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Type Inference of Simple Recursive
Functions in Scala

Gergely Nagyab, Gábor Oláhac, and Zoltán Porkolábad

Abstract

Scala is a well-established multi-paradigm programming language known
for its terseness that includes advanced type inference features. Unfortunately
this type inferring algorithm does not support typing of recursive functions.
This is both against the original design philosophies of Scala and puts an
unnecessary burden on the programmer. In this paper we propose a method
to compute the return types for simple recursive functions in Scala. We
make a heuristic assumption on the return type based on the non-recursive
execution branches and provide a proof of the correctness of this method. We
implemented our method as an extension prototype in the Scala compiler and
used it to successfully test our method on various examples. The algorithm
does not have a significant effect on the compilation speed. The compiler
extension prototype is available for further tests.

Keywords: Scala, type inference, recursion

1 Introduction

Scala is a well-established programming language providing both object-oriented
and functional programming language elements. As a consequence, the language
syntax needs to reflect both paradigms that results in a high level of expressive-
ness. Most of the new language properties are targeting the extensibility, safety
and flexibility of the language. Examples for such features include advanced pat-
tern matching, lambda expressions, by-name parameter passing and case classes.
Improving the readability of the source code was a primary goal of language design;
including the ability to avoid unnecessary boilerplate, repetitive code elements.

Terseness is important not only to make software code cleaner, but also to ac-
centuate key parts of the solution expressed by the existing elements. Furthermore,
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the more automatically computed information the compiler can provide, the less
possibly erroneous code snippets the developer writes.

The Scala programming language is well-known for its terseness that includes
advanced type inference features. These range from automatic deduction of variable
types based on their initializations, to infer type parameters of generic functions
based on call-side information.

Function return types are inferred for most trivial cases as well: the type of the
lastly evaluated expression provides the return type of the function. In cases when
multiple return statements are present the least upper bound (LUB) type of these
will be used.

Since the subtyping relation (<:) is reflexive (A <: A), transitive (A <: B∧B <:
C ⇒ A <: C) and antisymmetric (A <: B ∧B <: A⇒ A = B), it defines a partial
ordering on the set of the types and thus this set has the least upper bound property.
Scala supports all three kinds of variance, so it is up to the programmer to define
how the type arguments affect the subtyping in case of generics.

However, if any of the lastly evaluated expressions in a function include a refer-
ence to the containing function, this algorithm cannot provide a meaningful result.
This causes recursive functions without explicitly provided return types (such as
on Figure 1) to fail the compilation process.

1 def factorial(n: Int) = n match {
2 case 0 => 1
3 case _ => n ∗ fact(n−1)
4 }

Figure 1: A recursive function with no defined return type.

For any developer it is obvious that the factorial function will return an Int.
Such similar simple recursive functions (see formal definition on Def. 3.1) occur
frequently in most functional codebases. Not inferring their return type is both
against the original design philosophies of Scala and puts an unnecessary burden
on the programmer even in these simple cases.
Consider the example on Figure 2 that does not compile under current Scala type
inference rules. In such situations the programmer may choose an unnecessarily
wide type, such as the top type Any, corrupting the highly praised type system of
Scala.

In this paper we propose a method to compute the return types for simple recur-
sive functions. Similarly to the intentions of the developer, our heuristic assumption
on the return type is based on the non-recursive execution branches. Assuming that
the recursive functions will always end up in a non-recursive execution branch, we
argue that the LUB of these branches provides a sufficient return type for the
function. If this assumption is not met, our method reports the same error as the
current Scala compiler.

To create a prototype implementation we have extended the typer not to im-



Type Inference of Simple Recursive Functions in Scala 799

1 abstract class Base
2 class Derived1 extends Base
3 class Derived2 extends Base
4 class Derived3 extends Base
5
6 def lousyType(d: Base, m: Double) = d match {
7 case _: Derived1 if m > 3 => new Derived3
8 case x: Derived2 if m < 2 => lousyType(x, m)
9 }

Figure 2: A recursive function with return types of a hierarchy.

mediately fail on recursive functions but use the proposed method to calculate the
missing type. The extension does not have a significant effect on the compilation
speed. We implemented our method as an extension prototype for the Scala com-
piler version 2.12.4 and used it to successfully test our method on various examples.
The compiler extension prototype is publicly available for further tests.

