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Detecting Uninitialized Variables in C++
with the Clang Static Analyzer∗

Kristóf Umannab and Zoltán Porkolábac

Abstract

Uninitialized variables have been a source of errors since the beginning of
software engineering. Some programming languages (e.g. Java and Python)
will automatically zero-initialize such variables, but others, like C and C++,
leave their state undefined. While laying aside initialization in C and C++
might be a performance advantage if an initial value cannot be supplied,
working with variables is an undefined behaviour, and is a common source
of instabilities and crashes. To avoid such errors, whenever meaningful ini-
tialization is possible, it should be applied. Tools for detecting these errors
run time have existed for decades, but those require the problematic code to
be executed. Since in many cases, the number of possible execution paths is
combinatoric, static analysis techniques emerged as an alternative to achieve
greater code coverage. In this paper, we overview the technique for detecting
uninitialized C++ variables using the Clang Static Analyzer, and describe
various heuristics to guess whether a specific variable was left in an undefined
state intentionally. We implemented and published a prototype tool based
on our idea and successfully tested it on large open-source projects. This
so-called “checker” has been a part of LLVM/Clang releases since 9.0.0 under
the name optin.cplusplus.UninitializedObject.

Keywords: C++, static analysis, uninitialized variables

1 Introduction
When declaring a variable in program code, we might not be able to come up with a
meaningful default value thus leaving the variable uninitialized. This is not an issue
if one later assigns said variable before reading it, but such errors can be introduced
through, for example, code maintenance. Different languages approach this problem
in different ways: Java, Python (and many others) zero- initialize variables by
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default, while others, like C and C++, leave their values in an undefined state, and
working with such variables leads to undefined behaviour at runtime.

Undefined behaviour in C/C++ is any behaviour the standard does not specify.
It may occur, among many other sources, when a null pointer is dereferenced, the
division is made by zero, or an array is indexed out of its bounds. The real danger
of undefined behaviour is that in some cases, the program might behave seemingly
correctly, but other times run into runtime errors, e.g. crashing, corrupting opened
files or memory regions allocated by other programs. Also, even the same kind
of undefined behaviours might manifest in different runtime errors on different
executions.

This makes catching undefined behaviour often very hard – in the case of
uninitialized variables, zero initialization might occur with a particular compiler, on
a particular platform, in a particular build mode, but might also leave the variable
hold whatever value that was stored in the memory region to which the variable
was assigned (so-called “garbage value”). However, the use of this behaviour could
result in some performance enhancement, tempting programmers to not initialize
variables, even though this is often a bad approach.

This paper investigates how such variables can be detected using static analysis.
Unlike many other available tools, we will focus on non-idiomatic C++ initializa-
tion rather then uninitialized value misuse. In Section 2, we will discuss related
initialization rules in C++. In Section 3, we overview runtime and static tools
that are available for the same problem and sample several techniques of the latter
in Section 4 with a highlight on symbolic execution. We will detail the actual
implementation of our prototype in Section 5 along with the heuristics we use to
emit only reports that will most likely result in incorrect program behaviour, and
what other heuristics could be implemented. We evaluate our prototype solution
on various large open-source codebases in Section 6 and discuss future works in
Section 7. Our paper concludes in Section 8.

2 C++ Initialization Rules

The way variables are initialized in C/C++ depends on the variables’ type. They
can be categorized by whether they are records, arrays, or else. For this paper, we
will refer to the latter category as primitive. The C++ standard specifies two types
of initialization that may result in an indeterministic value [13, p. 221][25], but zero
initialization is also relevant in this context. When creating an uninitialized object
of type T

• default initialization occurs

– if T is a class: default constructor is called, or

– if T is an array, each element is default initialized, or

– otherwise, no initialization occurs resulting in an indeterminate value,
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Variable declaration i’s initialization
T i; default initialization
T i{}; value initialization (C++11)
T i = T(); value initialization
T i = T{}; value initialization (C++11)

T i();
function declaration (no

variable initialization occurs)

Figure 1: Initialization rules for instatiation of local variables

A::A()’s definition A::t’s initialization
struct A { T t; A() : t() {} }; value initialization
struct A { T t; A() : t{} {} }; value initialization (C++11)
struct A { T t; A() {}; }; default initialization
struct A { T t; A() = default; }; value initialization

Figure 2: Initialization rules for data member A::t upon instantiating a local A
typed variable with the default constructor.

