
Acta Cybernetica 25 (2020) 847–876.

A Modern Look at GRIN, an Optimizing

Functional Language Back End∗

Péter Dávid Podlovicsab, Csaba Hruskac, and Andor Pénzesd

Abstract

GRIN is short for Graph Reduction Intermediate Notation, a modern back
end for lazy functional languages. Most of the currently available compilers
for such languages share a common flaw: they can only optimize programs on
a per-module basis. The GRIN framework allows for interprocedural whole
program analysis, enabling optimizing code transformations across functions
and modules as well.

Some implementations of GRIN already exist, but most of them were
developed only for experimentation purposes. Thus, they either compromise
on low level efficiency or contain ad hoc modifications compared to the original
specification.

Our goal is to provide a full-fledged implementation of GRIN by com-
bining the currently available best technologies like LLVM, and evaluate the
framework’s effectiveness by measuring how the optimizer improves the per-
formance of certain programs. We also present some improvements to already
existing components of the framework. Some of these improvements include
a typed representation for the intermediate language and an interprocedural
program optimization, the dead data elimination.

Keywords: GRIN, compiler, whole program optimization, intermediate rep-
resentation, dead code elimination

1 Introduction

Over the last few years, the functional programming paradigm has become more
popular and prominent than it was before. More and more industrial applications
emerge, the paradigm itself keeps evolving, existing functional languages are being
refined day by day, and even completely new languages appear. Yet, it seems the
corresponding compiler technology lags behind a bit.

∗The project has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00002)

aEötvös Loránd University, Budapest, Hungary
bE-mail: peter.d.podlovics@gmail.com, ORCID: 0000-0002-4848-883X
cE-mail: csaba.hruska@gmail.com, ORCID: 0000-0002-6168-1570
dE-mail: andor.penzes@gmail.com, ORCID: 0000-0002-6221-4579

DOI: 10.14232/actacyb.282969

mailto:peter.d.podlovics@gmail.com
https://orcid.org/0000-0002-4848-883X
mailto:csaba.hruska@gmail.com
https://orcid.org/0000-0002-6168-1570
mailto:andor.penzes@gmail.com
https://orcid.org/0000-0002-6221-4579
https://doi.org/10.14232/actacyb.282969


848 P. Podlovics, Cs. Hruska, and A. Pénzes

Functional languages come with a multitude of interesting features that al-
low us to write programs on higher abstraction levels. Some of these features
include higher-order functions, laziness and sophisticated type systems based on
SystemFC [29], some even supporting dependent types. Although these features
make writing code more convenient, they also complicate the compilation process.

Compiler front ends usually handle these problems very well, but the back
ends often struggle to produce efficient low level code. The reason for this is that
back ends have a hard time optimizing code containing functional artifacts. These
functional artifacts are the by-products of high-level language features mentioned
earlier. For example, higher-order functions can introduce unknown function calls
and laziness can result in implicit value evaluation which can prove to be very
hard to optimize. As a consequence, compilers generally compromise on low level
efficiency for high-level language features.

Moreover, the paradigm itself also encourages a certain programming style
which further complicates the situation. Functional code usually consists of many
smaller functions, rather than fewer big ones. This style of coding results in more
composable programs, but also presents more difficulties for compilation, since op-
timizing individual functions only is no longer sufficient.

In order to resolve these problems, we need a compiler back end that can op-
timize across functions as well as allow the optimization of laziness in some way.
Also, it would be beneficial if the back end could theoretically handle any suitable
front end language.

In this paper we present a modern look at the GRIN framework. We explain
some of its core concepts, and also provide a number of improvements to it. The
results are demonstrated through a modernized implementation of the framework1.
The main contributions presented in the paper are the following.

1. Extension of the heap points-to analysis with more accurate basic value track-
ing

2. Specification of a type inference algorithm for GRIN using the extended heap
points-to analysis

3. Implementation of an LLVM back end for the GRIN framework
4. Extension of the dead data elimination transformation with typed dummifica-

tion and an overview of an alternative transformation for producer-consumer
groups

5. Implementation of an Idris front end for the GRIN framework

2 Graph Reduction Intermediate Notation

GRIN is short for Graph Reduction Intermediate Notation. GRIN consists of an
intermediate representation language (IR in the following) as well as the entire

1Almost the entire GRIN framework has been reimplemented. The only exceptions are the
simplfyifing transformations which are no longer needed by the new code generator that uses
LLVM as its target language.



A Modern Look at GRIN 849

compiler back end framework built around it. GRIN tries to resolve the issues
highlighted in Section 1 by using interprocedural whole program optimization.

2.1 General overview

Interprocedural program analysis is a type of data-flow analysis that propagates
information about certain program elements through function calls. Using inter-
procedural analyses instead of intraprocedural ones, allows for optimizations across
functions. This means the framework can handle the issue of large sets of small
interconnecting functions presented by the composable programming style.

