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Abstract

In the recent era the growth of technology is tremendous and at the same
time, the misuse of the technology is also increasing with an equal scale.
Thus, the owners have to protect the multimedia data from the malicious
and piracy. This has led the researchers to the new era of cryptography
and watermarking. In the traditional security algorithm for the audio, the
algorithm is implemented on the digital data after the traditional analog to
digital conversion. But in this article, we propose the crypto–watermarking
algorithm based on sparse sampling to be implemented during the analog to
digital conversion process only. The watermark is generated by exploiting
the structure of Haar transform. The performance of the algorithm is tested
on various audio signals and the obtained SNR is greater than 30dB and the
algorithm results in good robustness against various signal attacks such as
echo addition, noise addition, reverberation etc.
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1 Introduction

The most common and widely used security algorithm for the multimedia files is
digital algorithms. The multimedia data can be the image, audio, video, text, etc.
Mainly there are two ways to achieve the privacy in digital data, namely, water-
marking and cryptography [11]. The digital watermarking is defined as embedding
the highly decryptable watermark into the digital data without harming the con-
tent of the original host signal. Whereas in cryptography the data would be in
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disguise form to protect its content. In other words, Cryptography converts the
intelligible data into unintelligible data which appears as meaningless for attackers.
By seeing the data one can tell the data is encrypted but cannot decrypt without
the proper secret key. If the data is decrypted the data is no longer protected.
Both the algorithm should maintain the robustness nature to protect the secret
message. On the other hand, the privacy in watermarking is not strictly inevitable
but in cryptography, it has to be private by definition. For example, the watermark
presence on the rupee note can be easily seen by everyone against the light.

In this article, we propose the algorithm to protect the audio signals from the
piracy. As the human Auditory System (HAS) is more sensitive than the Human
Visual System (HVS) [11], the audio watermarking becomes a very tedious task.
The audio data security has been under research for many years but still, it is
falling short of safety requirements and it is vulnerable to attack, privacy and
piracy. The natural audio signal that is audible by the Human ear originates from
acoustic variation. These acoustic signals are converted to analog and subsequently
digital data using Shannon sampling theory. The encrypted key or watermarking is
carried out on the obtained digital data for protection. A large amount of research
in watermarking is centered on digital techniques which are more prone to attack
as shown in Fig. 1.

Figure 1: Existing Methods Flowchart

To overcome this problem, in this paper, embedding the crypto-watermark sig-
nature on the audio during the time of digital conversion as shown in Fig. 2 is
studied and experimented.
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Figure 2: Proposed Algorithm Flowchart

In the past decade, there has been a paradigm shift in approaches to signal
acquisition that explores and employs sparse coding or compressing sensing [3,
12, 13, 14]. By compressive sensing the audio with the watermark, the data is
referred as ‘digital information data’ instead of typical digital audio data, which
precludes from direct conversion to analog audio unless the audio can be recovered
using mathematical programming techniques only. The advent of this technique
is to embed the watermark with the secret key at the time of digital to analog
conversion without altering the perceptual quality of the audio signal. By using
only, the mathematical programming technique the audio can be converted and can
be played using a transducer.

2 Existing methods

In the past years, various research had been undergone to protect the ownership of
audio files and a various algorithm is developed based on Discrete Cosine Trans-
form (DCT), Discrete Wavelet Transform (DWT), Empirical Mode Decomposition
(EMD), etc. In [6], Guo et al. propose a transform domain watermarking algo-
rithm. By altering the DCT coefficient the watermark is embedded into the host
and the algorithms average Signal to Noise Ratio (SNR) reaches up to 20dB. A
novel audio watermarking algorithm based on the randon transformnumber and
DWT was defined by Cairong Li et al. [10]. A new adaptive audio watermarking
algorithm based on Empirical Mode Decomposition is introduced by Khaldi and
Boudraa [9] and the average SNR reaches up to 25dB. In [1], the author attempts
to implement a baseline audio watermarking system that embeds the information
by modulating the phase in Weighted Overlap-Add Algorithm (WOLA). The algo-
rithm gives SNR values from 0 to 25dB. In [7] blind audio watermarking is proposed
based on a combination of Discrete Wavelet Packet Transformation (DWPT), Sin-
gular Value Decomposition (SVD) and Quantization Index modulation (QIM). The
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author Fallahpour and Megias [4] venture an innovative method of embedding the
audio watermark. The Fibonacci series is used to select the FFT samples of the
host signal to embed the watermark. In all the methods the acoustic signal is con-
verted to digital data using traditional analog to digital conversion (ADC) and the
algorithms are implemented on the digital data.

