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Abstract

One of the most important advantages of interval observers and the as-
sociated trajectory computation is their capability to provide estimates for a
given dynamic system model in terms of guaranteed state bounds which are
compatible with measured data subject to bounded uncertainty. However,
the inevitable requirement for being able to produce such verified bounds is
the knowledge about a dynamic system model in which possible uncertainties
and inaccuracies are themselves represented by guaranteed bounds. For that
reason, classical point-valued parameter identification schemes are often not
sufficient or should, at least, be handled with sufficient care if safety criti-
cal applications are of interest. This paper provides an application-oriented
description of the major steps leading from a control-oriented system model
with an associated interval-valued parameter and disturbance identification
to a verified design of interval observers which provide the basis for the devel-
opment and implementation of cooperativity-preserving feedback controllers.
Such combined control and observer structures allow for forecasting guaran-
teed lower and upper state bounds that can be determined by solving initial
value problems for crisp-parameter models. As such, they replace the signifi-
cantly more demanding task of computing tubes of reachable states by means
of general-purpose interval methods. The corresponding computational steps
for the cooperativity-preserving control and observer synthesis are described
and visualized for the temperature control of a laboratory-scale test rig avail-
able at the Chair of Mechatronics at the University of Rostock.
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1 Introduction

At least for the last two decades, interval observers have been designed for several
different types of dynamic system models. Such system models can be character-
ized into continuous- and discrete-time state-space representations of systems with
finite-dimensional dynamics as well as into special types of partial differential equa-
tions (PDEs) [11, 14, 18, 19, 34, 35, 43]. Especially for the case of finite-dimensional
systems, linear time-invariant, linear parameter-varying, linear time-varying and
(special types) of nonlinear dynamics have been accounted for [6,24,40,41]. If non-
linear dynamics are concerned, these system models are often described in terms
of Takagi-Sugeno [26,52] or switched uncertain system models [13,27,33,36], lead-
ing to a specific characterization of uncertainty in the entries of the system and
input matrices by interpolations between various linear dynamic system models.
For this type of models with bounded uncertainties in the system and input ma-
trices, the aforementioned linear models serve as an embedding of the actual non-
linear behavior into an overapproximation by means of a convex polytope of ex-
tremal realizations which — by a suitable interpolation — account for either linear
parameter-varying or linear time-varying models.

As shown in [6,40,41], the design of interval observers can be simplified signifi-
cantly if the dynamics under consideration follow specific monotonicity properties.
In this frame, cooperativity of the state equations is of foremost interest. If this
property is satisfied, it becomes possible to evaluate a finite number of independent
bounding systems which lead to a description of worst-case lower and upper bounds
for the sets of all reachable states. Sufficient requirements for cooperativity of a
dynamic system were published, for example, in [7,50]. In contrast to sets of state
equations in which lower and upper state bounds are fully coupled, the well-known
wrapping effect [15,28,30,31,37,39] arising in mostly any verified evaluation of an
initial value problem (IVP) by means of interval analysis can be suppressed to a
large extent if the system dynamics are ensured to be cooperative. For control ap-
plications, asymptotically stable dynamics (or respectively, input-to-state stability
(ISS)) of the estimation errors of the bounding systems should be verified. Then, it
can be guaranteed that the resulting bounds for the estimated state enclosures do
not grow infinitely if the actual open- or closed-loop system behavior, from which
the measured data are gathered, is evaluated by means of an interval observer.

Application scenarios in which interval observers have been applied successfully
to dynamic systems in engineering as well as related fields such as computational
biology are (without claim of completeness): vehicle lateral dynamics [12], state
estimation of induction machines [25], control of the air-fuel ratio in direct injec-
tion combustion engines [5], state estimation in anaerobic digestion processes [1],
exothermic fed-batch reactors [48], and other (bio-)technological processes with un-
certain kinetics for growth of microorganisms and wastewater treatment [9,10], fault
detection in flight control systems [8], as well as fault detection and estimation al-
gorithms on the basis of Takagi-Sugeno models [32]. Although the summary above
was mainly focused on finite-dimensional system models, also sets of PDEs such as
the parabolic differential equation of heat conduction were investigated. There, two
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fundamentally different approaches could be distinguished, namely, techniques re-
lying on a replacement of the infinite-dimensional dynamics by a finite-dimensional
system model before the observer design (early lumping) and the design of observers
and its stability proof on the basis of the PDE model (late lumping) [18,20].

In most of these application-oriented references, the parameterization of the
employed interval estimation schemes was based on the solution of systems of lin-
ear matrix inequalities (LMIs) [2, 49] which allow for a constructive proof of the
stability of the resulting error dynamics and help to turn the observer model into a
cooperative form which, as mentioned above, allows for an independent evaluation
of (usually two) mutually decoupled sets of bounding systems.

In contrast to the interval observers discussed above, also set-valued estimation
techniques can be applied [21]. These techniques aim at predicting guaranteed
state enclosures (via an interval evaluation of an IVP for the set of state equa-
tions) between two subsequent time instants at which measurements are available.
As soon as new measured data exist, the predicted state enclosures are tightened
by means of problem specific consistency tests allowing for an exclusion of subin-
tervals of the predicted state enclosures (respectively, the predicted state boxes).
These consistency tests rely on the technique on set inversion via interval analysis
(SIVIA), as well as on contractors such as the Krawczyk iteration [15, 23, 38] or
further interval Newton techniques. In contrast to the observer-based bounding
approach, this type of estimation scheme is commonly much more computationally
demanding because it usually relies on an interval subdivision during the state pre-
diction and during the elimination of inconsistent state domains (cf. SIVIA). For
that reason, these prediction–correction schemes are better suited for pure offline
applications and for systems in a non-cooperative state-space representation, while
real-time control scenarios as investigated in this paper usually make use of the
observer-based framework, possibly after transforming the sets of state equations
into a cooperative representation [3, 17].

Both, the observer-based estimation framework and the prediction–correction
scheme, are model-based techniques. This means that both of them require an
accurate mathematical system representation so that the estimation scheme built
on top of the mathematical model can produce reliable estimation results. For
that reason, this paper describes the complete development cycle of an interval
observer-based feedback control synthesis, starting with the fundamental stage of
verified parameter identification. Hence, the interaction of these three tasks is in
the focus of this paper, while they were so far only investigated individually in the
contributions [42,44–46].