This paper is structured as follows. In Section 2 we further evaluate the prob-
lem space with more examples and real-world issues. We provide the theoretical
foundations of our mechanism in Section 3. We overview our results in Section 4
while also describing implementation details. Related works in Section 5 discusses
similar problems in C++. Our paper concludes in Section 6.

2 Motivation

One of the main focuses of software development methodologies and practices nowa-
days is trying to lift off work and complexity of programmers as much as possible.
This is achieved by various methods ranging from tooling and programming meth-
ods to language design. This trend is sensible with the spread of multiparadigm
and especially functional languages which are usually tightly bound by their type
systems. These type systems are mathematically proven to be correct and well-
known algorithms were developed that can be used to prove if programs meet these
bounds. The algorithms in question are built into compilers, so any programmer
can easily check the correctness of their program. Being peer-reviewed and fully
proven, one can trust that if the compiler finishes work on a piece of code it meets
certain criteria. This should lead to fewer bugs and runtime errors in production
software.

Scala is one of the more recent multiparadigm languages, that tries to solve a
lot of complex problems before a developer meets them. The presence of this idea
can be found in many of Scala’s design goals, for example having as clean of a
syntax and being as terse as possible [13]. This is achieved by introducing a fairly
complex type inference system in the compiler, so programmers do not have to take
time and effort to annotate their programs with types that can be deducted by an
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algorithm.
The type inference algorithm of Scala is far from complete though. It does not

support any recursion, let it either be a simple recursive function, a recursive chain
or a recursive type declaration. This can be surprising and frustrating to anyone
writing Scala code, furthermore it can lead to non-trivial issues in one’s code and
later, a software product.

In the following we show a few examples where the lack of type inference on
recursive functions may lead to possible runtime application errors.

1 def map[C, A <: C, B <: C](y: Seq[A], f: A => C) /∗: Seq[C]∗/ = {
2 y match {
3 case Nil => Seq[B]()
4 case x :: xs => map(xs, f) :+ f(x)
5 }
6 }

Figure 3: A recursive map implementation with explicit type annotation.

In our first example we start off with a higher-order function, map with our own
interpretation. In the version that can be seen on Fig. 3, we leverage generic types
as well as functions as first-class entities in Scala. We would always like to get the
minimum type of the collection from this function, hence we are providing informa-
tion on the relationships of the types. Unfortunately the Scala compiler is not much
of a help here: it will throw an error when we try to call map with the remainder
list. This becomes even more annoying when we provide an incorrect return type:
the compiler will be able to recognize the error at the place of concatenating the
computed element to the list. One can spend minutes on trying to find the type
that makes the type system satisfied by recompiling several times, but it would
be much more convenient if the compiler were able to find it for us at the very
beginning.

1 class Level1
2 case object Class1Level1 extends Level1
3 case object Class2Level1 extends Level1
4 class Level2 extends Level1
5 case object Class1Level2 extends Level2
6 case object Class2Level2 extends Level2

Figure 4: A multi-level class hierarchy.

Let us consider another recursive method that computes its result that has one of
the types of a multi-level class hierarchy, as seen on Fig. 4. An example method
using these types can be found on Fig. 5. The Scala compiler will fail to infer
the correct return type Level1, and will require the developer to define it for the
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1 def deepRec(n: Int): Level1 = {
2 if (n == 0) {
3 Class1Level2
4 }
5 else if (n == 1 || n == 2 || n == 3) {
6 n match {
7 case 3 => Class2Level2
8 case _ => {
9 if (n != 1) {
10 deepRec(n − 1)
11 } else {
12 Class2Level1
13 }
14 }
15 }
16 } else if (n == 4) {
17 Class1Level2
18 } else {
19 Class1Level1
20 }
21 }

Figure 5: A recursive function using type hierarchy on Fig. 4. with explicit type
annotations.

function explicitly. Determining Level1 as the return type is trivial in this case as
we have listed all the types involved near the function definition in one place, but
recognizing it when for example, class definitions are scattered in a fairly large and
complicated framework can be challenging and time consuming even for seasoned
developers.

