is maximal for this property. They are the maximal
non-keys. Clearly, K−1 is also a Sperner-system.

Definition 7. Let r be a relation over R. Denote Er = {Eij : 1 ≤ i ≤ j ≤ |r|},
where Eij = {a ∈ R : hi(a) = hj(a)}. Then Er is called an equality set of r.

For Ar ∈ R,A+
r = ∩Eij , if there exists Eij ∈ Er : A ⊆ Eij , otherwise A+

r = R.

Definition 8. Let r = {h1, ..., hm} be a relation over R, Er is the equality set of
r. Let

Mr = {Eij ∈ Er : ∀Est ∈ Er : Eij ⊆ Est, Eij 6= Est}
where 1 ≤ i < j ≤ m, 1 ≤ s < t ≤ m. Mr is called the maximal equality system of
r.

An Efficient Method to Reduce the Size of Consistent Decision Tables 1043

Definition 9. Let s = 〈R,F 〉 be a relation scheme over R and a ∈ R. The set

Ks
a = {A ⊆ R : A→ {a}, 6 ∃B : (B → {a})(B ⊂ A)}

is called a family of minimal sets of the attribute a over s. Similarly, the set

Kr
a = {A ⊆ R : A→ {a}, 6 ∃B ⊆ R : (B → {a})(B ⊂ A)}

is called a family of minimal sets of the attribute a over r.

Definition 10. If K is a Sperner-system over R as the family of minimal sets
of the attribute a over r (or s); in other words K = Kr (or K = Ks), then

K−1 = (Kr
a)
−1

(or K−1 = (Ks
a)
−1

) is the family of maximal subsets of R which
are not the family of minimal sets of the attribute a, defined as:

(Kr
a)
−1

= {A ⊆ R : A→ {a} 6∈ F+
r , A ⊂ B ⇒ B → {a} ∈ F+

r },

(Ks
a)
−1

= {A ⊆ R : A→ {a} 6∈ F+, A ⊂ B ⇒ B → {a} ∈ F+}.

It is clear that R 6∈ Ks
a, R 6∈ Kr

a, {a} ∈ Ks
a, {a} ∈ Kr

a and Ks
a, Kr

a are
Sperner-systems over R.

2.2 Rough set theory

Definition 11. An information system S is an order quadruple S = (U,A, V, f)
where U is a finite set of objects, called the universe; A is a finite set of attributes;

V =
⋃
a∈A

Va and Va is the domain of attribute a; f : U × A → V is a total

function, such that f(x, a) ∈ Va for every a ∈ A and x ∈ U called the information
function. The function fx : A → V such that fx(a) = f(x, a) for every a ∈ A
and x ∈ U will be called information about x in S. We denote a(x) = fx(a). If
B = {b1, b2, ..., bk} ⊆ A is subset of attributes, then the set of bi(x) is denoted as
B(x). Therefore, if x, y are two objects in U , then B(x) = B(y) if and only if
bi(x) = bi(y),∀i = 1, ..., k.

Definition 12. Decision table is an information system S = (U,A, V, f), where
A = C ∪D and C ∩D = ∅. Without loss of generality, suppose that D consists of
only one decision attribute d. Therefore, from this time we consider the decision
table DS = (U,C ∪ {d}, V, f), where {d} 6∈ C.

Definition 13. Let decision table DS = (U,C ∪ {d}, V, f), U = {u1, ..., um} be a
relation over C∪{d}. A decision table DS is consistent if and only if the functional
dependency C → {d} is true; it means that for any x, y ∈ U if C(x) = C(y) then
d(x) = d(y). Conversely, DS is inconsistent.

Definition 14. Every attribute subset P ⊆ C ∪D determines an indiscernibility
relation
IND(P) = {(u, v) ∈ U × U |∀a ∈ P, f(u, a) = f(v, a)}
IND(P) determines a partition of U which is denoted by U/P .
Any element [u]P = {v ∈ U |(u, v) ∈ IND(P)} in U/P is called an equivalent class.