3 Block diagram

The general digital audio watermarking process is shown in Fig. 3. From the
performer through the microphone the audio signal is transmitted to the processor
where the signal is converted into digital and watermark embedding is done. The
watermarked data can be transmitted or can be stored digitally. At the receiver
side, the signal is converted into audio and played through the speaker. Thus, the
algorithms cannot be used for the live audio concert.

Figure 3: General Digital Audio Watermarking process

To overcome this problem in this paper we propose a compressive sensing based
crypto–watermarking algorithm to be implemented during the process of ADC only.
The general block diagram of the compressive sensing based crypto-watermarking
algorithm for audio is shown in Fig. 4.

Here we propose a customized microphone where the watermark is embedded in
the time of signal acquisition and the watermarked digital data can be transmitted
or can be stored digitally. The analog data can be recovered only by the customized
speaker where the security key and watermark are embedded. The traditional
speaker cannot retrieve the data. The customized microphone and speaker block
diagram are shown in Fig. 5.

4 Compressive sensing and its role for audio secu-
rity

Essentially, the compressive sampling (CS) is a method of converting the analog
signal into a digital information with sparse. This non-uniform sampling yields
fewer sample data, which can be used to recover the signal using a mathematical
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Figure 4: Crypto–Watermarking Block Diagram

convex programming. This is in contrast to the conventional analog to digital
conversion technique which exploits digital filtering technique based on Shannon
uniform sampling principle.

Let x ∈ Rn be a one dimensional (1-D) original audio signal and the signal
is considered as K-sparse or K non-zero entries. The transform matrix vector
representation with the orthonormal basis matrix Ψ ∈ Rn×n is X = Ψx with x is
a K-sparse signal.

The method of obtaining linear measurement data vector y ∈ Rm from an
incoherent sampling or sensing matrix φ ∈ Rmxn (m� n) is expressed as y = φΨx.

On denoting matrix Θ = φΨ as compressive sensing process we get

y = Θx . (1)

By finding solutions to an underdetermined linear system of equation (1), the
original signal can be reconstructed. In underdetermined linear system, the sys-
tem has infinite number of solutions and more unknowns than the equations. Most
common methods to solve the sparse approximation are Basis Pursuit and Orthogo-
nal Matching Pursuit methods. In basis Pursuit method, the sparse approximation
problem can be replaced as convex problem, hence the same is used for the recovery
in the proposed method.
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Figure 5: (a) Customized Microphone Block Diagram (left) (b) Customized Speaker
(right)

The sparse problem in Basis Pursuit is given as

min(‖x‖0) subject to y = Θx , (2)

where y ∈ Rm is the measured vector, φ is the m × n matrix and x ∈ Rn is the
vector to be recovered. In the equation (2), the norm-0, ||.||0 is non-convex and
difficult to solve. It is an NP-hard (Non-deterministic Polynomial-time hardness)
problem. Therefore, it is replaced with l1-norm and it is given as

min(‖x‖1) subject to y = Θx . (3)

It can be recast as Linear Programming problem (LP) and is given as

minfTx subject to y = Θx

x ≥ 0 ,

where fTx is the objective function, y = Θx is collection of equality constraint and
x ≥ 0 is set of bounds. By adding new variable, the nonlinearity is recast to the
set of constraints and it is given as

min

n∑
i−1

Ui subject to − u ≤ x ≤ u

y = Θx

Or it can be written as

min

n∑
i−1

Ui subject to − xi − ui ≤ 0, i = 1, 2, . . . , n

xi − ui ≤ 0, i = 1, 2, . . . , n

y = Θx

(4)
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There are many algorithms to solve the basis pursuit problem such as simplex
method and primal–dual interior point method. For high accuracy, the primal dual
method is used with Newton method combined with modified KKT (Karush-Kuhn-
Tucker) condition for search criteria.