Unfortunately, there is a pretty easy shortcut to make compile errors disappear
in this case: define the return type as Any (the base type of all classes in Scala),
making the type system and the compiler temporarily happy. As we all know,
marking objects by the widest type is simply neglecting the type system, thus we
are not using one of the main services offered by Scala.

3 Theoretical foundations

In this section we present the details of the theoretical background for our solution.
We focus only on typing recursive functions, thus we do not detail typing e.g.
objects.

Scala is a statically typed language, thus type checks happen at compile time.
Type declarations can be omitted in the source in many places, and the compiler
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runs static type analysis to infer the types of variables, functions and other language
elements. Scala compilation is designed as multi-staged process. In the first step
an AST of the program is constructed. Our main focus in this paper, typing, is ex-
ecuted as the third phase. Upon successful type inference, the abstract syntax tree
is enriched with type information in this stage. Scala’s type system contains such
features that are not compatible with the Hindley-Milner type inference algorithm
so it relies on one-directional, context-unaware local type inference.

3.1 Related works on type systems

Most statically typed languages such as C++ or Java require explicit type declara-
tions (for later advances in C++, see Section 5). Other statically typed languages
like Haskell or ML use static type inference to calculate types for functions. Some
unification-based type inference [11] can be used to calculate types for functions
in these languages. Another unification-based type inference is Hindley-Milner
method [5], supposing that the return type of a function has a well defined type.
Scala on the other hand is less restrictive on return types, branching expressions
like the match construct allow that the return values on different branches have
different types [4]. (E.g. a function can return either an integer or a string. In this
case the return type of the function will be the LUB − type of integer and string
which is the top type, Any.)

Dynamically typed languages like Erlang [2] also allow to return values of differ-
ent types. These kinds of polymorphic return types are extensively used in Erlang.
Since types are not first-class citizens, external tools were developed to check for
discrepancies in software [6], incorporating a type system called success typing [7].
The major difference between success typing and other type inference algorithms is
that the aim of success typing is not to prove the type correctness of the program,
but rather to discover cases where there would most certainly be a type error at
runtime. It uses least upper bound types to enable the constraint solving algorithm
to reach a fixed point.

Success typing uses union types to express coupling between types that are
not in subtype relation. It is very useful for languages like Erlang where types
are not an integral part of the language. It has a major drawback though when
both the input parameter and the return type of a function are union types. The
connection between the input and output is not expressed by the inferred type, and
that decreases the number of discoverable errors. A possible improvement can be
the use of conditional types similarly to the work of Aiken et al.[1]. This soft-type
system (also using union types) includes conditional types where the constraints
between type variables are built into the type. This type is more accurate in the
above sense of finding discrepancies, but the size and complexity of inferred types
makes it comprehensible for humans. If the human-readable criterion is ignored
then the precision of inferred types can be increased without the need to calculate
a fixed point [10]. These types are also very complex but can be used for specific
tasks, e.g. automatic test data generation.

Success typing inspired us to type recursive functions. Since Scala is statically
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e ::= x | c(e1, . . . , en) | e1 e2 | f |
let x = e1 in e2 |
letrec x = f in e |
case e of

(p1 if g1 ⇒ b1);

. . . ;

(pn if gn ⇒ bn)

end

f ::= λ(x)⇒ e

p ::= x | c(p1, . . . , pn)

g ::= g1 and g2 | g1 or g2 | x1 = x2 | true | e x

Figure 6: The λs language.

typed and types are inserted into the AST, using union types is not suitable for our
needs. Unions would introduce new types to our program, that we do not intend to
do since it would be hidden to the programmer and might cause unforeseen errors.
Instead, we use the type hierarchy already present in the language. Scala already
has a solid type system for nested classes, abstract types, path dependent types,
etc [4, 9]. Since type inferring is solidly working in Scala, we do not want to replace
or improve these theories.

