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Abstract

Reliable confidence domains for positioning with Global Navigation Satel-
lite System (GNSS) and inconsistency measures for the observations are of
great importance for any navigation system, especially for safety critical ap-
plications. In this work, deterministic error bounds are introduced in form of
intervals to assess remaining observation errors. The intervals can be deter-
mined based on expert knowledge or - as in our case - based on a sensitivity
analysis of the measurement correction process. Using convex optimization,
bounding zones are computed for GPS positioning, which satisfy the geomet-
rical constraints imposed by the observation intervals. The bounding zone is
a convex polytope. When exploiting only the navigation geometry, a confi-
dence domain is computed in form of a zonotope. We show that the relative
volume between the polytope and the zonotope can be considered as an in-
consistency measure. A small polytope volume indicates bad consistency of
the observations. In extreme cases, empty sets are obtained which indicates
large outliers. We explain how shape and volume of the polytopes are re-
lated to the positioning geometry. Furthermore, we propose a new concept
of Minimum Detectable Biases.

Using the example of the Klobuchar ionospheric model and Saastamoinen
tropospheric model, we show how observation intervals can be determined
via sensitivity analysis of these correction models for a real measurement
campaign. Taking GPS code data from simulations and real experiments,
a comparison analysis between the proposed deterministic bounding method
and the classical least-squares adjustment has been conducted in terms of
accuracy and reliability. It shows that the computed polytopes always enclose
the reference trajectory. In case of large outliers, large position deviations
persist in the least-squares solution while the polytope algorithm yields empty
sets and thus successfully detects the cases with outliers.
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1 Introduction

Nowadays, GNSS is applied for a variety of highly demanding tasks, like e.g., pre-
cision landing approaches. Thus, the quality and trust that we put into the GPS
navigation solution must be extremely high: Integrity measures this performance,
i.e. the ability of the navigation system to timely warn the user when error thresh-
olds so-called alert limits are transgressed [23].

Integrity risk evaluation involves, both assessing the fault detection and exclusion
capability and quantifying the impact of undetected faults on position estimation
errors. Currently, there is a big interest in receiver autonomous integrity measures
(RAIM) algorithms especially for autonomous driving applications [3, 27].

This purely statistical determination of integrity and associated error bounds will
not always be adequate. In the past years, new integrity approaches have been
proposed based on interval mathematics, e.g. Set Inversion Via Interval Analysis
is used to compute the three-dimensional bounding zone in real time [13, 12]. This
approach differs from the usual Gaussian error model, since the uncertainty of the
satellite positions and the pseudo-range measurements is assessed by intervals which
bound the true values of the satellite positions and the pseudo-range measurements
with a particular confidence. Subsequently, the user position will be guaranteed
to be in a bounding box, with edges parallel to the axes of the coordinate system
which is a direct solution of the non-linear navigation equation, [6], [11] and [8].
The drawbacks of this approach are: (i) the obtained bounding box overestimates
the uncertainty region, (ii) the size and shape of the bounding box depends on
the orientation of the coordinate system and thus the uncertainty may be not well
presented, (iii) a concept of minimum detectable biases (MDB) is not foreseen.

In this work, we propose a different deterministic bounding method which takes
benefits from the geometry of the navigation problem. The bounds on the obser-
vation equations represent constraints for the parameters that have to be satisfied.
As a result, a convex polytope is obtained which can overcome some of the afore-
mentioned shortcomings.