1044 J. Demetrovics, H.M. Quang, V.D. Thi, and N.V. Anh

• B-upper approximation of X is the set BX = {u ∈ U |[u]B ∩X 6= ∅},

• B-lower approximation of X is the set BX = {u ∈ U |[u]B ⊆ X} with B ⊆ C,
X ⊆ U ,

• B-boundary is the set BNB(X) = BX\BX,

• B-positive region of D is the set POSB(D) =
⋃

X∈U/D

(BX)

Definition 15. Let DS = (U,C ∪ {d}, V, f) be a decision table. If B ⊆ C satisfies
1) POSB(D) = POSC(D)
2) ∀b ∈ B,POSB−{b}(D) 6= POSC(D)
then B is called attribute reduct of C.

If DS is a consistent decision table, B is an attribute reduct of C if B satifies
B → {d} and ∀B′ ⊂ B, B′ 6→ {d}. Let RED(C) be the set of all reducts of C.
From definition 15 and formula Kr

a in definition 9 we have RED(C) = Kr
d − {d}

where Kr
d is the family of all minimal set of the attribute {d} over r = 〈U,C ∪{d}〉

3 Object reduct and attribute reduct

In this section, we construct some methods to finding all non-redundant attributes,
an object reduct and an attribute reduct and all of them have complexity in poly-
nomial. A lot of existing approaches try to find all attribute reducts first, and then
select the most suitable one. Unfortunately, the problem of finding all attribute
reducts of consistent decision table is exponential in the number of attributes [5].
Because of exponential computational time, many research using heuristic meth-
ods to find an attribute reduct [1, 4, 6, 7, 10, 16, 17]. The method of finding an
attribute we propose is not a heuristic algorithm. First, we eliminate all redundant
attributes, that are not involved in any attribute reduct of consistent decision ta-
ble, by using the algorithm 1. After that, we build two algorithms that one find an
object reduct, the algorithm 2, and another find an attribute reduct, the algorithm
4. The combination of these methods generate a consistent decision table that is
reduced in size in both vertical and horizontal dimensions. These results will reduce
cost of storage data, specially for massive dataset, and the object reduct completely
preserve information for finding all attribute reducts.

Lemma 1. Let DS = (U,C ∪ {d}, V, f) be a consistent decision table where C =
{c1, c2, ..., cn}, U = {u1, u2, ..., un}. Let us consider r = {u1, u2, ..., um} on the
attribute set R = C ∪ {d}.
We set Er = {Eij : 1 ≤ i < j ≤ m} where Eij = {a ∈ R : a(ui) = a(uj)}.
We set Md = {A ∈ Er : d 6∈ A, 6 ∃B ∈ Er : d 6∈ B,A ⊂ B}.
Then we have Md = (Kr

d)−1 where Kr
d is a family of minimal sets of the attribute

{d} over relation r.

The lemma 1 is proved in [13].

An Efficient Method to Reduce the Size of Consistent Decision Tables 1045

Theorem 1. [2] Let K be a Sperner-system over Ω. Then⋃
A∈K

A = Ω−
⋂

B∈K−1

B

Definition 16. Given a consistent decision table DS = (U,C ∪ {d}, V, f), let DS
be relation U = {u1, ..., um} over attribute set R = C ∪ {d}, from definition 15
we have RED(C) = Kr

d − {d}, if denote REAT (C) a set of all non-redundant
attributes or reduct attributes of C then:

REAT (C) =
⋃

A∈RED(C)

A =

 ⋃
A∈Kr

d

A

− {d}
Algorithm 1 Finding the set of all reduct attributes of C

Function REAT(DS = (U,C ∪ {d}, V, f), POSC({d}) = U , C = {c1, ..., cn},
U = {u1, ..., um})
1: Consider the relation r = {u1, ..., um} over the attribute set R = C ∪ {d}.
2: Step 1: Compute Er = {A1, ..., At}
3: Step 2: Compute Md = {A ∈ Er : d 6∈ A, 6 ∃B ∈ Er : d 6∈ B,A ⊂ B}.
4: Step 3: Construct N = R−

⋂
B∈Md

B

5: Step 4: Set REAT (C) = N − {d}

Theorem 2. REAT (C) is set of all reduct attributes of C.