Whole program analysis enables optimizations across modules. This type of
data-flow analysis has all the available information about the program at once. As
a consequence, it is possible to analyze and optimize global functions. Furthermore,
with the help of whole program analysis, laziness can be made explicit. In fact,
the evaluation of suspended computations in GRIN is done by an ordinary function
called eval. This is a global function uniquely generated for each program, meaning
it can be optimized just like any other function by using whole program analysis.

Finally, since the analyses and optimizations are implemented on a general
intermediate representation, many other languages can benefit from the features
provided by the GRIN back end. The intermediate layer of GRIN between the
front end language and the low level machine code serves the purpose of eliminating
functional artifacts from programs such as closures, higher-order functions and even
laziness. This is achieved by using optimizing program transformations specific to
the GRIN IR and functional languages in general. The simplified programs can
then be optimized further by using conventional techniques already available. For
example, it is possible to compile GRIN to LLVM and take advantage of an entire
compiler framework providing a huge array of very powerful tools and features.

2.2 A small example

As a brief introduction to the GRIN language, we will show how a small functional
program can be encoded in GRIN. We will use the following example program:
(add 1) (add 2 3). The add function simply takes two integers, and adds them
together. This means, that the program only makes sense in a language that
supports partial function application, due to add being applied only to a single
argument. We will also assume, that the language has lazy semantics. We can see
the GRIN code generated from the above program in Program code 2.1.

The first thing we can notice is that GRIN has a monadic structure, and syn-
tactically it is very similar to low-level Haskell. The second one, is that it has
data constructors (CInt, Fadd, etc). We will refer to them as nodes. Thirdly, we
can see four function definitions: grinMain, the main entry point of our program;
add, the function adding two integers together; and two other functions called eval

and apply. Lastly, we can see prim int add and the store, fetch and update

operations, which do not have definitions. The first one is a primitive operation,
and the last three are intrinsic operations responsible for graph reduction. We can



850 P. Podlovics, Cs. Hruska, and A. Pénzes4 P. Podlovics Cs. Hruska A. Pénzes

1 grinMain =

2 a <- store (CInt 1)

3 b <- store (CInt 2)

4 c <- store (CInt 3)

5

6 r <- store (Fadd b c)

7 suc <- pure (P1_add a)

8 apply suc r

9

10 add x y =

11 (CInt x1) <- eval x

12 (CInt y1) <- eval y

13 r <- _prim_int_add x1 y1

14 pure (CInt r)

12 eval p =

13 v <- fetch p

14 case v of

15 (CInt _n) -> pure v

16 (P2_add) -> pure v

17 (P1_add _x) -> pure v

18 (Fadd x2 y2) ->

19 r_add <- add x2 y2

20 update p r_add

21 pure r_add

22

23 apply f u =

24 case f of

25 (P2_add) ->

26 pure (P1_add u)

27 (P1_add z) -> add z u

Program code 2.1: GRIN code generated from (add 1) (add 2 3)

and the last three are intrinsic operations responsible for graph reduction. We can
also view store, fetch and update as simple heap operations: store puts values
onto the heap, fetch reads values from the heap, and update modifies values on
the heap.

The GRIN program is always a first order, strict, defunctionalized version of the
original program, where laziness and partial application are expressed explicitly by
eval and apply. A lazy function call can be expressed by wrapping its arguments
into an F node. As can be seen, the add 2 3 expression is compiled into the Fadd 2

3 node. Whenever a lazy value needs to be evaluated, the GRIN program will call
the eval function, which will force the given computation and update the stored
value (so that it is not computed twice), or it will just return the value if it is
already in weak head normal form. For a partial function call, the GRIN program
will construct a P node, and call the apply function. The number in the P node’s
tag indicates how many arguments are still missing to the given function call. The
apply function will take a partially applied function (a P node), and will apply it
to a given argument. The result can be either another partially applied function,
or the result of a saturated function call.

The definitions of eval and apply are uniquely generated for each program
by the GRIN back end. As we can see, they are just ordinary GRIN functions,
which means the compiler can analyze and optimize them. For a more detailed
description, the reader can refer to [7, 8].

Program code 2.1: GRIN code generated from (add 1) (add 2 3)

also view store, fetch and update as simple heap operations: store puts values
onto the heap, fetch reads values from the heap, and update modifies values on
the heap.

The GRIN program is always a first order, strict, defunctionalized version of the
original program, where laziness and partial application are expressed explicitly by
eval and apply. A lazy function call can be expressed by wrapping its arguments
into an F node. As can be seen, the add 2 3 expression is compiled into the Fadd 2

3 node. Whenever a lazy value needs to be evaluated, the GRIN program will call
the eval function, which will force the given computation and update the stored
value (so that it is not computed twice), or it will just return the value if it is
already in weak head normal form. For a partial function call, the GRIN program
will construct a P node, and call the apply function. The number in the P node’s
tag indicates how many arguments are still missing to the given function call. The
apply function will take a partially applied function (a P node), and will apply it
to a given argument. The result can be either another partially applied function,
or the result of a saturated function call.

The definitions of eval and apply are uniquely generated for each program
by the GRIN back end. As we can see, they are just ordinary GRIN functions,
which means the compiler can analyze and optimize them. For a more detailed
description, the reader can refer to [5, 6].