The remainder of the paper is structured as follows: The first section is about the
methodology which contains some basics on GNSS positioning, polytopes and zono-
topes, the determination of observation interval radii from sensitivity analysis of
the GPS correction models, and the transformation of the navigation problem into
a convex polytope problem by applying the interval bounds in terms of geometrical
constraints. The second section includes a simulation study to better understand
the properties of our method. Then, we derive the MDB and we explain the effect
of biases on the bounding zone as well. Subsequently, the inconsistency measure is
derived and studied in terms of geometry, error bounds, and observation noise also
using real and simulated GPS code measurements. In the third section, real GPS
code data from kinematic test drives will be analyzed, [19]. We compute the inter-
val radii for the code observations based on a sensitivity analysis of two prominent
correction models. We show exemplary trajectories for which the method based
on geometric constraints is compared to the classical least-squares estimator and
subsequent integrity measures.
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2 Methodology

2.1 Basics on GNSS Positioning

The GNSS position concept is based on pseudo-range measurements PR between
the known satellite positions xj = (xj , yj , zj)

T and the unknown user position
xA = (xA, yA, zA)T . Since the receiver clock is not synchronized with the GNSS
time scale, the receiver clock offset δA(t) needs to be estimated epoch by epoch as
a fourth parameter and only pseudo-ranges instead of ranges can be measured [17].
In addition, the signals are delayed. The main sources of errors come from satellites
ephemerides, propagation delays through the atmosphere, receiver noise, multipath
and interfering signals [26]. Moreover, satellite anomalies and outliers occur and
should be detected and excluded from the computation in order to have a reliable
positioning. The code pseudo-ranges equation (1) for satellite j and station A reads

PRjA(t) =

√
(xj(t− τ jA)− xA(t))2 + (yj(t− τ jA)− yA(t))2 + (zj(t− τ jA)− zA(t))2

+ c(δA(t)− δj(t− τ jA)) + IjA(t) + T jA(t) +M j
A(t) + w(t),

(1)

where, t is the epoch of reception, t−τ jA the transmission time, τ jA the signal travel
time, x, y and z are the coordinates in an Earth centered Earth fixed (ECEF) coor-
dinate system, c denotes the speed of light, δj satellite clock offset, I j

A(t) and T j
A(t)

denote the ionospheric and tropospheric delays respectively, M j
A(t) is the multipath

error and w contains the remaining errors. At least four satellites in view are needed
in order to estimate the receiver position and clock offset. After linearization via
Taylor expansion at some initial values x0, we get the over-determined system of
linearized observation equations at every epoch:

∆l = A∆x, (2)

where ∆l denotes the m× 1 vector of observed-minus-computed values (OMC), A
the m×4 design matrix and ∆x the 4×1 vector of corrections to be estimated and
added to x0. In general, the weighted least-squares principle is applied to obtain
best estimates (3), where the observations are weighted depending on the satellite
elevation angle El (P = diag(sin2(El))), thus taking into account potentially larger
deviations at low elevation angles

∆x̂ = (AT PA)−1ATP ∆l. (3)

2.2 Basics on Polytopes and Zonotopes

Following [28], a polyhedron is defined as the solution set of a finite number of
linear equalities and inequalities

P = {x|nT
i x ≤ ui, i = 1, ...,m, cTi x = di, i = 1, ..., p}. (4)
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The polyhedron can also be defined as the convex hull of a finite number of points
which represent its vertices

P = conv(v0,v1, ...,vm) = {θ0v0, θ1v1, ...θmvm|θ ≥ 0,1Tθ = 1}. (5)

A polyhedron is the intersection of a finite number of halfspaces and hyperplanes.
In this paper, we will follow the convention of calling a bounded polyhedron a
polytope. Zonotopes or parallelotopes are special polytopes with specific geomet-
rical properties, e.g. pairs of edges have the same length and are parallel. A good
reference for zonotopes and its uses in uncertainty estimation are [28] and [20].

2.3 Determination of the Bounding Zones

The transformation of the navigation problem to a convex polytope is done by
applying the error bounds ∆ on OMC (∆l) in both directions, so equation (2)
reads as follows:

∆l−∆ ≤ A∆x ≤ ∆l+ ∆, (6)

The determination of the interval radii as error bounds will be explained in the
next session. Rearranging equation (6), we get a system of inequalities:{

A∆x ≤ ∆l+ ∆

−A∆x ≤ −∆l+ ∆,
(7)

which can be written as follows:

B∆x ≤ b, (8)

where B =

[
A
−A

]
and b =

[
∆l+ ∆
−∆l+ ∆

]
.