Proof. The theorem 2 is proved in [14]. It is restated as follows:

By lemma 1 Md = (Kr
d)
−1

. At step 3, combine with definition 6, (Kr
d)
−1

and (Kr
d)

are Sperner-systems, with theorem 1 we have:

N = R−
⋂

B∈Md

B = R−
⋂

B∈(Kr
d)
−1

B =
⋃

A∈Kr
d

A

At step 4 we have:

REAT (C) = N − {d} =

 ⋃
A∈Kr

d

A

− {d} =
⋃

A∈RED(C)

A

Thus, by definition 16, REAT (C) is the set of all reduct attributes of C, REAT (C)
is the set of all non-redundant attributes of C.

It can be seen that the number of computational steps of Er is not greater than
|U |2 and the number of computational steps of Md is not greater than |Er|2. Thus,
the worst case time computational complexity of the algorithm is O(|U |4+|C∪{d}|)
which is polynomial by number of rows and columns of decision table DS.

1046 J. Demetrovics, H.M. Quang, V.D. Thi, and N.V. Anh

Definition 17. An object reduct of a consistent decision table DS = (U,C ∪
{d}, V, f) is a consistent decision table, DS′ = (U ′, C∪{d}, V, f), where RED(C) =
REDU (C) and:

1) U ′ ⊆ U ,
2) REDU (C) = REDU ′(C),
3) REDU (C) 6= REDU ′−{u}(C), ∀u ∈ U ′.

Algorithm 2 Finding an object reduct over consistent decision table

Function ObjectReduct(DS = (U,C∪{d}, V, f))

1: Step 1: Compute Er = {A1, ..., At}
2: Step 2: Compute MU

d = {A ∈ Er : d 6∈ A, 6 ∃B ∈ Er : d 6∈ B,A ⊂ B}.
3: Step 3: Set T (0) = U = {u1, ..., um}
4: Step 4: Set

T (i+ 1) =

{
T (i)− ui+1, if M

T (i)−ui+1

d = MU
d

T (i), otherwise

5: Then we set U ′ = T (m).

Theorem 3. T (m) satisfies the two conditions 1), 2) and 3) in definition 17.

Proof. We prove the theorem by induction. At basis step T (0) = U , clearly, U ′ = U ,
REDU ′(C) = REDU (C) thus the two conditions 1), 2) are satisfied. At inductive
step, assume that we have T (i) = U(i) satisfies two conditions 1), 2) in definition
17. We have to prove that T (i+ 1) = U(i+ 1) satisfies the two conditions.

• In the first case: If T (i + 1) = T (i) then it is obvious that U(i + 1) = U(i),
REDU(i+1)(C) = REDU(i)(C) = RED(C) by induction hypothesis. Thus,
T (i+ 1) satisfies the two conditions 1), 2) in definition 17.

• In the second case: If T (i+1) = T (i)−{ui+1} thenMU
d = M

U(i+1)
d . By lemma

1, MU
d =

(
KU

d

)−1
where (U = {u1, ..., um}) ⇒ M

U(i+1)
d =

(
K

U(i+1)
d

)−1
⇒(

KU
d

)−1
=
(
K

U(i+1)
d

)−1
. By definition 6 and 10 (K and K1 are uniquely

determined by one another), it can see that
(
KU

d

)
=
(
K

U(i+1)
d

)
. From defi-

nition 15 and the result of definition 15, we have REDU (C) =
(
KU

d

)
− {d}

and REDU(i+1)(C) =
(
K

U(i+1)
d

)
−{d} ⇒ (ii1) REDU (C) = REDU(i+1)(C).

From induction hypothesis, we have (ii2) REDU (C) = REDU(i)(C). From
(ii1), (ii2) we obtain REDU (C) = REDU(i)(C) = REDU(i+1)(C). Be-
cause REDU (C) = RED(C) is a Sperner-system (by definition KU

d is a
Sperner-system and ⇒ KU

d − {d} is a Sperner-system), REDU(i)(C) and
REDU(i+1)(C) are Sperner-systems. Finally, the two conditions in definition
17 are satisfied at step i+ 1 as follow:

An Efficient Method to Reduce the Size of Consistent Decision Tables 1047

1) U(i+ 1) ⊆ U(i),
2) REDU(i+1)(C) = REDU(i)(C) = ... = REDU (C) = RED(C)