A Modern Look at GRIN 851

3 Related Work

This section will introduce the reader to the state-of-the-art concerning functional
language compiler technologies and whole program optimization. It will compare
these systems’ main goals, advantages, drawbacks and the techniques they use.

3.1 The Glasgow Haskell Compiler

GHC [13] is the de facto Haskell compiler. It is an industrial strength compiler
supporting Haskell2010 with a multitude of language extensions. It has full support
for multi-threading, asynchronous exception handling, incremental compilation and
software transactional memory.

GHC is the most feature-rich stable Haskell compiler. However, its optimizer
part is lacking in two respects. Firstly, neither of its intermediate representations
(STG and Core) can express laziness explicitly using the syntax of the language.
This means, in order to generate optimal machine code, the code generator cannot
use only the AST of the program, but also has to rely on the previously calculated
strictness analysis result. This makes the code generation phase more complicated.
Secondly, GHC only supports optimization on a per-module basis by default, and
only optimizes across modules after inlining certain specific functions. This can
drastically limit the information available for the optimization passes, hence de-
creasing their efficiency. The following sections will show alternative compilation
techniques to resolve the issues presented above.

3.2 Clean compiler

The Clean compiler [25] is also an industrial-grade compiler, supporting concur-
rency and a multitude of platforms. It uses the abstract ABC machine as it’s
evaluation model. The ABC machine is a stack machine which uses three different
stacks: the Argument stack, the Basic value stack and the Code stack. The Clean
compiler performs no optimizations on the ABC machine level, since defining code
transformations on a stack-based representation would be quite inconvenient. In-
stead, the driving design principle behind the ABC machine is that it should be
easy to generate native machine code from it. In the present days, this task is often
accomplished by LLVM, which not only guarantees performance, but also provides
a higher level intermediate representation. Nonetheless, the Clean compiler gener-
ates performant code for most major platforms.

The main difference between Clean and Haskell lies in the type systems. Clean
uses uniqueness typing, a concept similar to linear typing. A function argument
can be marked unique, which means that it will be used only a single time in the
function definition. This allows the compiler to generate destructive updates on
that argument after it has been used. The efficiency of Clean programs is largely not
attributed to code optimizations, but rather to the fact that the programmer writes
mutable code to begin with. Uniqueness typing introduces controlled mutability
which can highly increase the efficiency of Clean programs.



852 P. Podlovics, Cs. Hruska, and A. Pénzes

3.3 GRIN

Graph Reduction Intermediate Notation is an intermediate representation for lazy1

functional languages. Due to its simplicity and high expressive power, it was utilized
by several compiler back ends.

3.3.1 Boquist

The original GRIN framework was developed by U. Boquist, and first described in
the article [6], then in his PhD thesis [5]. This version of GRIN used the Chalmers
Haskell-B Compiler [2] as its front end and RISC as its back end. The main focus
of the entire framework is to produce highly efficient machine code from high-level
lazy functional programs through a series of optimizing code transformations. At
that time, Boquist’s implementation of GRIN already compared favorably to the
existing Glasgow Haskell Compiler of version 4.01.

The language itself has very simple syntax and semantics, and is capable of
explicitly expressing laziness. It only has very few built-in instructions (store,
fetch and update) which can be interpreted in two ways. Firstly, they can be
seen as simple heap operations; secondly, they can represent graph reduction se-
mantics [24]. For example, we can imagine store creating a new node, and update

reducing those nodes.
GRIN also supports whole program optimization. Whole program optimization

is a compiler optimization technique that uses information regarding the entire
program instead of localizing the optimizations to functions or translation units.
One of the most important whole program analyses used by the framework is the
heap-points-to analysis, a variation of Andersen’s pointer analysis [1].

3.3.2 UHC

The Utrecht Haskell Compiler [10] is a completely standalone Haskell compiler with
its own front end. The main idea behind UHC is to use attribute grammars to han-
dle the ever-growing complexity of compiler construction in an easily manageable
way. Mainly, the compiler is being used for education, since utilizing a custom
system, the programming environment can be fine-tuned for the students, and the
error messages can be made more understandable.

UHC also uses GRIN as its IR for its back-end part, however the main focus
has diverted from low level efficiency, and broadened to the spectrum of the entire
compiler framework. It also extended the original IR with synchronous exception
handling by introducing new syntactic constructs for try/catch blocks [11]. Also,
UHC can generate code for many different targets including LLVM [17], .Net, JVM
and JavaScript.

1Strict semantics can be expressed as well.



A Modern Look at GRIN 853

3.3.3 JHC

JHC [15] is another complete compiler framework for Haskell, developed by John
Meacham. JHC’s goal is to generate not only efficient, but also very compact code
without the need of any runtime. The generated code only has to rely on certain
system calls. JHC also has its own front end and back end just like UHC, but they
serve different purposes.

The front end of JHC uses a very elaborate type system called the pure type
system [4,30]. In theory, the pure type system can be seen as a generalization of the
lambda cube [3], in practice it behaves similarly to the Glasgow Haskell Compiler’s
Core representation. For example, similar transformations can be implemented on
them.