For example, consider n = 2,

fu1 = x1 − u1
fu2 = −x1 − u1

And the corresponding dual variable is considered as λ1 and λ2 and given as

λ1 = − 1

fu1

λ2 = − 1

fu2

The modified KKT condition for the residual rt = (x, λ, υ) is given as

∇f0(x) +

m∑
i=1

λi∇fi(x) + ΘTυ = 0

−λifi(x) =
1

t
i = 1, 2, . . . ,m

Θx = y

For t > 0, it is given as

rt (x, λ, υ) =

Of0 (x) +Df (x)
T
λ+ ΘTυ

−diag (λ) f (x)− 1
τ 1

Θx− y

 (5)

where f : Rn → Rm and the matrix Df is its derivative

f (x) =

 f1 (x)
...

fm (x)

 and Df (x) =

Of1 (x)
T

...

Ofm (x)
T

 .

If x, λ, υ and rt(x, λ, υ) = 0, then x = x∗(t), λ = λ∗(t) and υ = ∗(t). x is primal
feasible, and λ, ν are dual feasible. The duality gap is τ = m

t .
The first term of equation (5) is called dual residual, 2nd term is called centrality

residual and 3rd term is primal residual. For a fixed time t, at a point (x, λ, υ) that
satisfies f(x) < 0, λ > 0 the Newton’s step is used to solve rt(x, λ, υ) = 0.

y = (x, λ, υ), 4 y = (4x,4λ,4υ)

O2f0 (x) +
∑m
i=1 λiO

2fi (x) Df (x)
T

ΘTυ
−diag (λ)Df (x) −diag (f (x)) 0

Θ 0 0

∆x
∆λ
∆υ

 = −

rdualrcent
rpri

 (6)
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The solution of equation (6) will be the primal dual search direction. For the
primal-dual interior point method, we use the surrogate duality gap. For any x
that satisfies f(x) < 0, λ ≥ 0 it is defined as η(x, λ) = −f(x)Tλ.

If x is a primal feasible, and λ, υ are dual feasible, which means rpri = 0 and
rdual = 0 then the surrogate gap will be the duality gap. In general, the steps to
compute the optimal solution is as follows. The inputs are a point x that satisfies
f(x) < 0, λ > 0, µ > 1εfeas > 0, ε > 0.

1. Set t = µm
η .

2. Compute primal dual search direction using equation (6).

3. We determine the step length s > 0 and compute y = y+s∆y until ‖rpri‖2 ≤
εfeas, ‖rdual‖2 ≤ εfeas, and η ≤ ε.

4. For the implementation, the step length is chosen in the range of 0 < s ≤ 1.
The step length tracking is started with s = 0.99 ·min{1,min−λi

4λi
| 4λi < 0},

i = 1, 2, . . . ,m. Multiply the s by β ∈ (0, 1) until we have ‖rτ (x+ s4 x, λ+
s4 λ, υ +4υ‖2 ≤ (1− αs).‖rτ (x, λ, υ)‖2 where α is set as 0.01.

5. Continue the steps until the optimal value of x is found.

5 Haar transform and its orthogonal property

Haar Transform is the simplest and the fastest wavelet transform. The Haar func-
tion is denoted as hk(x) and will fall in the closed interval of [0, 1]. Whereas the
k is the order of the function and it is decomposed into two parameter such as
k = 2p + q − 1, k = 0, 1, . . . , N − 1 where N = 2n, 0 ≤ p ≤ n− 1, 0 ≤ q ≤ 2p.

The Haar function is defined as

h0(x) ≡ h00(x) =
1√
N
, x ∈ [0, 1]

and

hk(x) ≡ hpq(x) =
1√
N

 2
p
z
q−1
2p ≤ x <

q−0.5
2p

−2
p
z
q−0.5
2p ≤ x < q

2p

0 otherwise.

The amplitude and the width of the function which involves the value other
than zero is given by p and position of the non-zero value is given by q. The Haar
transform matrix for the N = 2 is given below:

H2 =
1√
2

[
1 2
1 −1

]
.

It is observed that H = H∗ and H−1 = HT therefore HTH = I where I is the
identity matrix.
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6 Privacy preserving crypto-watermarking tech-
nique

Typically, the intent of both cryptology and watermarking is to add a signature
into the data to make it secure from an unintended audience and to maintain
privacy and authenticity while communicating through the unsecured channels with
robustness to attacks. But the significant difference is that in cryptology, both data
and signature are invisible, whereas in watermarking the data could be visible but
signature may or may not be visible. The current exploration has both the features
which we refer to as crypto-watermarking technique.