This system of inequality constraints defining a convex polytope as an intersection
of a finite number of halfspaces is referred to as a H-polytope. Each inequality
constraint is a halfspace. To get the vertices of the polytopal bounding zone in
the coordinate system, the H-polytope has to be transformed into a V-polytope
(convex hull of the polytope vertices). This transformation is the so-called vertex
enumeration problem, and there exist different algorithms to solve it. A Primal
Dual Polytope (PDP) algorithm is used to transform the H-polytope into a V-
Polytope. In this paper, we use the Multi-Parametric MatLab Toolbox [9]. Figure
1 shows a 2D example of the transformation from H-polytope into V-polytope,
where each row of the matrix B represents a normal vector of the hyperplane of
the H-polytope. In this example, the measurements are error free i.e., ∆l = 0 and
that is why the polytope is regular with special properties (zonotope) [28].
The volume of the polytope will be used later on to derive the inconsistency mea-
sures of the positioning problem. There is no analytical form to compute the volume
of non-regular polytopes. However, different methods and algorithms exist to de-
rive the polytope volume numerically, as discussed in [4], [16], and [5]. Contrary,
the zonotope volume can be computed analytically [28]. In this paper, the volumes
of the polytopes and zonotopes will be computed by the same MatLab built-in
algorithm in order to avoid inconsistency in the computation.
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Figure 1: H-Polytope (left): intersection of halfspaces (grey area) determined by 6
different hyperplanes which are the rows of a matrix B and its transformation into
a V-polytope (right) blue dots.

2.4 Determining Observation Intervals

In our approach, error bounds in form of intervals with lower and upper bounds
are applied to the OMC values ∆l to assess the remaining observation uncertainty.
A sensitivity analysis w.r.t influence parameters is performed on the observation
equation (1) to derive observation intervals [21]. Each correction model in equation
(1) is checked w.r.t influence parameters whose values are known at some time step
with some uncertainty. Usually, there are both systematic and random effects.
The dependencies of the total differential dPRj

A of equation (1) w.r.t. the influence
parameters are defined as follows.

dPRjA =
∂ρjA
∂s

ds +
∂IjA
∂s

ds +
∂T jA
∂s

ds + ... = F ds, (9)

where ρjA denotes the Euclidean distance, the (ninfl × 1) vector s is the set of

influence parameters and ds is their uncertainty. The final interval radius ∆j
A is

defined :

∆j
A =

∣∣∣∣∂PRjA∂s

∣∣∣∣ds = |F|ds, (10)

where F is a matrix containing the partial derivatives, the symbol | · | is the abso-
lute value applied to each matrix element. We assume, that the error bounds are
symmetric and centered at the actual value of the corrected observations ∆ljA, so
the interval observation reads as follows:

[∆ljA] = [∆ljA −∆j
A,∆l

j
A + ∆j

A]. (11)

3 Interpretation of Bounding Zones and related
Inconsistency Measures

In the following, different case studies will be analyzed for better understanding the
shape and interpretation of the resulting polytopes. A simulation study of a moving



578 Hani Dbouk and Steffen Schön

robot in a flat world will be presented, taking into account special positioning
geometries, measurement noise and biases. We assume that the transmitters are
fixed in each scenario in a known position and can communicate with the robot via
electromagnetic waves as GNSS satellites and receiver. We assume further that the
transmitters and the robot are synchronized, so that the robot position is the only
state to be estimated.