For its intermediate representation, JHC uses an alternate version of GRIN.
Meacham made several modifications to the original specification of GRIN. Some
of the most relevant additions are mutable variables, memory regions (heap and
stack) and throw-only IO exceptions. JHC’s exceptions are rather simple compared
to those of UHC, since they can only be thrown, but never caught.

JHC generates completely portable ISO C, which for instance was used to im-
plement a NetBSD sound driver in high-level Haskell [21].

3.3.4 LHC

The LLVM Haskell Compiler [9] is a Haskell compiler made from reusable libraries
using JHC-style GRIN as its intermediate representation. As its name suggests, it
generates LLVM IR code from the intermediate GRIN.

3.4 Other Intermediate Representations

GRIN is not the only IR available for functional languages. In fact, it is not even
the most advanced one. Other representations can either be structurally different
or can have different expressive power. For example GRIN and LLVM are both
structurally and expressively different representations, because GRIN has monadic
structure, while LLVM uses basic blocks, and while GRIN has sum types, LLVM
has vector instructions. In general, different design choices can open up different
optimization opportunities.

3.4.1 MLton

MLton [32] is a widely used Standard ML compiler. It also uses whole program
optimization, and focuses on efficiency.

MLton has a wide array of distinct intermediate representations, each serv-
ing a different purpose. Each IR can express a certain aspect of the language
more precisely than the others, allowing for more convenient implementation of
the respective analyses and transformations. They use a technique similar to de-
functionalization called 0CFA, a higher-order control flow analysis. This method



854 P. Podlovics, Cs. Hruska, and A. Pénzes

serves a very similar purpose to defunctionalization, but instead of following func-
tion tags, it tracks function closures. Also, 0CFA can be generalized to k-CFA,
where k represents the number of different contexts the analysis distinguishes. The
variant used by MLton distinguishes zero different contexts, meaning it is a context
insensitive analysis. The main advantage of this technique is that it can be applied
to higher-order languages as well.

Furthermore, MLton supports contification [12], a control flow based transfor-
mation, which turns function calls into continuations. This can expose a lot of
additional control flow information, allowing for a broad range of optimizations
such as tail recursive function call optimization.

As for its back end, MLton has its own native code generator, but it can also
generate LLVM IR code [18].

3.4.2 Intel Research Compiler

The Intel Labs Haskell Research Compiler [19] was a result of a long running
research project of Intel focusing on functional language compilation. The project’s
main goal was to generate very efficient code for numerical computations utilizing
whole program optimization.

The compiler reused the front end part of GHC, and worked with the external
Core representation provided by it. Its optimizer part was written in MLton and
was a general purpose compiler back end for strict functional languages. Differ-
ently from GRIN, it used basic blocks which can open up a whole spectrum of new
optimization opportunities. Furthermore, instead of whole program defunctional-
ization (the generation of global eval), their compiler used function pointers and
data-flow analysis techniques to globally analyze the program. They also supported
synchronous exceptions and multi-threading.

One of their most relevant optimizations was the SIMD vectorization pass [23].
Using this optimization, they could transform sequential programs into vectorized
ones. In conjunction with their other optimizations, they achieved performance
metrics comparable to native C [22].

4 Compiling to LLVM

LLVM is a collection of compiler technologies consisting of an intermediate repre-
sentation called the LLVM IR, a modularly built compiler framework and many
other tools built on these technologies. This section discusses the benefits and
challenges of compiling GRIN to LLVM.

4.1 Benefits and Challenges

The main advantage LLVM has over other CISC and RISC based languages lies
in its modular design and library based structure. The compiler framework built
around LLVM is entirely customizable and can generate highly optimized low level
machine code for most architectures. Furthermore, it offers a vast range of tools



A Modern Look at GRIN 855

and features out of the box, such as different debugging tools or compilation to
WebAssembly.

However, compiling unrefined functional code to LLVM does not yield the results
one would expect. Since LLVM was mainly designed for imperative languages,
functional programs may prove to be difficult to optimize. The reason for this is
that functional artifacts or even just the general structuring of functional programs
can render conventional optimization techniques useless.

While LLVM acts as a transitional layer between architecture independent, and
architecture specific domains, GRIN serves the same purpose for the functional and
imperative domains. Figure 4.1 illustrates this domain separation. The purpose of
GRIN is to eliminate functional artifacts and restructure functional programs in a
way so that they can be efficiently optimized by conventional techniques.

HaskellIdris Agda

GRIN

LLVM

Figure 4.1: Possible representations of different functional languages

The main challenge of compiling GRIN to LLVM has to do with the discrepancy
between the respective type systems of these languages: GRIN is untyped, while
LLVM has static typing. In order to make compilation to LLVM possible1, we
need a typed representation for GRIN as well. Fortunately, this problem can be
circumvented by implementing a type inference algorithm for the language. To
achieve this, we can extend an already existing component of the framework, the
heap points-to data-flow analysis.