This paper is structured as follows. Sec. 2 presents verified, interval-based
routines for the identification of a control-oriented system model for the distributed
heating system serving as an application scenario in this paper. Based on the
design of an interval observer, the dual task, namely, design of a cooperativity-
preserving feedback controller is investigated in Sec. 3. Simulation results as well
as an experimental validation complete this section, before conclusions and an
outlook on future work are given in Sec. 4.
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2 Control-Oriented Finite-Volume Modeling of a
Distributed Heating System with the Aim of an
Interval Observer Design

2.1 Finite Volume Modeling

Fig. 1 depicts the benchmark scenario with which the complete design cycle of
an interval observer-based cooperativity-preserving feedback control synthesis is
illustrated. The overall design starts with a suitable control-oriented modeling
in terms of ordinary differential equations (ODEs) — which serve as an early-
lumping approximation for the underlying infinite-dimensional PDE dynamics —
and a subsequent verified parameter identification. The experimental set-up [42,45]
consists of a metallic rod of length l, width b, and height h, (b, h � l). In Fig. 1,
it is hidden behind the white Styrofoam insulation. For modeling, the thermal
conductivity of the rod in one relevant space coordinate is denoted by λR, its
volume density by ρR, and the specific heat capacity by cR. Furthermore, it is
assumed that the temperature distribution in the rod is described in terms of the
temperature difference ϑ(x, t) := θ(x, t)− θA, in which θA denotes the temperature
of the ambient air assumed to be constant in good approximation.

inlet: air canal

outlet:
air canal

temperature
measurements in
the air canal

Figure 1: Test rig for the experimental, real-time capable validation of the interval-
based control and observer design.

According to [42, 45], where the state equations for the rod and air canal tem-
perature were derived after discretizing the rod and air canal into each Ñ =
N · (2M + 1), M ∈ N0, finite volume elements with piece-wise homogeneous tem-
peratures, the parameter-dependent linear state-space representation

ẋ(t) = A(p) · x(t) + B · u(t) (1)
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is obtained, where the state vector is denoted by x(t) =
[
ϑ1(t) . . . ϑ2Ñ (t)

]T
and

the control vector by u(t) =
[
u1(t) . . . uN (t)

]T
(heat flows provided by N = 4

Peltier elements). For this system model, a list of L parameter intervals1 was iden-
tified by means of a verified simulation-based parameter identification [42, 45]. A
detailed analysis of the structure of the system matrix A(p) reveals the property
that it is Hurwitz (describing asymptotically stable2 dynamics) and Metzler (con-
taining only non-negative entries outside its diagonal) for any physically reasonable
parameterization. These reasonable parameterizations correspond to α > 0 (heat
transfer between rod and air canal), αB > 0 (heat transfer on the bottom of the
rod), αT > 0 (heat transfer between air canal and ambiance), λR > 0 (heat con-
ductance), and the correction terms ∆α > 0 (accounting for the improved heat
convection at the air canal outlet) as well as ∆ma > 0 (representing the enlarged
thermal capacity at the air canal inlet segment).

Due to the fact that cooperativity [50] and positivity [16] of the set of ODEs (1)
is ensured for element-wise non-negative products B ·u(t), lower and upper bounds
for all reachable state trajectories x(t) can be determined in this case by the bound-
ing systems

A
(
p
)
· v(t) + B · u(t) = v̇(t) ≤ ẋ(t) ≤ ẇ(t) = A(p) ·w(t) + B · u(t) . (2)

These bounding systems lead to guaranteed interval enclosures not only for the
states themselves but also for the measurable system outputs y(t) according to

x(t) ∈ [x] (t) = [v(t) ; w(t)] and y(t) ∈ [y] (t) = [C · v(t) ; C ·w(t)] , (3)

with element-wise non-negative states and non-negative entries in the output ma-
trix C. In detail, the output matrix C in the linear relation y(t) = C · x(t) is zero
except for exactly one element per row which is equal to one. It represents the
sensor model of temperature measurements in the segment midpoints above each
of the Peltier elements as well as at the air canal in- and outlet positions.

To describe the bounding systems in (2), all physical parameters are assumed to
be contained in pairwise independent scalar intervals α ∈ [α ; α], αB ∈ [αB ; αB],
αT ∈ [αT ; αT], ∆α ∈

[
∆α ; ∆α

]
, ∆ma ∈

[
∆ma ; ∆ma

]
, and λR ∈

[
λR ; λR

]
1Here, L is the final number of intervals after the experimental identification, where each of

them is given as a box containing the six parameters to be identified experimentally. These boxes
were determined by a sensitivity-based splitting of an initial search domain until L mutually
disjoint boxes were obtained. For a limitation of the computational complexity in control and
observer implementation, small boxes were merged at the end of the identification so that stability
properties of the bounding systems (2) are preserved. For details concerning the splitting and
merging procedure, the reader is referred to [42,45].

2The Gershgorin circle theorem, cf. [53], can be employed for a straightforward stability analy-
sis of this system model with point-valued and sufficiently tight uncertain parameters. For further
discussions about the use of this stability criterion as a constraint during an interval-based pa-
rameter identification, the reader is referred to [45].
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from which the parameterizations

p =



−
(
λR · Ac

ls
+ (αB + α) ·As

)
λR · Ac

ls

−
(

2λR · Ac

ls
+ (αB + α) ·As

)
α ·As

−
(
αT + α+ ∆α · δÑ+i,Ñ+1

)
·As(

ma

Ñ
·
(

1 + δÑ+i,2Ñ ·∆ma

))−1


and p =



−
(
λR · Ac

ls
+ (αB + α) ·As

)
λR · Ac

ls

−
(

2λR · Ac

ls
+ (αB + α) ·As

)
α ·As

−
(
αT + α+ ∆α · δÑ+i,Ñ+1

)
·As(

ma

Ñ
·
(

1 + δÑ+i,2Ñ ·∆ma

))−1


(4)

are extracted so that the relation

A
(
p
)
≤ A(p) ≤ A(p) (5)

holds in an element-wise manner. Further, geometrically a-priori known parameters
that are included in (4) are the segment length ls = l

Ñ
, the vertical cross section

area As = b · h of the rod, and the effective surface As = b · ls over which heat
convection takes place; ma is the overall air mass in the canal under the assumption
of a constant ambient pressure with incompressible air.