When i+ 1 = m then algorithm 2 stops. Now we need to show that U(m) satisfies
the condition 3) in definition 17 which means that REDU(m)−u(C) 6= REDU (C)
where ∀u ∈ U(m). Assume that there exists u = ui+1, u ∈ U(m) such that
REDU(m)−ui+1

(C) = REDU (C) (ii3). By definition 15, REDU(m)−ui+1
(C) =

K
U(m)−ui+1

d − {d} and REDU (C) = KU
d − {d}, thus

(ii3)⇔ K
U(m)−ui+1

d − {d} = KU
d − {d} ⇔ K

U(m)−ui+1

d = KU
d (ii4)

By definition 6, 10 and lemma 1 (K and K−1 are uniquely determined by one
another), it means that

(ii4)⇔
(
K

U(m)−ui+1

d

)−1
=
(
KU

d

)−1 ⇔M
U(m)−ui+1

d = MU
d (ii5)

By above proving induction, if M
U(m)−ui+1

d = MU
d then ui+1 will be removed, thus

ui+1 6∈ U(m) contradicts with hypothesis u = ui+1 ∈ U(m). Hence, the condition
3) in definition 17 is satisfied. The theorem is proved.

It is clear that the number of steps computing Er by definition 7 is less than

|U |2. The number of steps computing Md is less than |Er|2 and |Er| ≤
|U |(|U | − 1)

2
.

Thus, the worst-case time complexity of algorithm 2 is not greater than O(|U |5).
If we change the order of the universe set U , we can find another object reduct.

Algorithm 3 Finding the minimal key from a set of antikeys

Function MinimalKey(Let K, H be Sperner-systems and C = {c1, ..., cn} ⊆ U
such that H−1 = K and ∃B ∈ K : B ⊆ C)

1: Step 1: We set A(0) = C
2: Step i+ 1: Set

A(i+ 1) =

{
A(i)− {ci+1}, if ∀B ∈ K : A(i)− {ci+1} 6⊆ B
A(i), otherwise

3: Then we set D = A(n).

Lemma 2. [12] If K is a set of antikeys, then A(n) ∈ H.

1048 J. Demetrovics, H.M. Quang, V.D. Thi, and N.V. Anh

Algorithm 4 Finding an attribute reduct from a consistent decision table

Function OneAttributeReduct(DS = (U,C ∪
{d}, V, f))

1: Step 1: Compute Er = {A1, ..., At}
2: Step 2: Compute Md = {A ∈ Er : d 6∈ A, 6 ∃B ∈ Er : d 6∈ B,A ⊂ B}.
3: Step 3: Set H(0) = C = {c1, ..., cn}
4: Step 4: Set

H(i+ 1) =

{
H(i)− ci+1, if 6 ∃B ∈Md : H(i)− ci+1 ⊆ B
H(i), otherwise

5: Then we set D = H(n).

Theorem 4. H(n) ∈ RED(C), where H(n) in algorithm 4.

Proof. The algorithm 4 is based on the algorithm 3. By lemma 1, (Kr
d)
−1

= Md.
By lemma 2, H(n) ∈ Kr

d (1). By the result of definition 15, RED(C) = Kr
d − {d}

(2). At step 3 of algorithm 4 we set C = {c1, ..., cn} then d 6∈ C. Thus, in algorithm
4 we have d 6∈ H(n) (3). From (1) and (3) we have H(n) ∈ Kr

d −{d} (4). From (2)
and (4) we obtain H(n) ∈ RED(C). The theorem is proved.

Similar to the algorithm 2, the time complexity of algorithm 4 is not greater
than O(|C|×|U |4). If we change the order of the set C in step 3 we can get another
attribute reduct of the consistent decision table DS. Thus, the problem of finding
all attribute reducts is exponential time complexity in the number of attributes [5].

In order to reduce the size of consistent decision table in both vertical and
horizontal dimensions, the first step in our method is to use the algorithm 1 to
determine REAT (C) and then use the algorithm 2 to get an object reduct. So
REAT (C) is the set of all reduct attributes, we obtain reduction in the horizontal
dimension, reducing number of columns, of the consistent decision table. After
that the object reduct is reduction in the vertical dimension, reducing number of
rows, of the consistent decision table. It is easy to prove that our method run in
polynomial time because the algorithm 1 and 2 are polynomial time complexity. It
is obvious that the consistent decision table that is reduced both vertically and hor-
izontally occupies much less capacity of storage than the original, but it preserves
all necessary information for finding all attribute reducts. In addition, our method
applies the algorithm 4 to find an attribute reduct that run in polynomial time
and the attribute reduct help more and more efficiently and effectively in learing
process.