4.2 Heap points-to Analysis

Heap points-to analysis (HPT in the following), or pointer analysis is a commonly
used data-flow analysis in the context of imperative languages. The result of the
analysis contains information about the possible variables or heap locations a given
pointer can point to. In the context of GRIN, it is used to determine the type of
data constructors (or nodes) a given variable could have been constructed with.
The result is a mapping of variables and abstract heap locations to sets of data
constructors.

1As a matter of fact, compiling untyped GRIN to LLVM is possible, since only the registers
are statically typed in LLVM, the memory is not. So in principle, if all variables were stored in
memory, generating LLVM code from untyped GRIN would be plausible. However, this approach
would prove to be very inefficient.



856 P. Podlovics, Cs. Hruska, and A. Pénzes

The original version of the analysis presented in [5] and further detailed in [6]
only supports node level granularity. This means, that the types of literals are
not differentiated, they are unified under a common ”basic value” type. Therefore,
the analysis cannot be used for type inference as it is. In order to facilitate type
inference, HPT has to be extended, so that it propagates type information about
literals as well. This can be easily achieved by defining primitive types for the
literal values. Using the result of the modified algorithm, we can generate LLVM
IR code from GRIN.

However, in some cases the monomorphic type inference algorithm presented
above is not sufficient. For example, the Glasgow Haskell Compiler has polymor-
phic primitive operations. This means, that despite GRIN being a monomorphic
language, certain compiler front ends can introduce external polymorphic functions
to GRIN programs. To resolve this problem, we have to further extend the heap
points-to analysis. The algorithm now needs a table of external functions with
their respective type information. These functions can be polymorphic, hence they
need special treatment during the analysis. When encountering external function
applications, the algorithm has to determine the concrete type of the return value
based on the possible types of the function arguments1. Essentially, it has to fill
all the type variables present in the type of the return value with concrete types.
This can be achieved by unification. Fortunately, the unification algorithm can be
expressed in terms of the same data-flow operations HPT already uses.

4.3 Type Information from the Surface Language

Another option would be to use type information provided by the surface language.
This approach might seem convenient, but it has three major disadvantages. The
first one is that this solution would need to address each front end language sep-
arately, since they might have different type systems. Secondly, requiring type in-
formation from the front end would rule out dynamically typed languages. Lastly,
the surface language’s type system tells us about the semantics of the program,
however we need information about the data representation to efficiently analyze,
optimize, and generate machine code from GRIN programs. The two concepts
might seem familiar at first, but the type-based control flow analysis yields a lot
less precise result than the heap-points-to analysis (slightly modified 0-CFA) [27].

In object oriented languages, type-based control flow analysis is sometimes used
to make the general pointer analysis more precise. In certain cases, type information
can help to filter out impossible cases calculated by the pointer analysis (e.g.: when
using interfaces). For functional languages, this approach only works for strict
data structures. For example, if we have a strict list, we know that it has been
constructed with either Nil or Cons. However, if the list is lazy, it still might
be a thunk referring to any function that returns a list. This means, that in the
defunctionalized GRIN program, the list can not only have a CNil or a CCons tag,
but also any F tag belonging to a function that returns a list. Consequently, the

1This concrete type always exists, since all inputs to the program have concrete types (which
are propagated through the program), and we know the entire program at compile time.



A Modern Look at GRIN 857

set of possible tags for a given lazy type would have to include all those F tags as
well. This would hinder the type-based analysis considerably inaccurate.

5 Dead Code Elimination

Dead code elimination is one of the most well-known compiler optimization tech-
niques. The aim of dead code elimination is to remove certain parts of the program
that neither affect its final result nor its side effects. This includes code that can
never be executed, and also code which only consists of irrelevant operations on
dead variables. Dead code elimination can reduce the size of the input program, as
well as increase its execution speed. Furthermore, it can facilitate other optimizing
transformation by restructuring the code.

5.1 Dead Code Elmination in GRIN

The original GRIN framework has three different type of dead code eliminating
transformations. These are dead function elimination, dead variable elimination
and dead function paramater elimination. In general, the effectiveness of most
optimizations solely depends on the accuracy of the information it has about the
program. The more precise information it has, the more agressive it can be. Fur-
thermore, running the same transformation but with additional information avail-
able, can often yield more efficient code.

In the original framework, the dead code eliminating transformations were pro-
vided only a very rough approximation of the liveness of variables and function
parameters. In fact, a variable was deemed dead only if it was never used in the
program. As a consequence, the required analyses were really fast, but the trans-
formations themselves were very limited.

5.2 Interprocedural Liveness Analysis

In order to improve the effectiveness of dead code elimination, we need more so-
phisticated data-flow analyses. Liveness analysis is a standard data-flow analysis
that determines which variables are live in the program and which ones are not.
It is important to note, that even if a variable is used in the program, it does not
necessarily mean it is live. See Program code 5.1.

In the first example, we can see a program where the variable n is used, it is put
into a CInt node, but despite this, it is obvious to see that n is still dead. Moreover,
the liveness analysis can determine this fact just by examining the function body
locally. It does not need to analyze any function calls. However, in the second
example, we can see a very similar situation, but here n is an argument to a function
call. To calculate the liveness of n, the analysis either has to assume that the
arguments of foo are always live, or it has to analyze the body of the function.
The former decision yields a faster, but less precise intraprocedural analysis, the
latter results in a bit more costly, but also more accurate interprocedural analysis.