2.2 Interval-Based Parameter Identification

For the purpose of the interval-based identification of the cooperative system model
summarized in the previous subsection, the following assumptions have to be made:
• measured data ym are available at discrete points of time tk,
• worst-case bounds [−∆ym ; ∆ym] for the measurement tolerances are known

a-priori (as a model for sensor inaccuracies) according to

[ym] (tk) = ym(tk) + [−∆ym ; ∆ym] , (6)

• the model to be parameterized is assumed to be structurally correct,
• outer enclosures for the domains of possibly uncertain initial states, i.e., v(0)

and w(0), are given, and
• interval bounds [p] on the uncertain parameters are known in terms of con-

servative overapproximations.
To exclude parts of the domains of uncertain initial states and parts of the a-

priori given parameter intervals, a subdivision procedure of the respective domains
is executed [4]. Based on the intersection of directly measured output intervals
[ym] (tk) and the respective interval-based simulation results [y] (tk) for the IVPs
consisting of Eqs. (2)–(5), the following cases are distinguished [42,47] in a SIVIA-
like identification routine [15]:

Case 1: Parameter subintervals are yet undecided if their corresponding predicted
output intervals overlap at least partially for all of the available sensors i ∈
{1, . . . ,dim{y}} at each point of time tk at which measurements are available
and are never outside the range of measured data, i.e., [yi] (tk) 6⊆ [ym,i] (tk)
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for at least one i and k with [ym,i] (tk) ∩ [yi] (tk) 6= ∅ for all i and k. The
corresponding parameter intervals need to be subdivided further in order to
make a decision about feasibility.

Case 2: A parameter subinterval is guaranteed to be consistent with the measure-
ments and the system structure if the corresponding output intervals are true
subintervals of the interval-valued measured data for each of the available
sensors i at each point of time tk, i.e., [yi] (tk) ⊆ [ym,i] (tk) for all i and k.
Such parameter subintervals are no longer investigated but stored in a list of
guaranteed admissible boxes.

Case 3: A parameter subinterval is guaranteed to be inconsistent if there exists
at least one point of time tk at which the computed output interval lies fully
outside the range of the interval-valued measured data for at least one of the
available sensors i, i.e., [ym,i] (tk)∩[yi] (tk) = ∅. The corresponding parameter
subinterval is excluded from further evaluations and the underlying simulation
is aborted as soon as the inconsistency is detected.

At the end of the subdivision-based parameter identification, a list of L interval
boxes exists. This number can be reduced by merging intervals if their union leads
to a small increase of the parameters’ volume [22] under the restriction that the
asymptotic stability property of the bounding systems (2) must not be lost. The
result of this merging is described in Sec. 2.5 of this paper.

2.3 Fundamental Observer Approach

For the cooperative model (2), representing a verified open-loop bounding system
for all reachable states, an interval observer can be defined according to3

AO

(
p
)
· v̂ + B · u + H · y

m
= ˙̂v ≤ ˙̂x ≤ ˙̂w = AO(p) · ŵ + B · u + H · ym . (7)

In (7), the system matrix

AO(p) = A(p)−HC = A(p)−H (8)

needs to be parameterized by choosing the gain H so that AO(p) is Hurwitz for
all possible parameters p. This property ensures asymptotic stability (respectively,
ISS) of the error dynamics which can be verified if a parameter-independent, posi-
tive definite solution PO = PT

O � 0 exists for the matrix inequalities

AO

(
p
)
·PO + PO ·AT

O

(
p
)
≺ 0 and AO(p) ·PO + PO ·AT

O(p) ≺ 0 . (9)

In addition, the matrix H needs to be constrained so that AO (p) is Metzler with

AO,i,j(p) ≥ 0 for all i, j ∈ {1, . . . , 2Ñ} , i 6= j (10)

3For the sake of compactness, time arguments are omitted subsequently.
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as it was the case for the open-loop dynamics A (p). If (10) is fulfilled, the lower
and upper bounds v̂ and ŵ of the observer estimates (7) can be computed indepen-
dently and represent guaranteed state bounds under consideration of the uncertain
measurements4. As described in [42], a trivial choice for an observer gain H with
sparse structure fulfilling both requirements (9) and (10), is given by

H = (KC)
T

with K = diag {κ} and κ =
[
κ1 . . . κN+2

]
, (11)

κi > 0, i ∈ {1, . . . , N + 2}. Defining the matrix H = HC = CTKC with

Hi,j =


κi for i = j = (ξ · (2M + 1)−M) , ξ ∈ {1, . . . , N}
κi for i = j , j ∈ {Ñ + 1, 2Ñ}
0 else ,

(12)

it can be shown that this choice leads to a pure adaptation of the diagonal entries
of the system matrices in the state observer. Possibilities for a further optimization
of the parameters κi in this restricted observer structure as well as an optimization
of all entries in a non-sparse solution for H with generally 2Ñ · (N + 1) = 2N ·
(N + 2) · (2M + 1) non-zero entries are given in the following subsection.