4 A case study

Example 1. Given a consistent decision table DS = (U,C ∪ {d}, V, f)
where U = {u1, ..., u14} ({1, ..., 14}),

An Efficient Method to Reduce the Size of Consistent Decision Tables 1049

d is decision attribute “Play Golf”,
C = {Outlook,Grass, Temperature,Humidity,Windy,NumberHoles}
({o, g, t, h, w, n} or {ogthwn}),
R = C ∪ {d} = {ogthwnd}.
VOutlook = {Sunny,OverCast,Rain},
VTemperature = {High,Middle, Low},
VHumidity = {High,Middle},
VGrass = {Wet,Dry},
VWindy = {Weak, Strong},
VNumberHoles = {20, 10},
Vd = {No, Y es}, V = VOutlook ∪ VGrass ∪ VTemperature ∪ VHumidity ∪ VWindy ∪
VNumberHoles ∪ Vd,

and function f : U × C ∪ {d} →
⋃
a∈C

Va as table 1.

Table 1: A consistent decision table

No. O G T H W N d
1 Sunny Wet High High Weak 10 No
2 Sunny Dry High High Strong 20 No
3 Overcast Wet High High Weak 10 Yes
4 Rain Dry Middle High Weak 10 Yes
5 Rain Wet Low Middle Weak 20 Yes
6 Rain Wet Low Middle Strong 20 No
7 Overcast Dry Middle Middle Strong 20 Yes
8 Sunny Wet Low High Weak 10 No
9 Sunny Wet Middle Middle Weak 10 Yes
10 Rain Dry Middle Middle Weak 20 Yes
11 Sunny Dry Middle Middle Strong 20 Yes
12 Overcast Dry Middle High Strong 10 Yes
13 Overcast Dry High Middle Weak 20 Yes
14 Rain Dry Middle High Strong 10 No

Example 2. (continue the example 1) By applying algorithm 1 we have that Er

contains all Ei,j as follows:

E1,2 = othd, E1,3 = gthwn, E1,4 = hwn, E1,5 = gw, E1,6 = gd, E1,8 = oghwnd,
E1,9 = ogwn, E1,10 = w, E1,11 = o, E1,12 = hn, E1,13 = tw, E1,14 = hnd,
E2,3 = th, E2,4 = gh, E2,5 = n, E2,6 = wnd, E2,7 = gwn, E2,8 = ohd, E2,10 = gn,
E2,12 = ghw, E2,13 = gtn, E2,14 = ghwd, E3,4 = hwnd, E3,5 = gwd, E3,6 = g,
E3,7 = od, E3,8 = ghwn, E3,9 = gwnd, E3,10 = wd, E3,11 = d, E3,12 = ohnd,
E3,13 = otwd, E4,5 = owd, E4,7 = gtd, E4,9 = twnd, E4,10 = ogtwd, E4,12 = gthnd,
E4,14 = ogthn, E5,8 = gtw, E5,10 = ohwnd, E6,10 = ohn, E7,9 = thd, E7,11 =
gthwnd, E7,13 = oghnd, E9,10 = thwd, E9,12 = tnd, E9,13 = hwd, E9,14 = tn,

1050 J. Demetrovics, H.M. Quang, V.D. Thi, and N.V. Anh

E10,13 = ghwnd, E10,14 = ogt, E11,12 = gtwd, E11,13 = ghnd, E12,13 = ogd
Md = {gthwn, ogthn, ogwn} = {M1,M2,M3}
G =

⋂
M∈Md

= M1 ∩M2 ∩M3 = {gthwn} ∩ {ogthn} ∩ {ogwn} = {gn}

REAT (C) = N − {d} = R−G− {d} = {ogthwnd} − {gn} − {d} = {othw}
Thus, the two attributes “Grass” and “NumberHoles” are redundant, by remov-

ing these two attributes, we obtain non-redundant attributes consistent decision
table NOREDS = (U, {o, t, h, w} ∪ {d}, V, f) of the consistent decision table 1.
From this example, we consider C = {o, t, h, w} instead of C = {o, g, t, h, w, n}.