858 P. Podlovics, Cs. Hruska, and A. Pénzes12 P. Podlovics Cs. Hruska A. Pénzes

1 main =

2 n <- pure 5

3 y <- pure (CInt n)

4 pure 0

(a) Put into a data constructor

1 main =

2 n <- pure 5

3 foo n

4 foo x = pure 0

(b) Argument to a function call

Program code 5.1: Examples demonstrating that a used variable can still be dead

By extending the analysis with interprocedural elements, we can obtain quite
a good estimate of the live variables in the program, while minimizing the cost of
the algorithm. Using the information gathered by the liveness analysis, the original
optimizations can remove even more dead code segments.

6 Dead Data Elimination

Conventional dead code eliminating optimizations usually only remove statements
or expressions from programs; however, dead data elimination can transform the
underlying data structures themselves. Essentially, it can specialize a certain data
structure for a given use-site by removing or transforming unnecessary parts of it.
It is a powerful optimization technique that — given the right circumstances —
can significantly decrease memory usage and reduce the number of executed heap
operations.

Within the framework of GRIN, it was Remi Turk, who presented the initial
version of dead data elimination in his master’s thesis [33]. His original implemen-
tation used intraprocedural analyses and an untyped representation of GRIN. We
extended the algorithm with interprocedural analyses, and improved the “dummi-
fication” process (see Sections 6.4 and 6.5). In the following we present a high level
overview of the original dead data elimination algorithm, as well as detail some of
our modifications.

6.1 Dead Data Elimination in GRIN

In the context of GRIN, dead data elimination removes dead fields of data con-
structors (or nodes) for both definition- and use-sites. In the following, we will
refer to definition-sites as producers and to use-sites as consumers. Producers and
consumers are in a many-to-many relationship with each other. A producer can
define a variable used by many consumers, and a consumer can use a variable possi-
bly defined by many producers. It only depends on the control flow of the program.
Program code 6.1 illustrates dead data elimination on a very simple example with
a single producer and a single consumer.

(a) Put into a data constructor

12 P. Podlovics Cs. Hruska A. Pénzes

1 main =

2 n <- pure 5

3 y <- pure (CInt n)

4 pure 0

(a) Put into a data constructor

1 main =

2 n <- pure 5

3 foo n

4 foo x = pure 0

(b) Argument to a function call

Program code 5.1: Examples demonstrating that a used variable can still be dead

By extending the analysis with interprocedural elements, we can obtain quite
a good estimate of the live variables in the program, while minimizing the cost of
the algorithm. Using the information gathered by the liveness analysis, the original
optimizations can remove even more dead code segments.

6 Dead Data Elimination

Conventional dead code eliminating optimizations usually only remove statements
or expressions from programs; however, dead data elimination can transform the
underlying data structures themselves. Essentially, it can specialize a certain data
structure for a given use-site by removing or transforming unnecessary parts of it.
It is a powerful optimization technique that — given the right circumstances —
can significantly decrease memory usage and reduce the number of executed heap
operations.

Within the framework of GRIN, it was Remi Turk, who presented the initial
version of dead data elimination in his master’s thesis [33]. His original implemen-
tation used intraprocedural analyses and an untyped representation of GRIN. We
extended the algorithm with interprocedural analyses, and improved the “dummi-
fication” process (see Sections 6.4 and 6.5). In the following we present a high level
overview of the original dead data elimination algorithm, as well as detail some of
our modifications.

6.1 Dead Data Elimination in GRIN

In the context of GRIN, dead data elimination removes dead fields of data con-
structors (or nodes) for both definition- and use-sites. In the following, we will
refer to definition-sites as producers and to use-sites as consumers. Producers and
consumers are in a many-to-many relationship with each other. A producer can
define a variable used by many consumers, and a consumer can use a variable possi-
bly defined by many producers. It only depends on the control flow of the program.
Program code 6.1 illustrates dead data elimination on a very simple example with
a single producer and a single consumer.

(b) Argument to a function call

Program code 5.1: Examples demonstrating that a used variable can still be dead

By extending the analysis with interprocedural elements, we can obtain quite
a good estimate of the live variables in the program, while minimizing the cost of
the algorithm. Using the information gathered by the liveness analysis, the original
optimizations can remove even more dead code segments.

6 Dead Data Elimination

Conventional dead code eliminating optimizations usually only remove statements
or expressions from programs; however, dead data elimination can transform the
underlying data structures themselves. Essentially, it can specialize a certain data
structure for a given use-site by removing or transforming unnecessary parts of it.
It is a powerful optimization technique that — given the right circumstances —
can significantly decrease memory usage and reduce the number of executed heap
operations.