2.4 Optimized Observer Parameterization

To find optimal observer gains, which do not only ensure stability and coopera-
tivity of the error dynamics, the following approach reduces the sensitivity of the
estimation results with respect to unmodeled errors by using an H∞ synthesis. For
that purpose, the error vector

e =
[
(v̂ − v)

T
(ŵ −w)

T
]T

(13)

is introduced to quantify the difference between the estimated and true lower and
upper state bounds, respectively. Using the vector (13), the ODEs

ė =

[
A
(
p
)
−HC 0
0 A(p)−HC

]
e +

[
H
H

]
ζ (14)

for the estimation errors can be defined with the measurement tolerance vector ζ,
ζ ∈ [−∆ym ; ∆ym] in (6). Now, the augmented system output

y∞ =

[
0(N+2)×Ñ 0(N+2)×Ñ
−ν · IÑ×Ñ ν · IÑ×Ñ

]
e +

[
I(N+2)×(N+2)

0Ñ×(N+2)

]
ζ = C∞e + D∞1ζ (15)

can be employed for a comparison of the influence of measurement errors ζ with
the weighted diameter ν · (ŵ −w)−ν · (v̂ − v), ν > 0, between the open-loop state

4In this paper, we restrict ourselves to a quasi-continuous observer design despite the discrete-
time nature of measured data. This is admissible if the sampling intervals are shorter by at least
one order of magnitude than the smallest time constant of the open- and closed-loop dynamics.
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bounds and the results of the interval observer. To solve this optimization task,
the matrix inequality (cf. [45])

L (Θ) :=

 Θ H POCT
∞

HT −I DT
∞1

C∞PO D∞1 −γ2
∞I

 ≺ 0 with Θ ∈ {Θ,Θ} (16)

is defined first for the two extremal systems

Θ := AO

(
p
)
·PO + PO ·AT

O

(
p
)

and Θ := AO(p) ·PO + PO ·AT
O(p) . (17)

Here, PO = PT
O � 0 specifies a quadratic Lyapunov function candidate, simultane-

ously valid for both Θ and Θ. Then, a linearizing change of variables

QO = QT
O = P−1

O � 0 with YT
O = QOH = P−1

O H (18)

leads to the design LMIs

M (Σ) :=

 Σ YT
O CT

∞
YO −I DT

∞1

C∞ D∞1 −µ∞I

 ≺ 0 with Σ ∈ {Σ,Σ} , (19)

where

Σ := QOA
(
p
)
−YT

OC + AT
(
p
)
QO −CTYO ,

Σ := QOA(p)−YT
OC + AT(p) QO −CTYO ,

(20)

and µ∞ := γ2
∞ ≥ 0 (21)

hold. During the observer parameterization, which ensures ISS due to the inclusion
of (20) in the design LMIs, the parameter µ∞ is minimized. Cooperativity of the
error dynamics is obtained by the element-wise defined inequality constraint

col
((

A(p)− Q̌−1
O YT

OC
)
◦ (E− I)

)
≥ 0 , p ∈ {p,p} , (22)

where ◦ denotes the element-wise defined Hadamard product of two matrices with
identical dimensions. In (22), Q̌O is the result of the last iteration step of the
solution of the LMI-based optimization problem. The iteration is stopped as soon
as all constraints are satisfied and the norm between Q̌O and QO falls below a
pre-defined threshold value5.

This LMI-based optimization approach can be interpreted as a generalization
of the straightforward parameterization mentioned in the previous subsection and
provides a structurally optimal observer gain matrix H in a systematic manner.

5To prevent a poor convergence of the iterative minimization, the actual cost function is set
to µ∞ + η · ‖QO − Q̌O‖ with a sufficiently small penalty term η > 0 as a generalization of (21).
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If simplified sparse solutions for H according to (11) shall be optimized by a
minimization of µ∞ ≥ 0 according to the constraint (21) with the help of the H∞
design described above, the LMIs M (Σ) ≺ 0 in (19) with (20) turn into

N (Ξ) :=

 Ξ Q̌ · (KC)
T

CT
∞

(KC) · Q̌ −I DT
∞1

C∞ D∞1 −µ∞I

 ≺ 0 for Ξ ∈ {Ξ,Ξ} , (23)

where

Ξ := QOA
(
p
)
− Q̌OCTKC + AT

(
p
)
QO −CTKCQ̌O ,

Ξ := QOA(p)− Q̌OCTKC + AT(p) QO −CTKCQ̌O .
(24)

Hence, the following three options exist for the optimized cooperativity-preserving
observer design:

O1 Determine the observer gain H as a solution of the LMIs (19) with (20) which
minimizes the H∞ performance criterion (21) for the augmented output (15).
To satisfy the Metzler property of the error dynamics, the constraint (22) is
taken into account in an iterative manner, where Q̌O denotes the matrix QO

computed in the previous solution stage. In the first step, Q̌O is initialized
by an identity matrix with appropriate dimensions.

O2 Determine optimal gains κi > 0 in (11) as a solution of the LMIs (23) with (24)
which minimize the H∞ performance criterion (21) for the output (15). In
this case, the inequality constraint (22) is already satisfied due to the pre-
defined structure of H. Due to multiplicative couplings of QO and K in (24),
the solution is again determined iteratively.

O3 Determine optimal gain values κ1 = . . . = κN+2 > 0 in analogy to the
solution approach in option O2. Due to the fact that option O3 represents
a constrained variant of O2 in the sense that all gains need to be identical,
its solution can be used to initialize the iteration involved in option O2.

Practical experiments have shown that the convergence of the options O2 and
O3 can be improved if the matrix Q̌O is updated by solving the feasibility problem
related to (9) as soon as a new observer gain has been determined [45]. Note that
each of these three options involves the solution of up to a few hundred iterations,
where in each iteration LMI-based optimization routines are executed in a pure
offline manner. For the application at hand, see also the following subsection, the
respective state vector has the dimension x ∈ R24.

2.5 Implementation of a Parallel Bank of State Observers

It is generally possible to perform the interval observer design and its implemen-
tation by two bounding systems (one for the lower and one for the upper state
bounds) if stabilizing solutions for the design task exist. However, strong couplings
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between the matrix entries of A(p) and A(p) can be caused by the underlying
physical parameters such as the heat convection and heat conduction coefficients.
These couplings can be captured in a much better way by the union over L lower
and upper bounding systems (corresponding to the outcome of the interval-based
parameter identification) during the implementation of a parallel bank of observers.
Here, the parameter list consists of L mutually disjoint boxes except for selected
edges and vertices. If these parameter boxes are bounded by the intervals

pς ∈
[
p
ς

; pς

]
, ς ∈ {1, . . . , L} , (25)

the associated parameter-dependent sets of ODEs are given by

ẋς = Aςxς + Bςu with Aς ∈
[
Aς ; Aς

]
and Bς ∈

[
Bς ; Bς

]
. (26)

Using the cooperative open-loop models in Eq. (26), a bank of L parallel interval
observers can then be implemented on the basis of the uncertain measurements (6).