3.2 The λs Language

We propose a small language and the corresponding calculus to demonstrate the
theoretical soundness of our approach to type simple recursive functions. Let us
call the language λS and be defined in Fig. 6. We would like to emphasize that this
small language is not intended to be either generic-purpose or a full representation
of Scala, rather to be the minimal language that can help us describe our proposed
method formally.

The language contains variables (x) that are immutable. Data constructors (c)
can be used to construct any kind of data, including constants, objects, etc. λS
contains only single-argument function application. We assume that all Scala func-
tions with at least one parameter can be curried, that is, they can be transformed to
a function with multiple parameter lists containing only one parameter. It contains
the standard polymorphic let expression. The recursive let expression has only one
function component (x = f) since in this paper we deal with only self-recursive
function. We define a branching expression (case). In the head of the case expres-
sion, e is matched against the patterns (p) sequentially. The first matched pattern
will invoke the evaluation of the body (b) for the pattern. If no patterns match,
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then an exception is raised. Each branch has a pattern and a guard. A pattern
can be a variable or a construct of patterns. Guards, that are always present in the
syntax, can be type check or other value checks. Using true as a guard, we can
express the the case when we actually do not need any guards.

Our main focus will be on combining recursive let and case expressions. Re-
cursive functions can be typed if they have a branch that is not recursive. Having
this branch fulfills the termination criteria. If a function does not contain any
terminating branches, then the function is divergent, and it cannot be typed.

E ::= letrec x = λ(a)⇒
case a of

(p1 if g1 ⇒ b1);

. . . ;

(pn if gn ⇒ bn)

end in e

Figure 7: The syntax of simple recursive functions

Definition 3.1 (Simple recursive function). The expression E in Fig. 7 is con-
sidered a simple recursive function, iff there exists i ∈ [1..n] that bi symbolically
contains x and there exists j ∈ [1..n] that bj does not contain x.

Simple recursive functions do exist and provide an abstract pattern over re-
cursive functions that are not in recursive call chain.

3.3 Derivation rules
We provide type derivation rules for the syntactic constructs of λS . We assume that
the type of objects, member functions and other language constructs not covered
in this paper can be computed.

We present type derivation rules (Fig. 8) in the following form of statements:
Γ ` e : τ , read as “supposing Γ the type of the expression e is τ ”. Γ is the context
of mappings from variables to types. The ∪ operator is used to denote that a
particular mapping is present in the context.

The derivation rules describe a standard way to type our language. A variable
can be typed (Rule (Var)), if its type is present in the variable context. The type
of a data constructor (Rule (Cons)) is composed of the types of the components.
A type is considered a subtype of another type (Rule(Sub) if an expression of the
subtype can also be typed to the wider type. A function application can be typed if
the argument expression (e2) is a subtype of the parameter type (τ1) of arrow type.
In our case the arrow type is calculated via the existing type inferring algorithm of
Scala. The type of a function (Rule (Fun)) and the let (Rule (Let)) expression
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Γ ∪ x : τ ` x : τ
(Var)

Γ ` ei : τi (∀i ∈ [1..n])

Γ ` c(e1, . . . , en) : c(τ1, . . . , τn)
(Cons)

Γ ` e : τ τ <: τ ′

Γ ` e : τ ′
(Sub)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ ′ τ ′ <: τ1
Γ ` e1 e2 : τ2

(Appl)

Γ ∪ x : τ1 ` e : τ2
Γ ` λ(x)⇒ e : τ1 → τ2

(Fun)

τ1 <: τ ′1 τ2 <: τ ′2
τ ′1 → τ2 <: τ1 → τ ′2

(S-Fun)

Γ ` e1 : τ1 Γ ∪ x : τ1 ` e2 : τ2
Γ ` let x = e1 in e2 : τ2

(Let)

Γ ` e : τe
Γ ∪ {x : τx|x ∈ V ar(pi)} `
bi : τbi , pi : τpi , gi : τ bool (∀i ∈ [1..n])