• value initialization occurs

– if T is a class, the object is default initialized after zero initialization if
T’s default constructor is not user-defined/deleted, or

– if T is an array, each element is value initialized, or

– otherwise the object is zero initialized,

• zero-initialization occurs, before any other initialization

– if the object is static or thread-local, or

– if T scalar (number, pointer, enum) set to 0, or

– if T is a class, all subobjects are zero-initialized.

We summarize these rules in Figure 1. and 2. While we did not discuss
initialization in great depth in this section, it shows that this issue is not only
context-sensitive, it is also confusing, since it can be intertwined with other C++
rules, such as those related to inheritance. Even telling when the compiler will
generate a constructor can be difficult [30].

3 Related work

When approaching the issue of uninitialized variables, we can sort the already
existing solutions into two categories: runtime and static. An ideal solution is both
correct and complete, where none of our reports is incorrect (false positive), and we
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identify all uninitialized objects. Different techniques tend to emphasize different
parts of the requirements mentioned above – Runtime techniques are inherently
less prone to report false positives, but lack completeness [14]. Static analysis tools
cover far more of the code and offer a more complete but less precise solution [18].

In the context of this paper, we are looking for a solution to detect error-prone
lack of initialization and not uninitialized value misuses. Despite this, both due
to the scarcity of tools that focus on the former rather than the latter, and the
strong relevance of the two problems, we feel it is important to take a short survey
of analyzers and techniques that implement rules for either.

3.1 Runtime analysis tools

Several papers survey the detection of uninitialized value misuses in runtime ana-
lyzers [14, 20, 6]. A common characteristic of said tools is to inspect the program
during execution, with a given input. This means that in any given analysis, these
tools will only observe a single path of execution. However, this simplification makes
these tools far more precise, improving, on that particular path of execution, both
the true positive and the true negative findings.

Valgrind is a general dynamic binary instrumentation (DBI) framework [23]. It
inspects the executable binary, rather than the source code of a program, which
might not even be available. Valgrind offers several tools (also referred to as plugins)
that can find bugs. It is implemented by its core disassembling a given code block
from the binary into an intermediate representation, which is instrumented with
analysis code by the plugin, and then converted back into machine code. The
resulting translation is stored in a code cache to be rerun as necessary. One of
these plugins, MemCheck [27], can find uninitialized value misuses using shadow
bits [22] for every byte in the application memory: one a bit indicates whether it is
addressable, and a bit indicates whether it has a defined value.

Dr. Memory [4] works similarly to MemCheck but is more modern, better
optimized and multi-threaded. Its two times faster then MemCheck, but due to
concurrent updates of adjacent shadow bits, is more prone to emit false positive
and false negative reports [28].

MemorySanitizer [28] offers a different approach to runtime analysis by only
solving the problem of uninitialized variable misuses. It generates a modified bi-
nary during compilation, skipping disassembly and reassembly entirely. Running the
generated binary is far faster and consumes less memory then the solution Valgrind
with MemCheck or Dr. Memory offers, but this requires the source code to be
available.

3.2 Static analysis tools

Static analyzers do not execute the program under analysis, but rather inspect
either the source code or the generated binary code. This results in far greater code
coverage as they are not restricted to a single path of execution. However, this
generality comes at the cost of the analyzer tool having little knowledge about input
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values. In parts of the code where such information is crucial, the given analyzer
might have to conservatively suppress its reports, or simulate the execution of parts
of the code, making assumptions on values. This, considering the complexity of
some of the C++ language features (as discussed in Section 2.) can result in a
higher number of false positives and false negatives. We will discuss some of the
more popular techniques in Section 4. For the remainder of this section, we will
sample some of the widely used C/C++ static analyzers.

CppCheck [21] is among the earliest open-source tools with support for C++. It
uses AST matching and dataflow analysis1 to find bugs and code smells. Contrary
to many open-source tools for C++ analysis, CppCheck implements its own pre-
processor, parser and abstract syntax tree (AST ). It defines two rules on incorrect
initialization in constructors, separately for private and non-private fields.

Infer [5] is a relatively new tool, focusing on scalability and fast execution. It has
a unique approach to static analysis, using bi-abduction to perform interprocedural
analysis. Infer also runs with cross translation unit analysis enabled by default, and
scales significantly better with the number of translation units to analyze compared
to other tools such as the Clang Static Analyzer [10]. While it has several checkers to
detect uninitialized value misuse, it does not have any that focuses on non-idiomatic
C++ object initialization.