Example 3. (continue example 2) By defintion 14 we find RED(C).
POSo({d}) = {3, 7, 12.13},
POSt({d}) = ∅, POSh({d}) = ∅, POSw({d}) = ∅,
POSot({d}) = {1, 2, 3, 7, 8, 9, 11, 12, 13},
POSoh({d}) = {1, 2, 3, 7, 8, 9, 11, 12, 13},
POSow({d}) = {3, 4, 5, 6, 7, 12, 13, 14},
POSth({d}) = {7, 8, 9, 10, 11, 13},
POStw({d}) = {2, 4, 6, 9, 10},
POShw({d}) = {5, 9, 10, 13},
POSoth({d}) = {1, 2, 3, 7, 8, 9, 10, 11, 12, 13},
POSotw({d}) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
POSohw({d}) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
POSthw({d}) = {2, 4, 5, 6, 7, 8, 9, 10, 11, 13}.
We see that POS{otw}({d}) = POS{ohw}({d}) = POSC({d}). By definition 15,
the set of all reducts of C = {othw} over the consistent decision table DS =
{U,C ∪ {d}, V, f} in example 2 is RED(C) = {otw, ohw}

Example 4. (continue example 2) In step 1 in algorithm 2, from example 2 and
definition 7, for each pair of rows (i, j), we construct the sets Eij . We have:

E1,2 = {othd}, E1,3 = {thw}. By doing the same thing with pairs (1, 4), ..., (1,
14), (2, 3), (2, 4), ..., (13, 14) we obtain the set Er containing sets Ai as follows:

A1 = {othd}, A2 = {thw}, A3 = {hw}, A4 = {w}, A5 = {d}, A6 = {ohwd},
A7 = {ow}, A8 = {o}, A9 = {h}, A10 = {tw}, A11 = {hd}, A12 = {th}, A13 =
{wd}, A14 = {ohd}, A15 = {t}, A16 = {hwd}, A17 = {od}, A18 = {otwd},
A19 = {owd}, A20 = {td}, A21 = {twd}, A22 = {thd}, A23 = {oth}, A24 = {oh},
A25 = {thwd}, A26 = {ot}

Er = {A1, ..., A26} = EU
r

Example 5. (continue example 4) In step 2 of algorithm 2, we construct the set
MU

d being the maximal equality system of Er that do not have decision attribute
d. We obtain:

Md = MU
d = {thw, oth, ow} = {B1, B2, B3}

Example 6. (continue example 5) In step 3 and step 4 of algorithm 2 we have:
T (0) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, by using definition 7 and formula at

An Efficient Method to Reduce the Size of Consistent Decision Tables 1051

step 2 in algorithm 2 we compute:

M
T (0)−{1}
d = {thw, oth, ow} = MU

d ⇒ T (1) = T (0)− {1}
M

T (1)−{2}
d = {thw, oth, ow} = MU

d ⇒ T (2) = T (1)− {2}
M

T (2)−{3}
d = {thw, oth, ow} = MU

d ⇒ T (3) = T (2)− {3}
M

T (3)−{4}
d = {thw, oth, ow} = MU

d ⇒ T (4) = T (3)− {4}
M

T (4)−{5}
d = {thw, ow, oh, ot} 6= MU

d ⇒ T (5) = T (4)

M
T (5)−{6}
d = {thw, ow, ot} 6= MU

d ⇒ T (6) = T (5)

M
T (6)−{7}
d = {thw, oth, ow} = MU

d ⇒ T (7) = T (6)− {7}
M

T (7)−{8}
d = {thw, oth} 6= MU

d ⇒ T (8) = T (7)

M
T (8)−{9}
d = {thw, oth} 6= MU

d ⇒ T (9) = T (8)

M
T (9)−{10}
d = {thw, oth, ow} = MU

d ⇒ T (10) = T (9)− {10}
M

T (10)−{11}
d = {thw, oth, ow} = MU

d ⇒ T (11) = T (10)− {11}
M

T (11)−{12}
d = {oth, ow, tw} 6= MU

d ⇒ T (12) = T (11)