τe <:
⊔n

i=1 τpi

Γ ` case :
⊔n

i=1 τbi
(Case)

Γ ` e : τe
Γ ∪ {x : τx|x ∈ V ar(pi)} `
bi : τbi , pi : τpi

, gi : τ bool (∀i ∈ [1..n])
τe <:

⊔n
i=1 τpi

Γ ` case :
⊔n

i=1 FIXτbi
(Letrec)

Figure 8: Derivation rules for λS .
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follow standard definitions. With the derivation rule of subtyping of functions
(Rule (S-Fun)) we would like to express that it is safe to allow a function of one
type τ ′1 → τ2 to be used in a context where another type τ1 → τ ′2 is expected as
long as none of the arguments that may be passed to the function in this context
will surprise it (τ1 <: τ ′1) and none of the results that it returns will surprise the
context (τ2 <: τ ′2).

To type a case expression, first we type the head expression (e, which has the
form defined in the case branch on Figure 6). For each branch we extend the
context with types for free variables of patterns (V ar) and calculate types for the
patterns and the body of the function. The guards must evaluate to the boolean
type. We denote the least upper bound type by the operator τ1 t τ2. The head of
the expression has to be the subtype of the LUB of the types of the patterns (τpi).
The return type is the LUB of the types of the bodies of the branches.

Letrec(Rule (Letrec-C)) is similar to case, but it uses the fixed point of the
return types of the branches (FIXf = f(FIXf)).

The recursive let expression can be typed in our scope only if it consists of a
simple recursion function. We provide the constructive algorithm in the following
theorem:

Theorem 3.2 (Constructive derivation rule of letrec). Suppose the notation of
Fig. 7. Let us denote J := {i | bi does not contain x}. Then the following construc-
tive derivation rule holds:

Γ ` e : τe
Γ ∪ {y : τy|y ∈ V ar(pi)} `

bi : τbi , pi : τpi , gi : τ bool (∀i ∈ J )

Γ ∪ {y : τy|y ∈ V ar(pk)} ∪ {x :

n⊔
i=1

τpi →
n⊔

i=1

τbi} `

bk : τbk , pk : τpk
, gk : τ bool (k ∈ [1..n] \ J )

τe <:

n⊔
i=1

τpi

Γ ` E :

n⊔
i=1

τbi

(Letrec-C)

where E is the letrec expression defined on Figure 7.

Proof. Let us first divide the case expression into two parts: the ones that do not
contain recursive calls and the others that do. For the non-recursive branches we
use the regular case typing derivation rule, hence Γ ∪ {y : τy|y ∈ V ar(pi)} `
bi : τbi , pi : τpi

, gi : τ bool (∀i ∈ J ) holds. This expression has the type of
⊔

∀i∈J

τbi

as per the case derivation rule. Let us later refer to this as the non-recursive type.
For the recursive branches, we have two cases:

1. Tail-recursion, as in bk ≡ x b′k. The expression in this case holds the type
of the previously mentioned non-recursive type. We extend the type context
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with x : τpk
→ τbk where τpk

<:

n⊔
i=1

τpi
and τbk ≡

⊔
∀i∈J

τbi , i.e. not changing

the non-recursive type.

2. Non-tail recursion. We type the body by applying the intermediate type that
has been calculated so far to the recursive expression, then calculate x : τpk

→
τbk . This will be then added to the type context thus the intermediate type
of the expression will be extended by τbk to

⊔
i∈J

τbi t τbk .

With the above considerations we can type all branches of letrec, turning it into
a regular case expression that has the type of

⊔n
i=1 τbi , resulting in the following

type: letrec :
⊔n

i=1 τbi .

4 Results
In this section we will discuss how the previously described algorithm works in
practice. First we apply the algorithm to the two examples shown in section 2 then
we will show how this is implemented as an extension in the Scala compiler.