These observers provide the interval estimates

x̂ ∈
L⋃
ς=1

[v̂ς ; ŵς ] , (27)

which are usually tighter and, therefore, less conservative than the results from the
previous subsection. The parameterization follows directly from the same approach
as before, when a common gain H is determined for each of the L submodels
according to (

Aς −HC
)
· v̂ς + Bς · u + H · y

m
= ˙̂vς ≤ ˙̂x (28)

and
˙̂x ≤ ˙̂wς =

(
Aς −HC

)
· ŵς + Bς · u + H · ym . (29)

The main advantage of this bank of parallel observers is not only the fact that
the bounds of the computed state estimates become tighter due to a better repre-
sentation of the physical couplings between the vector components of p (cf. (4)).
In addition, it also offers the possibility to stabilize and optimize the error dynam-
ics with gains of smaller absolute values. Reduced observer gains typically lead
to smaller amplifications of noise and therefore help to reduce the influence of the
errors ζ in a more reliable way, cf. (15). In such a way they also help to reduce the
specified H∞ norm in the observer design.

Figs. 2 and 3 provide a representative comparison between the lower and upper
state bounds for the case of evaluating the system dynamics in a pure open-loop
fashion (result of the offline identification) and for the optimized observer param-
eterization O1. For the application at hand, it turned out that the sparse solu-
tions O2 and O3 lead to practically identical results as the computationally more
complex observer gain from O1, where the optimal non-sparse structure was deter-
mined by means of an LMI-constrained optimization, cf. [45]. Information about
the offline design complexity for the observer design is summarized in Tab. 1.
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Table 1: Computing times and dimensions of the optimization tasks O1, O2, and
O3 per iteration on an Intel XEON E5-2609v2, 2.5 GHz, 64 GB RAM, Windows 10,
Matlab R2018a, SeDuMi 1.3 [51]

Scenario
upper bound for the
computing time

number of decision
variables

O1 1800 s 446
O2 450 s 307
O3 450 s 302

Table 2: Comparison of the offline identification with optimized observers

Average diameter of rod temperature intervals
Scenario without additional noise with additional noise

H = 0, 15 · 104 subdiv. 6.4810 K —
H = 0, 10 · 104 subdiv. 6.8631 K —
H = 0, after merging 23.4669 K —
H = κ ·CT , κ = 1 4.0271 K 4.4533 K
H = κ ·CT , κ = 10 3.8713 K 4.4098 K
H = κ ·CT , κ = 50 3.8536 K 4.3974 K
O1 3.9046 K 4.4304 K
O2 avg. gain: 4.2830 3.8984 K 4.4245 K
O3 avg. gain: 5.6930 3.8869 K 4.4197 K

In Tab. 2, the width of the computed state enclosures — after subdivision of the
parameter domain and elimination of inconsistent values during the identification
stage — but without measurement feedback (i.e., for the case H = 0) has been com-
pared for three different scenarios. Firstly, the enclosures were evaluated for 15 ·104

subdivisions of the original parameter domain, leading to 39528 interval boxes cov-
ering approx. 0.32% of the original parameter domain (see case 3 in [44]). Secondly,
the case of 10 ·104 subdivisions was investigated with 28302 resulting interval boxes
(approx. 0.38% of the original parameter domain). Re-approximating the domain
after 10 · 104 subdivisions by the routine [22] into pair-wise non-overlapping boxes
leads to a list of L = 362 intervals, where the lower and upper bounding systems
corresponding to the matrices Aς and Aς , ς ∈ {1, . . . , L}, are each Metzler and
Hurwitz.

For all following simulations, as well as for all presented experimental results,
the sampling time for the evaluation of the state equations by means of the solver
ode3 in Simulink is set to the sensors’ sampling time of 0.1 s.

As it can be seen from the comparison of the pure open-loop simulation re-
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Figure 2: Inputs and measurements in the experiment.

sults in terms of the average interval diameters over the time horizon of 1200 s,
the replacement by a smaller number of boxes leads to significantly wider interval
diameters if measurement information is not accounted for. This widening of the
computed interval bounds results from a less accurate representation of the mutual
dependence in the uncertainty between the individual parameters. Exemplarily,
this dependence is shown in Fig. 4a for the relation between αB, αT, and ∆α as
well as for αB, αT, and λR in Fig. 4b. However, a reduction of the number of boxes
is inevitable to obtain system models that can be evaluated in real time by the
bank of interval observers. Moreover, it has to be noted that a naive replacement
of all resulting boxes (either after 10 · 104 or 15 · 104 subdivisions) is not feasible
due to the fact that the upper bounding matrix turns into an unstable model due
to the mutual couplings between both vectors p and p. Such a coarse enclosure
is also not further investigated because it can be shown that the resulting error
dynamics cannot be stabilized with the help of the structurally predefined sparse
observer gain matrix according to (11).

For the optimization of the observer bank with L = 362 parameter boxes, the
outcomes for the options O1, O2, and O3 are not only compared for the raw
measured data but also with measurements artificially corrupted by measurement
noise according to the bounded tolerance of ±0.75 K. The comparison shows the
excellent attenuation of noise and moreover highlights the fact that for the ap-
plication at hand all three options provide quite similar estimation results. Now,
these results are compared with naive trial-and-error parameterizations of (11) by
successively increasing the gain from κ = 1 to κ = 50. With respect to the widths
of the estimation results, the naive choices κ = 10 and κ = 50 are slightly better
than the optimized results in a noise-free setting but not in the practically relevant
case in which disturbances are present inevitably. Note that this noise-free setting
is not a fully fair comparison since the observer parameterization does not directly
minimize this average diameter of the state estimates but aims at reducing the
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Figure 3: Bounds for the rod temperatures in the offline identification (Figs. 3a, 3b)
as well as in the online state observation (Figs. 3c, 3d).

sensitivity of the estimated state trajectories by the employed H∞ design. How-
ever, it can be shown that the proposed optimization procedure directly produces
optimal parameterizations without the need for any experimental parameter tun-
ing. Moreover, the options O2 and O3 lead to smaller average gain values than
κ = 10 and, hence, prevent the use of excessively large gains6. Such large gains
may not only lead to the amplification of measurement noise in terms of a deteri-
oration of the estimated interval bounds but may also produce unnecessarily stiff
observer dynamics. Therefore, it can be observed that the suggested optimization
routine directly obeys the two fundamental rules of control and estimator design,
namely, stability and the preservation of the “natural” dynamics in the sense that
physically slow systems should remain slow and that fast systems are not forced

6Note, using a larger number of decision variables, e.g. by employing O2 instead of O3 does not
necessarily lead to tighter interval bounds but — due to the employed performance indicators —
it inevitably leads to smaller gains achieving similar estimation results with a reduced sensitivity
against noise and model inaccuracies.
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Figure 4: Representative result of the verified parameter identification.

to become unnecessarily slow, where the violation of the latter design rule would
typically lead to large gains and increased sensitivity against disturbances (as well
as large control amplitudes).