Within the framework of GRIN, it was Remi Turk, who presented the initial
version of dead data elimination in his master’s thesis [31]. His original implemen-
tation used intraprocedural analyses and an untyped representation of GRIN. We
extended the algorithm with interprocedural analyses, and improved the “dummi-
fication” process (see Sections 6.4 and 6.5). In the following we present a high level
overview of the original dead data elimination algorithm, as well as detail some of
our modifications.

6.1 Dead Data Elimination in GRIN

In the context of GRIN, dead data elimination removes dead fields of data con-
structors (or nodes) for both definition- and use-sites. In the following, we will
refer to definition-sites as producers and to use-sites as consumers. Producers and
consumers are in a many-to-many relationship with each other. A producer can
define a variable used by many consumers, and a consumer can use a variable possi-
bly defined by many producers. It only depends on the control flow of the program.
Program code 6.1 illustrates dead data elimination on a very simple example with
a single producer and a single consumer.

As we can see, the first component of the pair is never used, so the optimiza-
tion can safely eliminate the first field of the node. It is important to note, that



A Modern Look at GRIN 859A modern look at GRIN 13

1 main =

2 x <- pure (CPair 0 1)

3 y <- snd x

4 pure y

5

6 snd p =

7 (CPair a b) <- pure p

8 pure b

(a) Before the transformation

a is dead
=====⇒

1 main =

2 x <- pure (CPair' 1)

3 y <- snd x

4 pure y

5

6 snd p =

7 (CPair' b) <- pure p

8 pure b

(b) After the transformation

Program code 6.1: A simple example for dead data elimination

As we can see, the first component of the pair is never used, so the optimiza-
tion can safely eliminate the first field of the node. It is important to note, that
the transformation has to remove the dead field for both the producer and the
consumer. Furthermore, the name of the node also has to be changed to preserve
type correctness, since the transformation is specific to each producer-consumer
group. This means, the data constructor CPair still exists, and it can be used by
other parts of the program, but a new, specialized version is introduced for any
optimizable producer-consumer group1.

Dead data elimination requires a considerable amount of data-flow analyses and
possibly multiple transformation passes. First of all, it has to identify potentially
removable dead fields of a node. This information can be acquired by running
liveness analysis on the program (see Section 5.2). After that, it has to connect
producers with consumers by running the created-by data-flow analysis. Then it
has to group producers together sharing at least one common consumer, and de-
termine whether a given field for a given producer can be removed globally, or
just dummified locally. Finally, it has to transform both the producers and the
consumers.

6.2 Created-by Analysis

The created-by analysis, as its name suggests is responsible for determining the
set of producers a given variable-was possibly created by. For our purposes, it is
sufficient to track only node valued variables, since these are the only potential
candidates for dead data elimination. Analysis example 6.1 demonstrates how the
algorithm works on a simple program.

The result of the analysis is a mapping from variable names to set of producers
grouped by their tags. For example, we could say that ”variable y was created by the
producer a given it was constructed with the CTrue tag”. Naturally, a variable can

1Strictly speaking, a new version is only introduced for each different set of live fields used by
producer-consumer groups.

(a) Before the transformation

a is dead
======⇒

A modern look at GRIN 13

1 main =

2 x <- pure (CPair 0 1)

3 y <- snd x

4 pure y

5

6 snd p =

7 (CPair a b) <- pure p

8 pure b

(a) Before the transformation

a is dead
=====⇒

1 main =

2 x <- pure (CPair' 1)

3 y <- snd x

4 pure y

5

6 snd p =

7 (CPair' b) <- pure p

8 pure b

(b) After the transformation

Program code 6.1: A simple example for dead data elimination

As we can see, the first component of the pair is never used, so the optimiza-
tion can safely eliminate the first field of the node. It is important to note, that
the transformation has to remove the dead field for both the producer and the
consumer. Furthermore, the name of the node also has to be changed to preserve
type correctness, since the transformation is specific to each producer-consumer
group. This means, the data constructor CPair still exists, and it can be used by
other parts of the program, but a new, specialized version is introduced for any
optimizable producer-consumer group1.

Dead data elimination requires a considerable amount of data-flow analyses and
possibly multiple transformation passes. First of all, it has to identify potentially
removable dead fields of a node. This information can be acquired by running
liveness analysis on the program (see Section 5.2). After that, it has to connect
producers with consumers by running the created-by data-flow analysis. Then it
has to group producers together sharing at least one common consumer, and de-
termine whether a given field for a given producer can be removed globally, or
just dummified locally. Finally, it has to transform both the producers and the
consumers.

6.2 Created-by Analysis

The created-by analysis, as its name suggests is responsible for determining the
set of producers a given variable-was possibly created by. For our purposes, it is
sufficient to track only node valued variables, since these are the only potential
candidates for dead data elimination. Analysis example 6.1 demonstrates how the
algorithm works on a simple program.

The result of the analysis is a mapping from variable names to set of producers
grouped by their tags. For example, we could say that ”variable y was created by the
producer a given it was constructed with the CTrue tag”. Naturally, a variable can

1Strictly speaking, a new version is only introduced for each different set of live fields used by
producer-consumer groups.