4.1 Typing simple recursive functions
Our first example is an unusual version of the map function on Fig. 9. Its purpose
is to return the mapped results in a list of the smallest type possible. As one can
see in the listing, the main body of the function is a match with two possible case
branches. This instruction flow is very similar to the extended λS language. Each
branch has a return type, namely the first one returns a Seq[B] and the second one a
Seq[C]. The type of the second case is defined by the result of the concatenation(:+)
method. This part can be rewritten in a form of map(xs, f).:+(f(x)). If we
consider this function call, the appended element is of type C, as we have declared
f to be a function of A => C. Since A is a subtype of C, the result of the map function
is a subtype of C, making the result of the append call be a type of Seq[C]. This
leads us to two calculated types for the branches: Seq[B] and Seq[C]. The typing
mechanism we propose would now calculate the least upper bound for these types
that would be Seq[C], and typing our special map function with Seq[C].

The next example is more involved. First we start off with declaring a multi-
level type hierarchy as seen on Fig. 4. This hierarchy declares 3 levels with leaf
nodes being case classes. The recursive function using these classes is defined on
Fig. 10. The control flow graph created by the predicates in the function has several
branches, unlike the straight tree of the match and cases in the first example.
This will cause no problems to our typing algorithm, as it can be applied to all
leaf branches, and then going upwards in the tree using the previously calculated
types. This calculation starts with the if-else on line 9. The first branch contains
a recursive call, so we cannot type this branch. We need to start with the else
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1 def map[C, A <: C, B <: C](y: Seq[A], f: A => C) = {
2 y match {
3 case Nil => Seq[B]()
4 case x :: xs => map(xs, f) :+ f(x)
5 }
6 }

Figure 9: A recursive map implementation with type inference.

branch first, making the calculated type Class2Level1. The case branch on line
8 then would be typed the same. We have a trivially typed case on line 7, with
Class2Level2. The least upper bound for these types is Level2, so the else branch
will be typed Level2. We have arrived at the top-most level of predicates, that has
types of Class1Level2, Level2, Class1Level2 and Class1Level1, in respective
order. The least upper bound defined by the hierarchy is therefore Level1. This
will be the final type of the deepRec function.

1 def deepRec(n: Int) = {
2 if (n == 0) {
3 Class1Level2
4 } else if (n == 1 || n == 2 || n == 3) {
5 n match {
6 case 3 => Class2Level2
7 case _ => {
8 if (n != 1) {
9 deepRec(n − 1)
10 } else {
11 Class2Level1
12 }
13 }
14 }
15 } else if (n == 4) {
16 Class1Level2
17 } else {
18 Class1Level1
19 }
20 }

Figure 10: A recursive function using type hierarchy on Fig. 4. with type inference.

The λ language was only defined for single-parameter functions. The reason
we can still use it to calculate types for these functions is that by currying multi-
parameter functions, we can always transform them to a chain of function appli-
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cations having only one parameter. Since Scala supports currying by default –
by denoting a function call with the _ (underscore symbol) –, we assume that all
functions in question can be transformed to this kind.

4.2 Typing recursive functions with multiple branches

In the previous examples we discussed functions with a single recursive branch. In
the following we show that similar solution exists for simple functions with multiple
recursive branches.

1 class A {
2 def toC: C = ...
3 def toD: D = ...
4 }
5
6 class B extends A
7 class C extends A
8 class D extends A
9
10 def multi(n: Int) = n match {
11 case 0 => new B
12 case n > 0 => foo(n − 1).toC
13 case n < 0 => foo(n + 1).toD
14 }

Figure 11: A function with multiple recursive branches.

In the example shown on Fig. 11 there are two recursive branches resulting in two
different but related types. Our algorithm finds the non-recursive branch on line
11 and calculates type B. Typing the second branch will use this information as
the return type of the foo call. Using B as a placeholder type, the default type
inference algorithm of Scala will calculate type C as the return type of the branch
on line 12. Similarly, type D will be calculated for the branch on line 13. Finally,
the LUB of types B, C and D will be determined as A. Therefore, the return type of
function multi will be A. This result complies with the expected result type of our
algorithm and meets the intention of the developer.