Future work can deal with procedures allowing for a (partial) decoupling of
the entries in the parameter vector p by a linear change of coordinates. However,
the drawback of such a change of coordinates is the loss of information about
natural range constraints which could be obtained again by combinations with the
contractor-based identification routine presented in [47].

3 Cooperativity-Preserving Closed-Loop Control

3.1 Naive Implementation

For the development of a first, naive implementation of a cooperativity-preserving
feedback controller, assume that all system states x(t) can be measured or estimated
perfectly (without the interval tolerances described before). Then, the input signal

u = uff −K · x (30)

with the gain matrix K and the feedforward control signal uff(t) represents a clas-
sical state feedback control approach. Parameterizing this controller by

K = ν ·
[
IN×N ⊗ 12M+1

0Ñ×N

]T
(31)
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for the case M = 0 (representing a finite volume discretization of the rod in Fig. 1
into Ñ = 4 elements) as well as

K = ν ·

IN×N ⊗

0
1
0


0Ñ×N


T

(32)

for M = 1 (leading to Ñ = 12 segments) can be used to ensure asymptotic stability
of the closed-loop dynamics and cooperativity of the closed control loop [44].

Obviously, this approach is valid for semi-discretizations with M = 0 and M = 1
because the resulting controller does not modify any of the entries in the system
matrix A (p) which are zero in the open-loop case. For non-negative gain values
with ν ≥ 0, asymptotically stabilizing solutions can be found if the open-loop model
A (p) itself (respectively, the corresponding lower and upper bounding matrices) are
asymptotically stable. Applying the Gershgorin circle theorem to the closed-loop
differential equations, it can be shown that (for a system model without parameter
uncertainty), the closed-loop controller is guaranteed to be asymptotically stable
for all 0 < ν < ν∗ satisfying the inequalities

1

ci ·mi
· (p1 + p2 + p4)− q = −αB ·As

ci ·mi
− q < 0 (33)

for i ∈ {1, Ñ} as well as

1

ci ·mi
· (p3 + 2p2 + p4)− q = −αB ·As

ci ·mi
− q < 0 (34)

for i ∈ {2, . . . , Ñ − 1} with

q :=
ν

ci ·mi
· 1

2M + 1
≥ 0 . (35)

In addition, the Metzler structure of the open-loop system matrix is preserved if all
off-diagonal elements of A (p)−B·K of the closed-loop system remain non-negative
according to

p2

ci ·mi
− q ≥ 0 . (36)

For the system under consideration, this leads to the constraint

ν < ν∗ = (2M + 1) · p2 . (37)

Taking into account the parameter values identified in [44], after 15 · 104 interval
subdivisions, the upper bound ν∗ = 0.7131 is obtained. This value reduces to
ν∗ = 0.6803 for the replacement of the list of originally 39528 possibly feasible
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boxes by the outer hull represented by 362 intervals which was also used in the
previous section for the design of a bank of parallel observers7.

Note that this naive control approach is not feasible (due to violation of the
Metzler constraint) if discretizations with M ≥ 2 are used. Moreover, optimal-
ity of this controller with respect to a minimum diameter of the resulting state
bounds as well as insensitivity with respect to non-modeled disturbances and noise
in state measurement and reconstruction are not ensured by this approach. There-
fore, the following subsection deals with abolishing the structural constraints given
in Eqs. (33) and (34) by optimizing the controller gains in combination with a
cooperative interval observer by means of an LMI-constrained design procedure.

3.2 Optimized Implementation

For the optimization of cooperativity-preserving feedback controllers, the duality to
the design of a bank of parallel interval observers presented in Sec. 2.4 is employed.
For that purpose, independent gains Kς and Kς are defined for the lower and upper
state estimates determined by each of the L observers and optimized in the feedback
controller

u = uff −
L∑
ς=1

(
Kς v̂ς + Kςŵς

)
= uff − ν . (38)

In analogy to the previous subsection where a naive control structure was consid-
ered, the feedforward signal uff(t) in (38) represents a further degree of freedom that
can be chosen such that tracking control properties are enhanced and overshooting
output limits is reduced as far as possible.

However, the main goals of the control design are the reduction of the interval
widths of the resulting bounds of reachable states, the reduction of sensitivity
against external disturbances, and the possibility to find a trade-off between control
accuracy and the required amplitudes of the system’s input signals. To be able to
predict the closed-loop output trajectories in the same manner as for the previous
observer parameterization, it is desired additionally to ensure cooperativity for the
complete system structure after introduction of the controller (38). To achieve
these goals, the following (auxiliary) state vectors are defined and included in the
offline control parameterization [46]:
• Worst-case lower bounds x(t) of the true, however, unknown states (deter-

mined, for example, by a pure evaluation of the open-loop ODEs without
observer-based measurement feedback);

• Worst-case upper bounds x(t) of the true, however, unknown states;
• The worst-case, component-wise non-negative deviation

µi = v̂i − x (39)

between the lower state estimates v̂i(t) of the i-th observer and x(t);

7For the uncertain model with the lower and upper bounds (5) of the system matrix, A
(
p
)
−

B ·K is typically most critical with respect to a violation of the Metzler property for too large
values ν, while A (p)−B ·K usually represents the subsystem exhibiting instability.
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• The component-wise defined diameters

εi = ŵi − v̂i (40)

of the state estimates provided by the i-th interval observer;
• The worst-case, component-wise non-negative deviation

ηi = x− ŵi (41)

between the upper state estimates ŵi(t) of the i-th observer and x(t).