For our algorithm, we create a matrix U which can be a unitary matrix or
permutation matrix since both has very interesting properties. For example, let’s
consider U as a unitary matrix and considering the property of unitary matrix

UUT = UTU = I . (7)

Applying the equation (7) to (1) we get

y = Θx = φΨx = (UφT )T (UΨ)x (8)

or

y = Θx = φΨx = (UTφT )T (UTΨ)x . (9)

Note here the matrix x is the segmented audio frame of the original host signal.
Based on the above relationship we now formulate the sensing matrix and the
transform matrix by using either equation (8) or (9). By calculating the scaling
factor, the equation (7) can be rewritten as

UUT = UTU =
1

n
I . (10)

Therefore, we can view y as

y = Θx = φΨx = (UφT )T (UΨ)x

y = Θx = φΨx = (UTφT )T (UTΨ)x .

7 Proposed algorithm

Generation of K-sparse signal

The original host signal is divided into frames and the input audio sequence from
an audio frame is x ∈ Rn (e.g., Figure 6) with K sparse.
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Process of generating a watermark signature

1. Consider U=H, a Haar matrix.

2. Form H = Q1Q2Q3 · · ·QjR where Qj is an orthogonal matrix and R is an
upper triangular matrix which in turn is non-orthogonal matrix.

3. Perform the various signal function on Q to generate a watermark and is
given as W = signalfunctioni(Q) where the signal function can be circular
shift, addition, etc. on the decomposed orthogonal matrix without affecting
the orthogonal property. The signal function and ”i” times is considered as
extra security key (Sk).

4. The generated watermark is considered as watermark key (Wk).

Process of embedding watermark signature in compressive
sensed data

Let us consider equation (8).

1. Decompose the Haar matrix and generate the watermark key and secret key.

2. Obtain the shuffled audio matrix as X = (UΨ)x.

3. Obtain A = (UφT )T .

4. Obtain watermarked data matrix as Y = AX.

Process of Recovery of Signal from compressive signal

In order to recover the signal from equation (1), the primal dual interior method is
used. The recovery algorithm explained in section 4 is implemented in MATLAB
and the signal is recovered. Depends on the length of the audio signal, the number
of iterations varies. Table 1 lists the number of iterations for the different audio
files.

Table 1: Number of iterations

Audio file Number of iterations Duration(sec)
Guitar 9 16.52
Flute 14 37.47
Bass 21 46.53
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8 Results and discussion

In this section, we concentrate on the audio quality aspects arising due to com-
pressed sensing that exploits various k-sparse audio data. Subsequently, we demon-
strate and highlight a few experimental results of the proposed semi-fragile au-
dio crypto-watermarking based on compressed sensing while acquiring audio clips
and also audio data recovery processes. The experiment involves schemes such
as crypto-watermarking signature generation, embedding the watermark signature
and l1 recovery algorithm for the recovery of the signal. And we have compared
the quality assessment of the audio recovery using the proposed algorithm with and
without watermarking signatures. The proposed algorithm is implemented using
MATLAB 2016 in Intel Core i5 processor.

Generating K-sparse data for experimentation

A set of 10 source audio clips are chosen for the experiment. All the clips are
mono-channel with less than 60 seconds duration sampled with 44.1 KHz having
audio data width as 8 bits. All the audio clips generated includes solo musical
instruments like violin, guitar, piano, flute, equinox, bass, Handel, track, Mary
Song, Backstreet boys song, Crazy Frog - Axel F, Emilie big world, and different
frequency clips. Table 2 lists the different audio clips names, duration, length and
the sampling frequency.

Table 2: Experimented audio file’s details

Audio Length Duration Sampling Frequency (Hz)
bass 525200 11 s 44100

Guitar 90309 2 s 44100
Piano 409101 9 s 44100

Handel 73113 8s 8192
violin 305172 6s 44100
flute 346724 7s 44100
tone 384000 8s 48000
Mary 319725 7s 44100

Backstreet boys 1323000 30s 44100
Emilie big world 1323000 30s 44100

Irish Whistel 1323000 30s 44100
100Hz 220500 5s 44100
250Hz 220500 5s 44100
440Hz 220500 5s 44100
1KHz 220500 5s 44100
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For better implementation, the source signal is reduced to frames with the
samples of 256 for each frame. Many natural signals are pithy when it is expressed
in an appropriate basis. The example is shown in below Fig. 6(a) of the source
signal and its transform in Fig. 6(b).