4.3 Extending the Scala compiler to handle simple recursive
functions

The fundamental design and structure of the Scala compiler makes it an excellent
candidate to be extended. The features of the compiler that makes this possible are
high separation of compiler phases, the support for macros and fully independent
compiler plugins and the compiler being an open source project[14]. The phases of



810 Gergely Nagy, Gábor Oláh, and Zoltán Porkoláb

the compiler start by parsing the source files and generating an AST; later phases
transform this AST. The current version of compiler is written in Scala, using Scala
objects to describe the nodes of the AST. The compiler also acts as a library to
analyze and compile Scala source code, providing a programmatic API that can be
accessed from applications.

As the first step, we had to find a way to circumvent the type error generated
for recursive functions. In the default version of the compiler, when the typer
starts calculating the type of a (recursive) function and it meets an entity that has
been defined previously, but the type of it is yet to be determined, it will throw
a CyclicReference exception that is collected and handled by the generic error
handling infrastructure of the compiler. This does not stop the typing phase from
continuing with typing other entities. We leverage this property, as it collects all
the erroneous recursive calls, but types all other to-us trivial cases.

Our main approach of extending the compiler has focused on creating a sep-
arate codebase, as modifying the main branch directly was found to be too time
consuming and difficult. Fortunately, we were helped in this effort by the various
API calls provided by the package scala.tools.nsc._ (nsc stands for New Scala
Compiler).

The extended scala.tools.nsc.typechecker.Analyzer contains methods
overridden that handle control flow ASTs –namely ifs and cases– and method
definitions, so we can annotate these methods with our calculated type. We of
course use the original typer to first type these entities and only interrupt cases
that are of interest to us. Finding the least upper bound of types is another key
point in our algorithm, but we were very fortunate in this regard: we use the
function lub on scala.tools.nsc.TypeChecker.Typer.

The last remaining piece to have a working compiler was inserting the newly
created typer into the chain of compile phases and invoking it from the first step,
the parser. We have achieved this with our own entry point to an application that
simply passes a path to the compiler and invokes it. We only use regular console
reporting by scala.tools.nsc.reporters.ConsoleReporter and global settings
by scala.tools.nsc.{Global, Settings}.

We have measured how our extension affects compile speeds by calculating the
total time spent in the main method of our application. The results are shown
in Table 1. For simplicity, we have listed measured microseconds with the default
version of the compiler –i.e. invoking it without setting the extended typer– and
with the extension in place. As it can be seen in change percentage, the extension
has no significant impact on performance. Example1 and Example2 refer to the
examples seen in the previous subsection, while Multiple methods contains several
other test cases.

The prototype can be downloaded and can be used for further tests from [15].

4.4 Restrictions

Scala supports defining recursive types using explicit type annotations. Soundly
calculating all recursive types would require extending our inference method with a
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Table 1: Compile times (µs) with and without using our extension

Code snippets Default Extended % change
Example1 2440166 2479896 101.62
Example2 3390745 3422435 100.93
Multiple methods 5691124 5712335 100.37

fixed point calculation. Henceforth, our proposed method in its current form does
not support recursive types.

We implemented and tested our compiler extension only on Scala compiler ver-
sion 2.12.4. It is not guaranteed to work with any other version than 2.12.4.

4.5 Future work

When we created the Scala compiler extension to infer types of simple recursive
functions, our main intentions were focused on prototyping the theoretical back-
ground we have described in this paper, not developing an industry-standard, com-
plete implementation. This leaves great space for future improvements. Firstly,
we can provide a better integration to the compiler by disabling CyclicReference
exceptions for our cases, then properly type AST nodes "in-place". Then we can
merge our changes back to the main line of the compiler.

Besides creating a more robust implementation, we also plan to work on ex-
tending the theory by finding methods to analyze recursive chains then proving the
soundness of these methods. This would require extending our λ-language and also
the way it handles types. As another step, we are looking into providing a clean,
correct and complete theoretical background and implementation for inferring types
of recursive type definitions.