The Clang Static Analyzer [18], similarly to CppCheck, is among the more
mature static analyzers for C++. Having the benefit of being implemented directly
in the Clang compiler and transitively LLVM itself, it can take advantage of several
well-tested algorithms and data structures. The Clang Static Analyzer (or analyzer
for short) was ultimately our choice of project to implement our prototype in and
will be discussed in greater detail in Section 5.1.

There are also several commercial static analyzers such as CodeSodar [8], Cover-
ity [29], Klocwork [15], but due to licencing issues we will not compare our results
to them.

4 An introduction to symbolic execution

Several static analysis techniques may be considered for finding uninitialized vari-
ables, each having different strengths and weaknesses in terms of analysis speed,
memory or persistent storage consumption. In this section, we introduce symbolic
execution through two other approaches, and demonstrate why it is more appropriate
for our purpose.

4.1 Text-based matching

A possible, though a primitive approach would be to use textual pattern match-
ers. Let us see through a couple of examples whether we can tackle the problem
initialization with regular expressions:

1The authors of CppCheck refer to this technique as “valueflow”, rather then dataflow.
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int i;

With the regular expression rule int [A-Za-z]+[A-Za-z0-9]*; we can catch this
error. We can even enhance this regular expression by handling other fundamental
types, ignoring whitespaces, C-style comments and the like. By inspecting the
preprocessed code, rather than the original source code, we can also handle cases
where the preprocessor would generate parts of the expression. However, in Figure 3,
we demonstrate that non-trivial cases require a context-sensitive grammar. On
that code snippet, a.i will be initialized by the of the constructor call, but a.j
will not be. Having multiple constructors, potentially after instantiating the class,
inheritance, virtual inheritance, constructor delegation, aggregate initialization make
solving even smaller parts of this problem practically impossible with text-based
pattern matching.

1 struct A {
2 int i;
3 int j;
4 A() : i(0) {}
5 };
6
7 A a;

Figure 3: Text-based pattern matching is unable to identify a.j as uninitialized.

4.2 AST matching
A more sophisticated approach is to utilize the abstract syntax tree (AST), which
provides far more C++ specific information, especially when coupled with semantic
information, such as type information and an identifier table.

For the code snippet on Figure 4a, according to the rules detailed in Section 2,
b1, b2 are value initialized while b3 is default initialized, leaving b3.data in an
indeterministic state. As discussed earlier, we cannot tell this with regular expres-
sions.

On Figure 4c, we can inspect how Clang constructs the AST for Figure 4a. Using
Clang’s AST matcher library, we can match the line on which b3 is defined with
the following matcher:

declStmt(unless(hasDescendant(
stmt(anyOf(cxxConstructExpr(requiresZeroInitialization()),

implicitValueInitExpr())))));

This approach is clearly superior to text-based matching because it is context-
sensitive and allows us to express C++ specific properties easily. AST matching
can be complemented with the retrieval of the matched expression, enabling us to
do additional compile-time analysis, such as inspecting the inheritance tree of a
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1 struct RealSqrt {
2 int data;
3
4
5
6
7 };
8
9 int main() {
10 RealSqrt b1 = RealSqrt();
11 RealSqrt b2{};
12 RealSqrt b3;
13 }

(a)

1 struct RealSqrt {
2 int data;
3 RealSqrt(int i) {
4 if (i >= 0)
5 data = i;
6 }
7 };
8
9 int main() {

10 int i = rand();
11 if (i >= 0)
12 RealSqrt b(i);
13 }

(b)

CXXRecordDecl line:1:8 referenced struct A definition
|-DefinitionData
| |-DefaultConstructor trivial
| |-CopyConstructor trivial
| |-MoveConstructor trivial
| |-CopyAssignment trivial
| |-MoveAssignment trivial
| ‘-Destructor irrelevant trivial
|-FieldDecl col:7 referenced a ’int’
FunctionDecl line:5:5 main ’int ()’
‘-CompoundStmt

|-DeclStmt
| ‘-VarDecl col:5 b1 ’A’ cinit
| ‘-ExprWithCleanups ’A’
| ‘-CXXConstructExpr ’A’ ’void (A &&) noexcept’
| ‘-MaterializeTemporaryExpr ’A’ xvalue
| ‘-CXXTemporaryObjectExpr ’A’ ’void () noexcept’ zeroing
|-DeclStmt
| ‘-VarDecl col:5 b2 ’A’ listinit
| ‘-InitListExpr ’A’
| ‘-ImplicitValueInitExpr ’int’
|-DeclStmt
| ‘-VarDecl col:5 b3 ’A’ callinit
| ‘-CXXConstructExpr ’A’ ’void () noexcept’

(c) Simplified AST generated by Clang for Figure Figure 4a.