M
T (12)−{13}
d = {thw, oth, ow} = MU

d ⇒ T (13) = T (12)− {13}
M

T (13)−{14}
d = {oth, ow, tw} 6= MU

d ⇒ T (14) = T (13)
Set U ′ = T (14) = {5, 6, 8, 9, 12, 14} then OBREDS = ({5, 6, 8, 9, 12, 14}, C ∪
{d}, V, f) is the object reduct of the consistent decision table NOREDS

Example 7. (continue example 2, 3 and 6) Based on the object reduct of the
consistent decision table OBREDS = DS′ = (U ′, C ∪ {d}, V, f) from example 6,
we use definition 14 to find REDU ′(C).
POS′o({d}) = {12}
POS′t({d}) = ∅, POS′h({d}) = ∅, POS′w({d}) = ∅
POS′ot({d}) = {8, 9, 12, 14}
POS′oh({d}) = {8, 9, 12, 14}
POS′ow({d}) = {5, 6, 12, 14}
POS′th({d}) = {8, 9}
POS′tw({d}) = {6, 9}
POS′hw({d}) = {5, 6, 8, 9, 12, 14}
POS′oth({d}) = {8, 9, 12, 14}
POS′otw({d}) = {5, 6, 8, 9, 12, 14}
POS′ohw({d}) = {5, 6, 8, 9, 12, 14}
POS′thw({d}) = {5, 6, 8, 9}
We see that POS′{hw}({d}) = POS′{otw}({d}) = POS′{ohw}({d}) = U ′. Let the

set P = {POS′B({d})} = {hw, otw, ohw}. Because U ′ is an object reduct of U
according to the definition of the maximal equality system of attribute {d}, the set
of all reducts of C is a Sperner-system.
Thus, REDU ′(C) = {B ∈ P, 6 ∃A ∈ P,A ⊂ B}. In P , {hw} ⊂ {ohw}, we remove
{hw} and P becomes a Sperner-system. It is obvious that REDU ′(C) = P −
{hw} = {otw, ohw} = REDU (C). Clearly, REDU ′(C) generated by object reduct
in the consistent decision table DS′ equals to REDU (C) generated by the original
consistent decision table DS.

1052 J. Demetrovics, H.M. Quang, V.D. Thi, and N.V. Anh

Example 8. (continue example 5) By applying algorithm 4 we find only one at-
tribute reduct on consistent decision table from example 2, C = {othw}
temp = H(0)− {o} = {thw} = B1 ∈Md ⇒ H(1) = H(0)
temp = H(1)− {t} = {ohw} 6⊆ {B ∈Md} ⇒ H(2) = temp
temp = H(2)− {h} = {ow} = B3 ∈Md ⇒ H(3) = H(2)
temp = H(3)− {w} = {oh} ⊆ B2 ∈Md ⇒ H(4) = H(3)
Set H = H(4) = {ohw} and algorithm 4 stops and H ∈ RED(C). We have table
ATREDS = (U, {o, h, w} ∪ {d}, V, f).

Example 9. Combining algorithm 1 and 2 on examples 2 and 6, we obtain the
consistent decision table which are reduced in both vertical and horizontal dimen-
sions. In addition to attribute reduct that is obtained by algorithm 4 on example
8, the relation r1 = {5, 6, 8, 9, 12, 14} over {ohw} is a consistent decision table as
table 2 for learning process.

Table 2: Table r1 is combination of NOREDS, OBREDS and ATREDS

No. Outlook Humidity Windy d
5 Rain Middle Weak Yes
6 Rain Middle Strong No
8 Sunny High Weak No
9 Sunny Middle Weak Yes
12 Overcast High Strong Yes
14 Rain High Strong No

A decision tree that is generated from the consistent decision table r1 (table
2) as Fig 1. The decision tree (Fig 1) is also one of the decision trees that are
generated from the consistent decision table 1 by algorithm ID3 (or C4.5).