To ensure cooperativity in addition to the stability and insensitivity properties
mentioned above, the joint set of ODEs

d

dt



x
µ1
...

µL
ε1

...
εL
x


=

([
A1,1 0
0 A2,2

]
−
[
B1,1 0
0 B2,2

]
·
[
K1,1 0

0 K2,2

])
︸ ︷︷ ︸

=AK(Kς ,Kς)

·



x
µ1
...

µL
ε1

...
εL

x(t)


+ S̃ ·

[
yd

ym

]

(42)

comprising the dynamics of the closed-loop control system and all L interval-based
state observers is taken into consideration. Here, the ODEs are expressed in terms
of the auxiliary states (39) and (40). Differentiating their definitions with respect
to time and inserting the corresponding ODEs for both, the closed-loop control
structure and the respective observers, the ODEs (42) consist of the matrix blocks

A1,1 =



A 0 0 . . . 0 0 . . .
A1 −HC−A A1 −HC 0 . . . 0 0 . . .
A2 −HC−A 0 A2 −HC . . . 0 0 . . .

...
0 A1 −A1 0 . . . A1 −A1 −HC 0 . . .
0 0 A2 −A2 . . . 0 A2 −A2 −HC . . .
...


= J1,1 ⊗A +

(
L∑
ς=1

−Jς+1,1 ⊗A + (Jς+1,1 + Jς+1,ς+1)⊗
(
Aς −HC

)
+ (JL+ς+1,ς+1 + JL+ς+1,L+ς+1)⊗

(
Aς −Aς

)
−JL+ς+1,L+ς+1 ⊗ (HC)

)
, (43)

A2,2 = A , (44)
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B1,1 =
[
1T(2L+1) 0

]
⊗



B
B1 −B
B2 −B

...
B1 −B1

B2 −B2
...


, (45)

B2,2 = B , (46)

K1,1 =

L∑
ς=1

(
(Jς,1 + Jς,ς+1)⊗Kς + (JL+ς,1 + JL+ς,ς+1 + JL+ς,L+1+ς)⊗Kς

)
(47)

as well as

K2,2 =

L∑
ς=1

(
Kς + Kς

)
. (48)

In the equations above, 1(2L+1) ∈ R(2L+1) represents a column vector containing

the value 1 in all entries and Jµ,ν ∈ R(2L+1)×(2L+1) is a matrix defined according
to

Jµ,ν =
(
Ji,j

)
=

{
Ji,j = 1 for (i, j) = (µ, ν)

Ji,j = 0 else .
(49)

Moreover, the term S̃ ·
[
yTd yTm

]T
in (42) characterizes the influence of the

vector-valued reference signal in the multi-input multi-output control system as
well as the influence of the measurement feedback in the observers’ ODEs. This
term is not specified further in this section because it does not have any influence
on the optimization of the required controller gains. Additional details about the
control structure and a full derivation of the equations above can be found in [46].

The control synthesis follows the duality principle in comparison to the previous
observer design by specifying an H∞ design task for the output vector

y∞ = C∞ · ζ + D∞2 · ν + D∞1 ·w , ζ =

[
x
x

]
, (50)

C∞ =

−ΞInx×nx
ΞInx×nx

0 0
0 0

 , D∞1 =

 0
LInν×nν

0

 , D∞2 =

 0
0

ΓInν×nν

 . (51)

In (50), the individual terms (listed in the order from left to right) correspond to

C1 weighting the difference between the guaranteed lower and upper state bounds
x(t) and x(t) of the closed-loop dynamics by the factors ξj > 0, Ξ = diag {ξj},
in comparison to

C2 the control effort (penalized by the factors γj > 0, Γ = diag {γj}) and
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C3 the disturbance inputs w(t).

To fulfill all criteria mentioned above, the property C1 is refined by accounting for
the augmented system model (42) in terms of the criteria:

C1a Maximize the lower bounds of all state observers by maximizing the distances
µi(t);

C1b Minimize the distances εi(t) between the lower and upper state estimates;

C1c Minimize the distance x(t)− x(t).

Using the linearizing change of variables

Q = P−1 � 0 as well as Yς = KςQ and Yς = KςQ (52)

for an H∞ control design in combination with a quadratic Lyapunov function can-
didate (specified by P = PT � 0), the system matrix AK

(
Kς ,Kς

)
in (42) needs

to be multiplied from the right-hand side in a block-wise manner with the positive
definite matrix Q. In terms of the Kronecker product ⊗, this leads to

AQ =

([
A1,1 0
0 A2,2

]
−
[
B1,1 0
0 B2,2

]
·
[
K1,1 0

0 K2,2

])
·
(
I(2L+2)×(2L+2) ⊗Q

)
(53)

which is identical to

AQ =

[
A1,1 ·

(
I(2L+1)×(2L+1) ⊗Q

)
0

0 A2,2 ·Q

]
−
[
B1,1 · Y1,1 0

0 B2,2 · Y2,2

]
(54)

with

Y1,1 =

L∑
ς=1

(
(Jς,1 + Jς,ς+1)⊗Yς + (JL+ς,1 + JL+ς,ς+1 + JL+ς,L+1+ς)⊗Yς

)
(55)

and Y2,2 =

L∑
ς=1

(
Yς + Yς

)
, (56)

where the matrices Yς and Yς were defined in (52).

3.3 Simplified Control Design for Two Bounding Systems

If only two bounding systems A and A (corresponding to the first and last vector
rows in (42)) with the matrices B1 of feedforward and disturbance inputs as well
as B2 for the feedback control inputs were accounted for according to

A =

[
A 0
0 A

]
, B1 = L ·

[
B
B

]
, B2 =

[
B
B

]
, (57)
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the design LMIs

S1,1 B1 S1,3

BT1 −γ∞I DT
∞1

S3,1 D∞1 −γ∞I

 ≺ 0 (58)

with S1,1 = (I2×2 ⊗Q)AT −
[
L∑
ς=1

Yς

L∑
ς=1

Yς

]T
·BT2 (59)

+ A (I2×2 ⊗Q)−B2 ·
[
L∑
ς=1

Yς

L∑
ς=1

Yς

]
︸ ︷︷ ︸

AQ

and S1,3 = ST3,1 = (I2×2 ⊗Q)CT∞ −
[
L∑
ς=1

Yς

L∑
ς=1

Yς

]T
·DT
∞2 (60)

would be obtained, where the parameter γ∞ > 0 needs to be minimized to achieve
optimality.