Figure 4: Code snippets demonstrating the internal representation and analysis
techniques used by Clang.
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type, gathering all direct (inherited and in-class) fields and checking whether the
called constructor is compiler-generated.

While the techniques mentioned above can be used to reduce the number of false
positives drastically, not even AST based matching can effectively deal problems
requiring path sensitive information.

It is clear that on Figure 4b, b.data will not be uninitialized, but we cannot
reliably detect that with AST matchers. Even if we do additional compile-time
analysis, we cannot reason about runtime values, branches, loops and the like
without path sensitive analysis. However, AST-based pattern matching is relatively
fast and can be used as a supplement to a better approach.

4.3 Symbolic Execution

Symbolic execution [9] is a powerful static analysis technique: it essentially simulates
the execution of the program. The implementing tool follows the control flow graph
(CFG), and evaluates statements within a basic block. Each expression is represented
with a symbolic expression that is assigned a value (e.g. assigning i + 1 with the
value 11), which itself could be symbolic if the value is unknown (e.g. supplied from
a file or the command line, randomly generated or received from a translation unit
we cannot analyze).

Upon encountering branch statements (when a basic block has more than one
outgoing edge), the tool will use a constraint solver to evaluate the condition [16]. If
the condition can be proven to be false or true in the given program state, the tool
can ignore all but one of the outgoing edges. Otherwise, the analyzer will explore
both paths, one on which the condition of it is true, and one where it is false. This
introduces the possibility to impose constraints upon symbolic values, such as a
pointer check could tell that the pointer value is non-null on a path, even if the
precise value is still unknown, and null on the other.

With this technique, we can theoretically explore all execution paths and reason
about the values of variables. For Figure 4b, we will note that A::A() will only be
called if the supplied parameter has a value of 5, and there is no uninitialized value
problem made in the program.

Since we can inspect the values in any given program state, handling complex
C++ code, such as inheritances, virtual inheritances, constructor delegations come
naturally: we could inspect an object after the end of a constructor call.

Clearly, symbolic execution is a far more powerful tool than text- or AST- based
pattern matching, hence our decision to use it in our implementation. It is worth
noting though that such an analysis is several times slower than compilation.

5 Implementation

In this section, we will detail how we implemented our prototype in the Clang
Static Analyzer, and some of the heuristics used to guess whether the discovered
uninitialized objects were left as such intentionally.
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5.1 Clang Static Analyzer

Clang is the C/C++ frontend of the LLVM optimizer and code generator and houses
the Clang Static Analyzer (analyzer). The Clang Static Analyzer implements all
three analyses detailed in Section 4. In this project, symbolic execution is divided
into two main components: a core that explores paths of execution and evaluates
statements, and so-called checkers that define bugs or code smells. Our prototype
is also a checker.

During symbolic execution, the core will simultaneously build an exploded
graph [12]. This graph describes the entire analysis – nodes could represent new
information the analyzer learned while evaluating a statement, such as a new
constraint on a symbolic expression, the end of a code block, call to a function,
end of a function call, or even checker-specific information (e.g. our prototype
creates a new node to note already reported fields). Control statements like if and
while could correlate to several exploded nodes, depending on how many times the
condition was evaluated. We call the event when the analyzer constructs multiple
child nodes state splitting, and it may be introduced by checkers as well. For instance,
a dynamic memory modelling checker may split the state when modelling a call to
the malloc function, creating a path of execution where the result of the function
call is NULL, and one where the allocation was successful. This implies that the
exploded graph grows exponentially, hence the naming.

The exploded graph is not isomorphic with the CFG, but it does have a natural
projection to it: each exploded node can be mapped to a statement or an edge in
the CFG.

The analyzer categorizes many modelling steps into events. Checkers can
subscribe to one or several of these, and are notified by the core should they occur.
InnerPointerChecker [17], for instance, is subscribed to the “end of a function call”
event to mark the return values of method calls like std::string::c_str() as
pointers to internal data, and to the “dead symbols” event to mark such data as
released after going out of scope.