Figure 6: (a) Source Signal (b) Transformed signal

Based on observation, it is evident that the most coefficients are very small
and negligible and at the same time only a few coefficients would comprise of a
significant amount of information. Hence compressive sensing exploits this sparse
nature of the signal. For simplicity, in this article, we would like to generate
the sparse signals which are obtained by utilizing the transformed signal using
pseudo-random sequence generator. The uniformly distributed random numbers are
selected according to our frame size and using that the K-sparse signal is generated
and only the nonzero K values are considered. Different K values are taken for
the test and the results are quite similar to any value of K, whether it is less K or
greater K.

Considering x ∈ Rn and the transform coefficient is K-sparse then the measure-
ment m of the basis matrix is selected by generating a random vector uniformly.
It is shown in [5, 2] K-sparse vector x can be reconstructed from y = Ax using l1
minimization provided

m ≥ CKln
n

K
(11)

where C > 0 is a universal constant independent of K,n,m. In equation (11), m
is directly proportional to K and hence if the sparsity is considered small then the
measurement m can also be chosen small in comparison with nso that the solution
of an underdetermined system of linear equation is reasonable. Different sparse K
signal and the corresponding m measurement by considering C = 0 are listed in
Table 3.

Recovered signal

The reconstructing can be performed only by the customized speaker which is
embedded with the secret key and the security key as shown in Fig. 5(b). The
compressed watermarked signal reaches the speaker where the programming recov-
ery takes place using the l1 minimization with wk and sk and the optimum value
is obtained by primal dual sparse approximation algorithm. The recovered signal
is shown in Fig. 7.
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Table 3: Different K and m

S.No K m
1. 3 ≥14
2. 5 ≥20
3. 7 ≥25
4. 10 ≥32
5. 13 ≥39
6. 15 ≥43
7. 20 ≥51

Figure 7: Recovered signal

For our experiment we have tested different instrumental audio data such as
piano, guitar etc. and the results are listed below in Table 4. The proposed
algorithm takes approximately 2ms to perform a crypto watermarking on an audio
of length of 256 samples and takes approximately 0.1s to reconstruct the host signal
using the security key and watermark key. Further, the above proposed algorithm
is tested on various audio album songs such as Backstreet boys, Emilie Big world
and observed that the success rate is around 80%, which yields a good efficiency
with a reduced delay for embedding and reconstructing the signal.

9 Imperceptibility

Imperceptibility is the parameter used to measure the perceptual quality of the
original audio after embedding the watermark data into it. The objective param-
eter to measure the imperceptibility is Signal-to-Noise ratio (SNR) and Objective
Difference Grade (ODG). The SNR is a measurement that compares the similarity
between the undisturbed host signal and the watermarked host signal. The SNR
is calculated as

SNR = −10 log10

∑n
i=1(Y − Y ′)2∑n

i=1(Y )2
dB (12)
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Table 4: Test Results

where Y is the compressive sensed data without embedding a watermark signature
and Y ′ is the compressive sensed data by embedding the watermark signature.

We have used the kabal [8], PEAQ Basic Model to evaluate the Perceptual
Evaluation Audio Quality where ODG = 0 means no impairment whereas ODG =
−4 means it’s very annoying. It is observed that the obtained ODG is less than
−1.9 which shows the fair perceptual quality of audio.

As the final judgment of the perceptual quality of audio has to be made by the
HumanAuditory System (HAS) we have experimented with the subjective quality
measurement test also. For the test, we have selected four participants and asked
them to grade the dissimilarity between the original host and the recovered sig-
nal. The Subjective Difference Grade (SDG) is reported by the participants where
SDG = 5 means no dissimilar and SDG = 0 means totally dissimilar. It is ob-
served that the obtained SDG is greater than four which shows the good perceptual
quality of the audio signal. Table 5 shows the SNR, ODG, and SDG of the different
audio signals.
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Table 5: Imperceptibility measurement