3.1 Noise-free and Bias-free Measurements Yield Zonotope
as Bounding Zone

Figure 2 shows three simulated scenarios with different transmitter geometries
(transmitters are fixed in each case) thus different angles of intersection between
the lines-of-sight (LOSs). The measurements are considered to be free of random
errors and fit the model ∆l = 0. So, we can have a better idea of the impact of
the navigation geometry on the bounding zone. In all cases, the observation error
bound is selected arbitrary and set equal to 4 meters.
When changing the navigation geometry, i.e. going from a good, homogeneous
distribution of the transmitters (case a) to a worse, more clustered one (case c), the
area of the polytope increases, reflecting this situation. In this example, the area of
the polytope (i.e. zonotope) is 56 m2, 82.3 m2, and 278.1 m2 for the cases a, b, and c,
respectively. This reflects the impact of the positioning geometry also presented in
the Geometrical Dilution of Precision (GDOP) values (GDOP =

√
trace(ATA)−1)

used in navigation to characterize the strength of the navigation geometry [15].
Here, the values are GDOP = 1.2, 1.7 and 12.4 for case a, b and c, respectively.
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Figure 2: Resulting bounding zones (blue) for the error-free case. 2D simulated
scenarios with error bounds equal to 4 m and 3 transmitters with different ge-
ometry (LOS). a) excellent geometry GDOP=1.2, polytope area equals 56 m2, b,
intermediate geometry GDOP=1.7, polytope area equals 82.3 m2, c, bad geometry
GDOP=12.4, polytope area equals 278.1 m2

Since neither observation noise nor biases are applied here, we consider the zonotope
as the nominal uncertainty associated with a specific geometry and value for ∆.
Furthermore, the shape of the zonotope indicates directions in which the point
uncertainty is minimum, i.e. in LOS direction. The number of edges and vertices
of a 2D zonotope equals twice the number of measurements.
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3.2 Impact of White Observation Noise on the Bounding
Zone

When adding noise to the observations, the zonotope is deformed into a polytope,
cf. Figure 3.a. The degree of deformation depends on the ratio between the applied
error bounds ∆ and the standard deviation of the observations σ. In order to study
this impact, this ratio is varied while keeping the identical geometry.
Figure 3.b, shows the resulting bounding zones of the robot in an example with six
well distributed transmitters. The colored polytopes are obtained from the same set
of transmitters but from measurements suffering from additive white noise (AWN,
σ = 2 m). Furthermore, the interval ∆ is increased. As a reference, the polytopes
without AWN (i.e. zonotopes) are shown in black. The big one is obtained when
applying ∆ = 16 m while the small one for ∆ = 4 m. The two black zonotopes are
similar and both have 12 edges.
Starting with the large zonotope, the situation changes as follows. As the size of
∆ decreases, the variations due to AWN start predominating. Subsequently, the
number of edges decreases since each constraint cuts the polytope from inside, cf.
dashed-lined edges. The color of dashed-lined edges indicates at which magnitude
of the error bound ∆ that specific edge is lost. For instance, edge 1 is lost from the
error free case when we add an AWN to the measurements with ∆ = 16 m, while
edge 2 is lost when ∆ = 4 m, (magenta polytope). Overall, the black zonotope, blue,
red, green, and magenta polytopes have 12, 11, 10, 10, and 8 edges, respectively. As
the ratio ∆

σ decreases, the number of edges is reduced and the area of the polytope
decreases till it becomes empty. Thus, the area or volume of the polytope V olP can
be used to indicate the inconsistency of the observations, here generated by AWN.
Next we treat the impact of biases.

3.3 Impact of Observation Biases on the Bounding Zone

Let’s go back to the 2D example represented in Figure 2, and add one new trans-
mitter, so one more measurement. Assuming noise-free measurements but a biased
new measurement, the impact of an increase in magnitude of the bias is studied
depending on the observation geometry. Figure 4.a depicts the zonotopes for the
error-free cases for three (blue) and four (green) transmitters (Tx).
Figure 4.b and c show the polytope solution when we introduce biases to the 4th