5.2 Representing an object

In C++, the proper initialization of objects of a record type is the responsibility of
the special member function called the constructor. The constructor could be user-
provided when the programmer specifies it or compiler provided if it is automatically
generated. The improper implementation of the user-provided constructor is the
primary source of uninitialized value misuse. Therefore, in this research, we are
concentrating on validating the construction.

Naturally, any representation must respect fields and fields of fields (subobjects),
which we will call direct containment. Inherited fields are also directly contained.
However, non-null valid pointer objects refer to objects that may be uninitialized
themselves. We will refer to pointees of pointer fields as indirectly contained objects.
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1 struct A {
2 struct B {
3 int x;
4 int y = 0;
5 };
6
7 B b;
8 int *iptr = new int

;
9 B* bptr;

10 A() {}
11 };

A a;

bptr

b
x

y

iptr (int value)

Figure 5: How an object is represented by the checker. Red nodes are uninitialized
objects.

With that in mind, our proposed representation is a directed graph, where

• The root of this graph is the object we are analyzing,

• Every other node is also an object that is a union, a non-union record,
dereferenceable, an array or of a primitive type,

• The parent of each node is the object that contains it.

It is easy to show that this representation is not always a directed tree: circular
linked lists and pointers pointing to themselves are all directed cycles. However, by
keeping track of the objects we already analyzed, we can disallow these con- structs,
turning this representation into a directed tree.

We can also realize that in this directed tree every leaf is either a null pointer, an
undefined pointer, an array, a primitive object, or a pointer that that points to an
already analyzed object, meaning that they can be represented as numerical values.
This is important, as the analyzer may only mark such objects as uninitialized.

By subscribing our checker to the end of a function call event, we can inspect
every object after the end of a constructor call. By traversing the above graph, we
can detect all directly and indirectly contained objects, and emit reports for each of
them.

Our prototype traverses this graph recursively in a depth-first manner, and after
each descent to a child node, constructs an informative object to keep track of the
path leading to the current node. By the time it reaches a leaf, it has constructed an
informative list that contains every information needed to reach it. Should that leaf
be in an indeterministic state, a report is emitted, and a helpful warning message
is constructed from the informative list. For Figure 5, our prototype would report
that this->b.x, this->iptr’s pointee and this->bptr is left uninitialized after
the constructor call. However, since the analyzer keeps track of the dynamic type of
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the pointers during symbolic execution, the warning message could be incorrect, if
we report a derived class’ field as uninitialized through its base class’ typed pointer.
To solve this problem, the checker stores dynamic type information as well in the
constructed informative list, so the constructed warning message could contain casts
the actual dynamic type.

As constructors are called for fields during construction, we will only run our
checker when function call stack does not contain other constructor calls.

5.3 Heuristics
In static analysis, we can classify results as true positive, if the analyzer correctly
identified a programming error, true negative if the analyzer correctly identified the
lack of a programming error, false positives if the analyzer reported a programming
error despite the code being correct, and false negatives when the analyzer did
not report incorrect code. These definitions, however, describe uninitialized object
related reports rather poorly. While correctly identified and reported uninitialized
objects are by definition true positives, these objects may have been left as such
intentionally. An essential aspect of this problem is that not initializing a variable is
not an error, only the reading of an uninitialized value. In fact, when the programmer
cannot supply a meaningful default value (e.g. declaring a variable as a buffer),
initialization could result in a performance loss.

For this reason, one of the main goals of our research is to identify which
uninitialized variables are most likely to result in misuse and undefined behaviour.
This implies that we have to reason about the intention of the programmer and
suppress some reports, turning them into false negatives. The following section will
detail how we try to find an optimal true positive/false negative ratio.

We made our checker configurable, allowing us to enable, disable or fine-tune
some of our heuristics for a particular project.

5.3.1 Arrays

Before C++11, elements of dynamically allocated arrays could not be initialized.
Even stack-allocated arrays are often used as buffers, which was consistent with the
results of our findings, so our prototype ignores arrays.

5.3.2 No initialized field

Through testing our prototype, we concluded that objects that do not initialize
a single one of their fields are often created intentionally. However, this heuristic
can result in a higher amount of false negatives than maybe desired, so we made it
toggleable.