Audio SNR ODG SDG
Piano 32.38 -1.131 > 4
Guitar 32.96 -1.126 > 4
Handel 31.2 -1.889 > 4.5
Bass 31.31 -1.9 > 4.5

440Hz 34.3 -1.32 > 4
1kHz 31.82 -1.2 > 4

10 Robustness

To verify the robustness of the proposed method the following attacks are per-
formed.

a. Amplitude Modification
The amplitude of the watermarked signal is modified by ±6% whereas the
positive and negative scale is boosting off the amplitude and cutting off the
amplitude respectively.

b. Echo Addition
An echo with a delay of 350ms and echo level of 85% is added to the water-
marked audio signal.

c. Filtering
Different filtering such as Low Pass Filter, High Pass Filter, Band Pass Fil-
ter and Band Stop Filter with different cut off frequency is applied to the
watermarked audio signal.

d. Reverberation
Big room reverberation with a reverberation time of 1000ms is exerted on the
watermarked audio signal.

e. Resampling
The watermarked audio is downsampled 22050 Hz and upsampled back to
source sampling frequency of 44100Hz.

f. MP3 Compression
The watermarked audio signal is compressed to a bit rate of 16kbps and
decompressed back to .wav format.

g. Noise addition
White Gaussian Noise is added to the watermarked audio signal.
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To measure the robustness, the commonly used parameters are Normalized
Correlation (NC) and Bit Error Rate (BER). The Normalized Correlation (NC) is
defined as

NC =
x∗x̃√
x2
√
x̃2

. (13)

The Bit Error Rate (BER) is defined as

BER =
x∗x̃

n
(14)

where x is the recovered signal without any attacks, x̃ is the recovered signal with
an attack, and n is the length of the signal. Table 6 shows the NC and BER for
the audio files of Handel.wav and guitar.wav. If NC = 1 means the algorithm
is high robustness to attacks whereas if NC = 0 means the algorithm is fragile to
attacks. It can be observed from the table, the proposed algorithm is possessing
the nature of high robustness as NC is greater than 0.96 and BER of zero for
all cases. The Robustness comparison of the proposed algorithm with the other
existing watermarking algorithm is also shown in Table 6.

Table 6: Robustness Test Results of Proposed algorithm and Comparison of Ro-
bustness with other watermarking algorithms
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11 Comparison

The proposed algorithm in this article is compared with the recent audio water-
marking scheme. Each algorithm uses different properties and we have chosen SNR,
ODG and SDG values as the comparisonparameter with our proposed algorithm.
All the compared algorithms, embed the watermark in the digital data and re-
ported SNR values is greater than 20 dB whereas the reported ODG is less than
-2. Comparing with the other methods, our method proposes a high SNR which
is greater than 31dB. As we use the crypto watermarking at the time of ADC, the
ODG values observed is fair compared with the other method. We can make a
convenient tradeoff in this case as the watermark is embedded at the time of signal
acquisition. Table 7 shows the comparison of a different watermarking algorithm.

Table 7: Comparison with other Watermarking Algorithm

Algorithm SNR (dB) ODG SDG
Guo et al. (2012) 20 Not reported Not reported
Cairong Li et al. (2012) 22.35 to 27.35 Not reported Not reported
Khaldi and Boudraa (2013) 24.12 to 26.38 0.4 to -0.6 Not reported
Arnold et al. (2014) 0 to 25 -0.42 -1.07
Hu et al. (2014) 20.889 -0.062 Not reported
Fallahpour, Megias (2015) 35 to 61 -0.3 to -1.1 > 3.5
Proposed Algorithm 31.2 to 34.3 -1.1 to -1.9 > 4

12 Conclusion

The proposed crypto-watermarking algorithm is based on compressive sensing and
by exploiting a partially decomposed Haar matrix, the watermark is generated. The
results show the SNR is above 30dB which shows that the perceptual quality of the
audio is not degraded in the name of increasing the security. The security of the
audio is more as the watermark and security key are embedded into the host audio
signal at the time of signal acquisition only. Hence the proposed algorithm can
be utilized for real-time application and can be used to protect the original audio
from illegal copying. The results of the robustness shows that the NC is close to
unity and BER is zero and therefore the algorithm is highly robust against various
signal attacks such as noise addition, echo addition, reverberation, etc. Hence the
proposed algorithm can be used to embed a watermark in a live concert and protect
the data by providing the security key.
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