Yes No Yes No

Middle High Weak Strong

Humidity Yes Windy

Sunny Overcast Rain

Outlook

Figure 1: The decision tree generated from combination reducts table 2

An Efficient Method to Reduce the Size of Consistent Decision Tables 1053

5 Conclusion

In this paper, we have proposed some novel methods to reduce the consistent de-
cision tables in both horizontal and vertical dimensions. Our ideas are based on
some results from relational database theory and rough set theory. The algorithm
of finding all reduct attributes and the algorithm of finding an object reduct run
in polynomial time complexity. The algorithm of finding attribute reducts may be
either polynomial time complexity in the case of finding only one attribute reduct
or exponential time complexity [5] in the case of finding all attribute reducts of
consistent decision table. The learning decision trees [15] that are generated from
the reduced decision table are obtained from those generated from the original de-
cision table. Thus, our methods can help to facilitate the learning process from
larger decision tables compared with existing methods.

References

[1] Cornejo, Ma Eugenia, Medina, Jesús, and Ramı́rez-Poussa, Eloisa. Attribute
reduction in multi-adjoint concept lattices. Information Sciences, 294:41–56,
2015.

[2] Demetrovics, János and Thi, Vu Duc. Keys, antikeys and prime attributes. In
Annales Univ. Sci. Budapest, Sect. Comp, volume 8, pages 35–52, 1987.

[3] Demetrovics, János and Thi, Vu Duc. Algorithms for generating an armstrong
relation and inferring functional dependencies in the relational datamodel.
Computers & Mathematics with Applications, 26(4):43–55, 1993.

[4] Hu, Qinghua, Xie, Zongxia, and Yu, Daren. Hybrid attribute reduction based
on a novel fuzzy-rough model and information granulation. Pattern recognition,
40(12):3509–3521, 2007.

[5] Janos, Demetrovics, Thi, Vu Duc, and Giang, Nguyen Long. On finding all
reducts of consistent decision tables. Cybernetics and Information Technolo-
gies, 14(4):3–10, 2014.

[6] Mi, Ju-Sheng, Wu, Wei-Zhi, and Zhang, Wen-Xiu. Approaches to knowledge
reduction based on variable precision rough set model. Information sciences,
159(3):255–272, 2004.

[7] Min, Fan, He, Huaping, Qian, Yuhua, and Zhu, William. Test-cost-sensitive
attribute reduction. Information Sciences, 181(22):4928–4942, 2011.

[8] Pawlak, Zdzis law. Rough sets. International Journal of Computer & Infor-
mation Sciences, 11(5):341–356, 1982.

[9] Pawlak, Zdzis law and Skowron, Andrzej. Rough sets and boolean reasoning.
Information sciences, 177(1):41–73, 2007.

1054 J. Demetrovics, H.M. Quang, V.D. Thi, and N.V. Anh

[10] Qian, Yuhua and Liang, Jiye. Combination entropy and combination granula-
tion in rough set theory. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 16(02):179–193, 2008.

[11] Skowron, Andrzej and Rauszer, Cecylia. The discernibility matrices and func-
tions in information systems. In Intelligent Decision Support, pages 331–362.
Springer, 1992.

[12] Thi, Vu Duc. The minimal keys and antikeys. Acta Cybernetica, 7(4):361–371,
1986.

[13] Thi, Vu Duc and Giang, Nguyen Long. A method to construct decision table
from relation scheme. Cybernetics and Information Technologies, 11(3):32–41,
2011.

[14] Thi, Vu Duc and Giang, Nguyen Long. Some problems concerning condition
attributes and reducts in decision tables. In Proceeding of the fifth National
Symposium Fundamental and Applied Information Technology Research, pages
142—152. FAIR, Dong Nai, Vietnam, 2012.

[15] Vens, Celine, Struyf, Jan, Schietgat, Leander, Džeroski, Sašo, and Blockeel,
Hendrik. Decision trees for hierarchical multi-label classification. Machine
Learning, 73(2):185–214, 2008.

[16] Yao, Yiyu and Zhao, Yan. Discernibility matrix simplification for constructing
attribute reducts. Information sciences, 179(7):867–882, 2009.

[17] Zheng, Kai, Hu, Jie, Zhan, Zhenfei, Ma, Jin, and Qi, Jin. An enhancement
for heuristic attribute reduction algorithm in rough set. Expert Systems with
Applications, 41(15):6748–6754, 2014.