observation with different magnitudes related to ∆. The bias acts as a halfspace cut
in the LOS direction (depicted in red). As the bias increases the resulting polytope
moves in the direction of the bias and shrinks down till it becomes empty at a bias
δ = ∆ + w, where w is the half width of the blue zonotope, [28]. When the bias is
just a bit smaller than ∆ + w, the resulting polytope is very small, see Figure 4.c,
black triangle at the left. This underlines again the interpretation of the polytope
being an inconsistency measure.
In case c from Figure 2, we also take the 4th transmitter in the direction of maximum
uncertainty. In this case, w is much bigger than the one from case a. In fact, the
polytope is still non-empty for a very large bias (see black trapezoid in Figure 4.e),
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Figure 3: Comparison of zonotope and polytope solutions: a) Impact of noise on a
zonotope. b) Polytope solutions with different values for the error bounds of 4 m, 8
m, 12 m, and 16 m, while keeping the same noise level. The black regular polytope
(zonotope) is the solution obtained from measurements free of random errors (big
zonotope is obtained with error bound ∆ = 16 m, the small one is of ∆ = 4 m),
while the colored non-regular polytopes result from measurements affected with
AWN (σ = 2 m) and varying ∆. The grey lines indicate the line-of-sight directions.

where a bias of δ = −7 · ∆ = −28 m was introduced. Thus, this underlines the
strong impact of the observation geometry.

Now, we can define a minimum detectable bias (MDBZi) being an error in observa-
tion i so that the resulting polytope is an empty set. From geometric consideration,
the MDBZi

equals the sum of the error bound ∆i and the half width wi of the
zonotope Zi in the LOS direction of the corresponding observation i, where the
zonotope is obtained from all observations except the ith one. The half width of
the zonotope is the half distance between the extreme vertices of the zonotope in the
LOS direction of the related observation, cf. Figure 5 for the geometric relations.

The MDB is maximum if the LOS of the new measurement is in the direction of
maximum uncertainty of the zonotope. The big advantage is that the MDB can
be computed without real measurements as a design and planning quantity. It
indicates the strength of the navigation geometry to identify outliers.{

MDBZi
= wzi + ∆i (a)

∆i ≤MDBPi
≤ 2wpi + ∆i (b)

(12)

Real observations however will be noisy. Thus, the resulting bounding zone is a
polytope. If the actual noise contribution in each measurement is smaller than
the corresponding error bound, then the true position is still contained inside the
polytope but its location is unknown. Thus, only a range of MDB can be given by
MDBPi (Equation 12) where wpi is the half width of the polytope obtained with
all observations except the ith one. If the noise contribution is small w.r.t the error
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bounds, the polytope solution tends towards the zonotope solution.

In the context of the least-squares adjustment, the MDB is derived from hypothesis
testing of individual outliers in observations:

MDBTSi
=
σ0

pi
·

√
λi
qvivi

(13)
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Figure 4: Introducing a range of biases to the 4th measurement of case a and c from
Figure 2. Subfigure a) regular polytope (zonotope) before (blue) and after (green)
introducing the 4th observation. b) Biases δ = 0.5∆ and δ = 1∆ introduced to the
4th observation of case a. c) Biases δ = 1.5∆ and δ = 2∆ introduced to the 4th

observation of case a. d) Introducing a 4th observation in case c of Figure 2. e)
Range of biases (δ = 1∆, 4∆, and 7∆) added to the 4th observation. Zonotopes
computed with only 3 observations are shown in blue and LOSs of the observations
are indicated in red.
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Figure 5: Geometry of the width of the zonotope (a) and polytope (b)

where σ0 is the prior standard deviation of the observation, pi is the weight of
the ith observation which depends on the elevation angle, λi is the non-centrality
parameter, qvivi is the estimated variance of the ith observation’s residual, v is
the vector of residuals and P is the weight matrix, [24] and [1]. Assuming normal
distributed observation errors, the non-centrality parameter depends on the chosen
probability of false alarm (the significance level) and the detection power (test
quality) that separates the hypothesis H0: case of no fault from the faulty case
(alternative hypothesis H1), [25]. In general, an overall model test or global test is
preceding the individual outlier test:

Tgl =
vTPv

m− 4
:

{
H0 ∼ χ2

m−4

H1 ∼ χ2
m−4,λ0

(14)

The global test statistics Tgl follows a central χ2 distribution of f = m− 4 degrees
of freedom in the fault-free case H0 and a non central χ2 distribution in the faulty
case. In order to ensure equal sensitivity of both tests, the probabilities of error
and the non-centrality parameters λ0 and λi must be adjusted, cf. [24] and [1].