5 Related works: type inference in C++

The C++ programming language is one of the current mainstream general purpose
languages [12]. Its popularity is originated to its suitability in almost all applica-
tion areas from high performance computing and telecommunication to embedded
systems. C++ provides language tools for the programmer to implement com-
plex systems from gradually specified and implemented building blocks without
compromising run-time efficiency. C++ is often described as a multiparadigm pro-
gramming language [3], as it has imperative, object-oriented, generic and functional
programming features.

C++ is a strongly typed programming language in the sense, that the type of
every (sub)expression is determined in compilation time. However, templates use
duck-typing,i.e. no constrained generics exist in current C++. There are plans to
improve the template mechanism with constraints.
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Earlier C++ codebase was known about notoriously long type notations. To
unburden programmers’ task and make source more readable, the C++11 standard
introduced the auto keyword as a placeholder for types [16]. Its primary usage is
to avoid needlessly verbose type declarations, like those are used with connection
in STL algorithms:

1 // C++03
2 typename std::vector<T>::iterator i = v.begin();

This can be replaced by usage of keyword auto. The type of the i variable will be
inferred from the initialization expression: v.begin()

1 // C++11
2 auto i = v.begin()

The keyword auto to replace the return type for functions but only with a new
trailing type syntax introduced in C++11:

1 template <typename T, typename S>
2 auto max( T a, S b) −> decltype(a+b) // C++11
3 {
4 if ( a > b )
5 return a;
6 else
7 return b;
8 }

Notice, that this usage of auto syntax does not imply type inference, the return
type is explicitly expressed in the trailing syntax. The role of auto here is only
a placeholder: since the language elements used in the trailing syntax (a and b
parameters in the decltype expression are not in scope before the function name).

In the C++14 standard, however, there is automatic type inference available
for function return types in the most simple cases [8].

1 auto f(); // return type is unknown
2 auto f() // return type is int
3 {
4 return 42;
5 }
6 auto f(); // redeclaration
7 int f(); // error, declares a different function

A function with auto return type can have multiply return statements. However,
there is a strict restriction here, that each return statement should return the same
single type, otherwise the compiler reports error. That is different to Scala, where
in case of multiple return statements the return type is inferred as the least upper
bound of the return types.

Recursion is allowed by the proposed C++14 inference rules in a very restricted
way. The recursive return branch should be preceded by at least one non-recursive
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return, from which the return type of the function is inferred. Subsequent return
statements are checked against this type. Therefore the following code will be
accepted by the proposal:

1 auto fib(int n)
2 {
3 if ( 0 == n ) return 1;
4 else return n∗fib(n−1);
5 }

While the variation, where we have changed the recursive and non-recursive branches
will be rejected:

1 auto fib(int n)
2 {
3 if ( n > 0 ) return n∗fib(n−1);
4 else return 1;
5 }

The authors have the opinion that these rules are unnecessary restrictive and can
be relaxed without compromising compile-time efficiency.

6 Conclusions
In this paper we have analyzed Scala inference rules for function return types. We
stated that with certain types of simple recursive functions, automatic calculation
of the return type can be done with some effort. Such an additional feature is in
parallel with the original design philosophies of Scala that try to lift unnecessary
burden off the programmer.

We have proposed a new method to compute the return types for simple recur-
sive functions. We have defined a small language to demonstrate the theoretical
soundness of our approach. Our heuristic assumption on the return type is based
on the non-recursive execution branches and we have also provided a proof of its
correctness. Furthermore, we have assumed that the recursive functions will always
end up in a non-recursive execution branch. The least upper bound type of these
branches provide sufficient information allows the default Scala type inference al-
gorithm to infer the return type of recursive branches. Finally, by taking the least
upper bound type of all branches we can define the return type of the function.

A prototype implementation has been created by extending the Typer not to
immediately fail on recursive functions, but use the proposed method to calculate
the return type. We have implemented our method as an extension prototype for
the Scala compiler v2.12.4 and have used it to successfully test our method on
various examples. In case type discrepancies already exist in the program, our
compiler extension will report the same error as the current Scala compiler.

The extension is proved to be effective in the sense that it does not significantly
affect compilation speed. The compiler extension prototype is publicly available
for further tests.
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