5.3.3 Pointer chasing

Indirect containment raises a philosophical question: Is an object responsible for
leaving its pointee object in a fully deterministic state? One perspective we could
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1 struct PhysicalProperty {
2 int volume, area;
3 enum Kind { VOL, AREA } kind;
4
5 PhysicalProperty(Kind k) : kind(k)

{
6 switch(k) {
7 case VOL:
8 volume = 0;
9 break;

10 case AREA:
11 area = 0;
12 break;
13 }
14 }
15
16 int getVolume() const {
17 assert(kind == VOL);
18 return volume;
19 }
20
21 int getArea() const {
22 assert(kind == AREA);
23 return area;
24 }
25 };

Figure 6: PhysicalProperty doesn’t initialize all data members, but „guards”
against uninitialized value misuse.

take is to guess whether the objects owns the pointee. However, ownership is a
conceptually popular, but non-standardized concept within C++ [11]. This, and
the current faults in the analyzer lead to us to not analyze pointees (or chasing
pointers) by default.

5.3.4 Guarded field analysis

Consider the code snippet in Figure 6. Although PhysicalProperty will leave
one of its fields uninitialized on every instantiation, we cannot encounter an unini-
tialized object related error runtime. Similar constructs within the LLVM codebase
is very popular and will trigger a report from our checker, despite the lack of a
programmer error.
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We will call any statement that could prevent the execution from reaching and
reading an uninitialized field a guard. We call a field guarded if every read of it
control depends on a guard.

Unfortunately, it is hard to guess compile-time whether a field is guarded, as the
argument of if statements might not be correlated to whether the field is initialized.
We implemented a primitive heuristic to solve this problem using AST matchers
on the object’s record definition, analyzing whether the field is public, and is read
before a guard in the code. Due to the reasons mentioned above, this is a very
rough estimate, and this analysis is disabled by default.

5.3.5 Known to be safely uninitialized fields

In some instances, we might want to ignore particular objects of a particular type
intentionally, or if they have a specific variable name. For this reason, our prototype
is configurable with a regular expression, and if it matches a variable’s name or it’s
type, we ignore it.

6 Evaluation

We evaluated our prototype on several large, open-source C++ projects, such as
Rtags [3], LLVM [19], Xerces [1], CppCheck [21], Bitcoin [31] with a variety of
configurations. We used the open-source program csa-testbench [24], which helped
us compare the results of different configurations of our checker with ease. We used
CodeChecker [7] to visualize our results. We also ran CppCheck on said projects
and compared its results with the one our solution generated.

We purposely chose projects with diverse design patterns. For example, the
LLVM project relies almost purely on its own libraries, and being a compiler, it is
very performance-critical. The C++ indexer Rtags uses several third-party libraries
and houses a variety of coding styles, some more performance-critical then others.
We found that the more performance-critical a project is, the more likely it is that
the code takes advantage of not initializing every variable.

As mentioned in Section 5.3, it can be challenging to find good metrics on the
quality of the reports. While the authors were researching an algorithm which
enforces the idiom of initializing every variable, there are several reports (especially
in the code generation libraries of LLVM) that we feel justifies going against it.
This implies that judging whether a report is meaningful or not is debatable. For
this reason, we categorized the results into three categories: we say a report useful
if the lack of initialization had probably little to no effect on performance and is
error-prone, questionable if judging from the code context the lack of initialization
is appropriate, and false positive if the report was incorrect. We summarized our
results in Table 1.

According to the C++ initialization rules, we found only a single false positive
where the analyzer disregarded an in-class initialization, though this is a fault
of the analyzer’s core. We found that the reports from our prototype with the
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Table 1: Reports from our prototype in the first 4 columns, and from CppCheck in the
last on large, open source projects. Reports are shown in the format “all/useful/false
positive/questionable”.

Default Pointer chasing Pedantic Guarded fields CppCheckignored
Rtags 1/1/0/0 6/1/0/5 1/1/0/0 1/1/0/0 5/1/0/4
LLVM 46/18/1/27 88/18/1/69 48/20/1/27 43/18/1/24 4/1/0/3
Xerces 1/1/0/0 1/1/0/0 1/1/0/0 1/1/0/0 7/4/0/3
CppCheck 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
Bitcoin 5/5/0/0 5/5/0/0 5/5/0/0 5/5/0/0 12/5/0/7

default configuration were overwhelmingly useful except for LLVM. Despite most
uninitialized variable finds in that project were of little value, even there we were
able to find and patch error-prone code.