3.4 Proposal for an extended Inconsistency Measure

As we have seen in the previous section, there are some biases that could not
be detected just by empty sets. These non-detectable biases (NDBs) have values
between ∆ and ∆ + 2w. This type of biases is dangerous because we still have a
non-empty polytope solution and the polytope may not contain the true solution.
This is especially true for a bad remaining geometry or less redundancy for a specific
observation, e.g. compare case δ = −4 ·∆ in figure 4 e).
To detect such biases we propose a new inconsistency measure Vr based on the
relative volume between the volume of the actual polytope solution V olp and the
error and bias-free solution (reference or nominal behavior), i.e. the zonotope V olz:

Vr =
V olz − V olp

V olz
. (15)

We perform a Monte Carlo simulation to understand the behavior of the inconsis-
tency measure in terms of geometry, noise, error bounds and biases. Three different
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real satellite geometries (scenarios) are selected with different number of satellites
in view and geometrical dilution of precision GDOP (Table 1). We simulate GPS
code measurements with white noise (σ = 1 m). In each of the 1000 simulation
runs (epochs), a different random vector is generated, however the sequence of ran-
dom vectors are identical for all three scenarios. Finally, a ramp bias is introduced
starting from epoch 100 (δ = 0 m) and ending at epoch 500 (δ = 32 m).

Table 1: GDOP and number of satellites for each scenario in the Monte Carlo
simulation.

Scenario 1 2 3
Number of Satellites 10 6 5

GDOP 2.0 3.4 11.3

Figure 6.a shows the impact of different satellite configurations when the error
bounds ∆ are fixed to 4 m and one satellite (PRN10) was biased. For Scenario 1
(good geometry, blue): the inconsistency measure Vr increases as expected, when
the bias increases. If the bias transgresses a certain amount (here 9 m), the polytope
is empty, i.e. the bias is successfully detected. During the other epochs without bias,
Vr shows a certain scatter, which is related to the selected random vectors and which
can be used to define a nominal behavior. Scenario 2 with intermediate geometry
(orange) shows an increase in the inconsistency at the beginning of the ramp bias.
Vr can successfully detect biases larger than 13 m. A totally different behavior is
obtained for Scenario 3. For small biases, Vr increases already strongly and then
a large scatter but no empty sets are observed. The scatter in the inconsistency
measures in the non-biased regions is higher for the good geometry and lower for
bad geometry. This is due to the fact that for a bad geometry zonotopes and
polytopes are larger so that the observation noise has a smaller impact on the
polytope volume.
In Figure 6.b the impact of a varying magnitude of the error bounds ∆ is shown
for Scenario (1) and the biased satellite (PRN 10). As expected, the inconsistency
measure Vr behaves in a different way with and without biases. As the error bound
increases the mean value and the scatter of Vr decreases since the impact of the
measurement noise on the polytope volume decreases, too. During epochs with bias,
the slope of Vr decreases. Thus, the measure becomes more and more insensitive
against inconsistencies and outliers can hardly be detected, i.e. the number of
empty set solutions is significantly reduced.
Figures 6.c and 6.d display the impact of different biased satellites where the ge-
ometry and the error bounds are kept fixed. Figure 6.c depicts a good geometry
situation (Scenario 1; GDOP = 2.0) and reveals the same effect for different biased
satellites, while Figure 6.d depicts the bad geometry case (Scenario 3; GDOP =
11.3). Consequently, the zonotope and polytope are large and elongated, since the
LOS directions are not well distributed and rather clustered in one direction. This
implies a different behavior of the inconsistency measure for different biased satel-
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lites, which depends on the line-of-sight direction of the biased satellites and the
geometry of the other satellites in view. Moreover, the detection was not possible
here for the large error bound of 10 m, see also [7] for a discussion.
In order to improve the sensitivity of the inconsistency measure, a first approach
is to introduce an upper threshold for Vr to reject biased epochs. To this end, a
nominal behavior is needed to compare the current situation against. We propose
to run a MC simulation taking the real observation geometry into account as well
as the adequately defined error bound ∆ and standard deviation σ thus obtaining a
nominal behavior. Subsequently, a histogram of Vr are determined and thresholds
can be set. As motivated above, small values of Vr can be generated by outliers
and/or bad geometry. Thus, it is advised to exclude low values of Vr, too.