3.4 Input-to-State Stability and Cooperativity of the Com-
plete List of Bounding Systems

ISS of each of the L bounding systems with A ∈
[
Ai ; Ai

]
and B ∈

[
Bi ; Bi

]
is

guaranteed for each possible i ∈ {1, . . . , L} if the LMIs

(I2×2 ⊗Q)

[
Ai 0
0 Ai

]T
−
[
L∑
ς=1

Yς

L∑
ς=1

Yς

]T
·BT2,i

+

[
Ai 0
0 Ai

]
(I2×2 ⊗Q)−B2,i ·

[
L∑
ς=1

Yς

L∑
ς=1

Yς

]
≺ 0 , B2,i =

[
Bi

Bi

] (61)

are feasible. In addition to the stability requirement (61), the gains Kς and Kς

should be chosen in such a way that the matrices

M0

(
Kς ,Kς

)
=A−B2 ·

L∑
ς=1

(
Kς + Kς

)
and (62)

Mi

(
Kς ,Kς

)
=AH,i −B2,i ·

L∑
ς=1

(
Kς + Kς

)
, AH,i=

[
Ai −HC 0

0 Ai −HC

]
(63)

fulfill the sufficient criterion for cooperativity in terms of Metzler matrices. Ac-
cording to the observer design, the element-wise defined inequality constraints

col
((

M0

(
Yς · Q̌,Yς · Q̌

))
◦ (E− I)

)
≥ 0 (64)

and col
((

Mi

(
Yς · Q̌,Yς · Q̌

))
◦ (E− I)

)
≥ 0 , i ∈ {1, . . . , L} , (65)

are obtained by inserting the definition (52) into (62) and (63). As for the ob-
server synthesis, an iterative solution procedure is established in which Q̌ denotes
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the matrix Q obtained in the previous iteration step. This iteration is continued
until (64) and (65) are satisfied and a suitable (e.g. quadratic) norm∥∥Q̌−Q

∥∥ ≤ εQ (66)

falls below some positive threshold value εQ > 0. In (64) and (65), E is a matrix
of appropriate dimension containing the constant value 1 in all of its entries.

For practical implementations, it is reasonable to be able to limit the controller
gains to some predefined upper and lower values, as an heuristics for handling
input constraints. Due to the iterative control parameterization resulting from the
multiplicative couplings between the unknown matrices in (64) and (65), the gain
limitations are as well expressed by the element-wise defined inequalities

col

([
L∑
ς=1

Yς

L∑
ς=1

Yς

]
·
(
I2×2 ⊗ Q̌

))
≤ kmax > 0 (67)

and col

([
L∑
ς=1

Yς

L∑
ς=1

Yς

]
·
(
I2×2 ⊗ Q̌

))
≥ −kmax . (68)

If the inequalities above hold, the element-wise defined inequalities

A−HC−B ·
L∑
ς=1

(
Kς + Kς

)
≤ Ai −HC−Bi ·

L∑
ς=1

(
Kς + Kς

)
(69)

and A−HC−B ·
L∑
ς=1

(
Kς + Kς

)
≥ Ai −HC−Bi ·

L∑
ς=1

(
Kς + Kς

)
(70)

are satisfied, corresponding to the desired cooperativity-preserving parameteriza-
tion.

Finally, the extension of all constraints towards the H∞ control design for the
full augmented system model (38) follows by substituting the matrix AQ for the
matrix AQ along with a corresponding redefinition of the output vector y∞(t)
reflecting the requirements C1a, C1b, C1c (together replacing the criterion C1)
as well as C2 and C3. For that purpose, the dimensions of all input and output
matrices need to be adjusted appropriately. For additional details, especially with
respect to an efficient numerical implementation, the reader is referred to [46].

Finally, it can be noticed that the worst-case simulation results in Fig. 5 for
the overall cooperative system model and the experimentally measured unfiltered
temperatures in Fig. 6 obtained at the available test rig — both implemented with a
sampling interval of 0.1 s — are in very good coincidence. Hence, the observer-based
feedback controller was validated successfully in terms of its capability to predict
the domains of reachable states by a combination of a bank of interval observers
with a cooperativity-preserving feedback control design. For all parameterization
details, the reader is referred to [46], where the toolbox SeDuMi [51] in combination
with YALMIP [29] was employed to solve all LMI-constrained optimization tasks.

Note, the computing times as well as the numbers of decision variables for the
offline control parameterization are similar to the ones that are summarized for the
observer design in Tab. 1.
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Figure 5: Range bounds of the observer-based cooperative closed-loop controller
for the uncertain system model in comparison with smooth reference trajectories
for each of the N = 4 rod segment midpoint temperatures under consideration of
the same measurement tolerances of ±0.75 K as in Sec. 2.5.

4 Conclusions and Outlook on Future Work

In this paper, the complete design procedure of cooperativity-preserving interval
observer-based feedback controllers was described by means of a practical appli-
cation scenario. For this scenario, advantages of optimized observer and control
parameterizations which can be achieved by LMI-based formulations were com-
pared with naive approaches which explicitly rely on the structural sign pattern
of system, input, and output matrices for a specific control task at hand. In such
a way, a design methodology was presented which removes the requirement for
tedious trial-and-error parameterizations and leads to optimal observer and con-
trol structures which preserve the property of cooperativity if cooperativity already
characterizes the open-loop dynamics at hand.
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Figure 6: Experimental results for the temperature tracking control at the mid-
points of the N = 4 rod segments.

Future work will deal with the design of partial state feedback approaches and
output feedback controllers. These may lead to a significant reduction of the de-
sign as well as implementation effort if suitable input-output configurations can be
determined with which both, robust stability despite parameter uncertainty and
cooperativity of the closed-loop dynamics can be guaranteed.
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