We found code pattens in nearly all projects that clearly go against idiomatic
C++ code. Such code patterns include not letting the compiler generate constructors
by defaulting them with = default, not initializing variables that are removed in
non-debug builds, leaving uninitialized fields of non-POD classes public, or storing
auxiliary data such as counters that would be more appropriate as function-local
variables.

Contrary to our expectations, both reports that are present with the Pedantic
option enabled but not with default configurations were useful, showing constructors
that should have been defaulted. Though the number of reports increased signifi-
cantly after enabling pointer chasing, it mostly lead us to find pointers to buffers
that were handled correctly in the class, making them uninteresting in all reports
found in LLVM and Rtags. LLVM uses guarded fields extensively, but we were only
able to suppress reports based on this information in 3 cases.

Comparatively, CppCheck had the least amount of reports on LLVM except for
its own codebase, significantly less than our prototype both in terms of count and
useful finds, but had more on Rtags, Xerces and Bitcoin. Shockingly, there was
only a single report found by both CppCheck and out prototype in Xerces. This
supports the conclusion of other findings on static analyses that to find more bugs,
it is better to use multiple tools [2, 33].

It should be noted that unlike our prototype, CppCheck constructs a warning
message per uninitialized field, rather than per constructor call, so we regarded
multiple warnings originating from the same constructor as one.

This checker, under the name of optin.cplusplus.UninitializedObject has
been a part of the analyzer since it’s 9.0.0 release [32], and has been used by various
industrial parties, such as Firefox2, Apple3, Google4 and Ericsson5.

2https://reviews.llvm.org/D45532#1145512
3http://lists.llvm.org/pipermail/cfe-dev/2018-August/058905.html
4https://reviews.llvm.org/D58573#1477581
5https://reviews.llvm.org/D58573#1425837

https://reviews.llvm.org/D45532#1145512
http://lists.llvm.org/pipermail/cfe-dev/2018-August/058905.html
https://reviews.llvm.org/D58573#1477581
https://reviews.llvm.org/D58573#1425837
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7 Future works

It is hard to find an ideal true positive/false negative ratio to make our reports
meaningful enough without suppressing too many of them. More research into new
heuristics and improving existing ones is where most of our future projects lay.

Guarded field analysis could benefit from being implemented using dataflow
analysis instead of AST matching. While finding a correlation in between the guard
statement and whether the field is initialized is theoretically impossible, clever
heuristics could help on this matter.

Pointer chasing suffers from some poor modelling techniques within the analyzer’s
core, which is not directly related to our implementation. Also, heap allocated
objects are not yet modelled at all. Improving these within the core and better
defining in which cases we want to report uninitialized pointees could eventually
enable us to enable pointer chasing by default.

While there are no constructors in C, it is worth investigating whether our C++
prototype could be used for analyzing C code. One approach would be to note when
an object of a great enough size is created, and when the function call in which its
created ends, analyze that object with our proposed technique.

A popular technique in C++ programming is the pimpl idiom [26], where the
part of the class’ definition is implemented through an opaque pointer. The Clang
Static Analyzer, by default, can only analyze a single translation unit at a time,
so it may be unable to reason about opaque pointers if the definition of a function
or a class lies a translation unit different than what is being analyzed. Cross
translation unit (CTU ) analysis [10] can be used to acquire the definition. It should
be investigated whether our prototype is conformant with CTU.

8 Conclusion

Static analysis of C/C++ code can be used to detect uninitialized variables, which are
a common source of undefined behaviour. While more prone to false positives, static
analysis has a far greater code coverage compared to dynamic analysis. We argued
against analyzing only fundamental objects and proposed an accurate representation
of record objects in the form of a directed tree. Our prototype, implemented in the
Clang Static Analyzer, can traverse this graph to detect uninitialized variables for
each object after the end of its constructor call. We proposed a variety of heuristics
to reduce the number of reports emitted by this prototype, focusing on uninitialized
variables most likely to be read. Evaluation of large open-source projects lead
us to discover several records that are likely to leave some fields uninitialized
unintentionally and are prone to misuse. While we generally found the results of our
prototype meaningful, we plan to add new heuristics and enhance existing ones to
reduce the further number of uninteresting reports on performance-critical projects.

This checker, under the name of optin.cplusplus.UninitializedObject has
been a part of the analyzer since it’s 9.0.0 release [32], and has been used by various
industrial parties, such as Firefox, Apple, Google and Ericsson.
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