exclude epochs if Vr < Vr,l or Vr > Vr,u (16)

b

c d

Figure 6: Variation of the inconsistency measure for real GPS configurations with
simulated measurements with AWN (1m) and a ramp bias for one satellite between
epoch 100 and 500. a: Impact of satellite geometry for 3 different scenarios, b:
Impact of varying magnitude of error bounds ∆ in case of good satellite geometry,
c: Impact of different biased satellites for a large error bound of ∆ = 10 m and a
good geometry, , d: same as c but for Scenario 3 (bad geometry).
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4 Real Data Analysis

Intensive test drives have been done in the scope of DFG funded research training
group I.C.SENS, [19]. In this study, we will present one of those car test drives.
The chosen test drive was recorded in a GNSS denied urban area (Figure 8.b)
using a Novatel Span system consisting of a dual frequency GNSS receiver [22]
equipped with 2 antennas and an iMAR FSAS IMU [10]. The ground truth is
provided by the post processing software TerraPos [2], where the very precise carrier
phase observations of the 2 GNSS antennas were tightly coupled with the IMU
measurements.

4.1 Computation of Observation Intervals from Sensitivity
Analysis

Exemplary, the observation intervals are computed by a sensitivity analysis for the
relevant Klobuchar [14] ionospheric model and the Saastamoinen [18] tropospheric
model in order to derive physically meaningful interval bounds. The uncertainty
values of the influence parameters can be found in [7, 21]. The remaining errors
of the GPS code observation are enclosed by an error bound equal to the typical
observation error of 1% of the chip or wavelength, i.e. ∼ 3 m. Subsequently, the
elevation dependent interval bounds are determined, cf. Figure 7.
The right hand part shows the skyplot, i.e. the satellite distribution during the
measurement campaign. The left hand part depicts the interval radii, color coded
for each satellite. For high elevating satellites the interval radii are smaller (about
12 m) while data from low elevation satellites is more uncertain which is reflected by
larger interval radii of up to 17 m. Interruption in the time series indicates that the
corresponding satellite was not measured at that epoch due to heavy obstructions
in this urban areas.
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Figure 7: Interval radius of each observation derived from sensitivity analysis and
the skyplot of the test drive.

In order to link the proposed approach to the classical least-squares adjustment the
following statements can be made: (i) Assuming normal distribution and a typical
standard deviation of σ = 3 m for a GPS observation at zenith direction, a confi-
dence interval of radius 12 m would contain more than 99.99% of the observations.
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(ii) The ratio ∆
σ varies due to the elevation depending interval radii and observation

weights from 4 (zenith) to 1 at low elevation (e.g. 10 degrees).

4.2 Positioning solutions

Three positioning solutions are computed from the GPS code observations: (i) a
classical least-squares solution (Eq. 3) with global test (Eq. 14) and significance level
of 0.2%, (ii) the proposed polytope solution (Eq. 8) based on the before determined
observation intervals without threshold and (iii) with thresholds on Vr here: 0.04 <
Vr < 0.4. All solutions are compared to the reference trajectory.

Figure 8.a shows the obtained results. The reference solution is depicted in black,
the epoch-wise single point positions (SPP) obtained from the classical least-squares
solution in blue and our polytope solution in green. In addition, as potential point
measure, the barycentres of the polytopes are indicated in orange. Both meth-
ods provide noisy solutions w.r.t. the reference, since the rather noisy GPS code
measurements have been used. All the bounding polytopes enclose the reference so-
lution. Figure 9 shows the cumulative frequency of the 3D positioning error for the
three cases: least-squares adjustment (LSA, blue), polytope-based point position
without thresholds (PDP, red) and polytope-based point position with thresholds
(PDPT , dashed red). Both solutions based on polytopes outperform the LSA so-
lution, e.g. a 3D position error less than 10 m is obtained in 38%, 42% and 60%
of the epochs of LSA, PDP and PDPT , respectively. For comparison the LSA
solution is indicated as dashed blue line when only the epochs of common to the
PDPT solution are considered. Here in 584 of the epochs the 3D position error is
smaller than 10 m. The root mean square errors are 14 m, 12.93 m, 9.98 and 9.3
m for LSA, PDP , LSAT and PDPT , respectively. It is worth mentioning that
the total number of epochs was 1606 where 74 epochs have less than 4 satellites in
view so the position could not be computed. From the remaining 1532 epochs, the
global test fails at 223 epochs, while we get 94 empty polytopes and 35 of them
are common with LSA. Applying thresholds on Vr we get 761 empty polytopes and
they contain all the failed epochs from the global test. Our method improves the
reliability and the integrity of the navigation system at the cost of the continuity.

A comparison of MDBs obtained from both methods (Eq. 13 and 12.b) has been
performed on the same test drive. The probability of error was α = 0.002 and the
test quality (probability of type 2 error) was γ = 0.8 which leads to a non-centrality
parameter λi = 23, [1] and [25].

Figure 10, depicts the MDB for two satellites in view, a: PRN05 and b: PRN20.
The MDBP of PRN05 is half of MDBTS (around 40 % improvement) for most
of the epochs and for some epochs where the geometry is quite good it has 65
% improvement. For PRN20 both methods show similar results for most of the
epochs. However, there are many epochs when we have few satellites in view, so
the MDBTS can not be computed while MDBP can be computed. For those
epochs MDBP shows high values due to few constraints. As a results, MDBP
improves the internal and the external reliability of the navigation system.
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Figure 8: Results from test drives a: Positioning results and 2D projection of the
obtained 4D polytopes for a test drive obtained with LSA and PDP algorithm. b:
Google Earth of the test drive.
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tope for two satellites a) PRN05 and b) PRN20
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Figure 9: Cumulative frequency of the 3D coordinate errors, LSA (blue), PDP
without applying a threshold on Vr but excluding the epochs with empty sets (red)
and PDP when a lower and an upper threshold are applied on Vr (PDPT dashed
red). For comparison, the statics of the LSA solution is shown when excluding all
rejected epochs from PDPT (LSAT , dashed blue).

5 Conclusions

In this paper, we presented steps towards an alternative approach for integrity
monitoring. Associating deterministic error bands to the observations, we pro-
posed a primal dual polytope algorithm to determine the feasible solution set. The
resulting polytope represents the solution set. The volume of the polytope indi-
cates the inconsistency of the observations, i.e. if the volume of the polytope is
small, the observations are inconsistent. If the polytope is empty, large outliers are
present. Exploiting the geometry of the navigation problem, zonotopes are derived
as uncertainty reference and compared to the polytopes. Based on the comparison
with a nominal error behavior (i.e. a zonotope), an outlier detection algorithm is
developed and minimum detectable biases are indicated. Monte Carlo simulations
indicate that the outlier detection performance depends on the ratio between the
error bound and the standard deviation of the observations and on the geometry
of the navigation problem.

Using real GPS code observations from a measurement campaign in an urban area
with cars, we showed that the obtained polytopes always include the reference
trajectory, while the classical least-squares solution shows large positioning devi-
ations. In some of these cases, the polytopes were empty indicating the implicit
outlier detection capability of the polytope approach. The internal reliability in
terms of minimum detectable bias has been evaluated, too, applying the proposed
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new method and comparing it to the classical approach of global test statistics.
The results show an reduction in MDB magnitude of up to 40%, so smaller MDBs
and thus higher sensitivity are obtained. Work on the inconsistency measures is in
progress and fully integrity monitory will be developed in the near future.
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