(b) After the transformation

Program code 6.1: A simple example for dead data elimination

the transformation has to remove the dead field for both the producer and the
consumer. Furthermore, the name of the node also has to be changed to preserve
type correctness, since the transformation is specific to each producer-consumer
group. This means, the data constructor CPair still exists, and it can be used by
other parts of the program, but a new, specialized version is introduced for any
optimizable producer-consumer group1.

Dead data elimination requires a considerable amount of data-flow analyses and
possibly multiple transformation passes. First of all, it has to identify potentially
removable dead fields of a node. This information can be acquired by running
liveness analysis on the program (see Section 5.2). After that, it has to connect
producers with consumers by running the created-by data-flow analysis. Then it
has to group producers together sharing at least one common consumer, and de-
termine whether a given field for a given producer can be removed globally, or
just dummified locally. Finally, it has to transform both the producers and the
consumers.

6.2 Created-by Analysis

The created-by analysis, as its name suggests is responsible for determining the
set of producers a given variable-was possibly created by. For our purposes, it is
sufficient to track only node valued variables, since these are the only potential
candidates for dead data elimination. Analysis example 6.1 demonstrates how the
algorithm works on a simple program.

The result of the analysis is a mapping from variable names to set of producers
grouped by their tags. For example, we could say that ”variable y was created by the
producer a given it was constructed with the CTrue tag”. Naturally, a variable can
be constructed with many different tags, and each tag can have multiple producers.
Also, it is important to note that some variables are their own producers. This is

1Strictly speaking, a new version is only introduced for each different set of live fields used by
producer-consumer groups.



860 P. Podlovics, Cs. Hruska, and A. Pénzes14 P. Podlovics Cs. Hruska A. Pénzes

1 null xs =

2 y <- case xs of

3 (CNil) ->

4 a <- pure (CTrue)

5 pure a

6 (CCons z zs) ->

7 b <- pure (CFalse)

8 pure b

9 pure y

(a) Input program

Var Producers

xs {CNil[. . . ], CCons[. . . ]}1
a {CTrue[a]}
b {CFalse[b]}
y {CTrue[a], CFalse[b]}

(b) Anyalsis result

Analysis example 6.1: An example demonstrating the created-by analysis

be constructed with many different tags, and each tag can have multiple producers.
Also, it is important to note that some variables are their own producers. This is
because producers are basically definitions-sites or bindings, identified by the name
of the variable on their left-hand sides. However, not all bindings have variables on
their left-hand side, and some values may not be bound to variables. Fortunately,
this problem can be easily solved by a simple program transformation.

6.3 Grouping Producers

On a higher abstraction level, the result of the created-by analysis can be interpreted
as a bipartite directed graph between producers and consumers. One group of nodes
represents the producers and the other one represents the consumers. A producer
is connected to a consumer if and only if the value created by the producer can be
consumed by the consumer. Furthermore, each component of the graph corresponds
to one producer-consumer group. Each producer inside the group can only create
values consumed by the consumers inside the same group, and a similar statement
holds for the consumers as well.

6.4 Transforming Producers and Consumers

As mentioned earlier, the transformation applied by dead data elimination can
be specific for each producer-consumer group, and both the producers and the
consumers have to be transformed. Also, the transformation can not always simply
remove the dead field of a producer. Take a look at Figure 6.1.

As we can see, producers P1 and P2 share a common consumer C2. Let’s assume,
that the shared value is a CPair node with two fields, and neither C1, nor C2 uses
the first field of that node. This means, the first field of the CPair node is locally

1For the sake of simplicity, we will assume that xs was constructed with the CNil and CCons

tags. Also its producers are irrelevant in this example.

(a) Input program

Var Producers

xs {CNil[. . . ], CCons[. . . ]}1
a {CTrue[a]}
b {CFalse[b]}
y {CTrue[a], CFalse[b]}

(b) Anyalsis result

Analysis example 6.1: An example demonstrating the created-by analysis

because producers are basically definitions-sites or bindings, identified by the name
of the variable on their left-hand sides. However, not all bindings have variables on
their left-hand side, and some values may not be bound to variables. Fortunately,
this problem can be easily solved by a simple program transformation.

6.3 Grouping Producers

On a higher abstraction level, the result of the created-by analysis can be interpreted
as a bipartite directed graph between producers and consumers. One group of nodes
represents the producers and the other one represents the consumers. A producer
is connected to a consumer if and only if the value created by the producer can be
consumed by the consumer. Furthermore, each component of the graph corresponds
to one producer-consumer group. Each producer inside the group can only create
values consumed by the consumers inside the same group, and a similar statement
holds for the consumers as well.

6.4 Transforming Producers and Consumers

As mentioned earlier, the transformation applied by dead data elimination can
be specific for each producer-consumer group, and both the producers and the
consumers have to be transformed. Also, the transformation can not always simply
remove the dead field of a producer. Take a look at Figure 6.1.

As we can see, producers P1 and P2 share a common consumer C2. Let’s assume,
that the shared value is a CPair node with two fields, and neither C1, nor C2 uses
the first field of that node. This means, the first field of the CPair node is locally
dead for producer P1. Also, suppose that C3 does use the first field of that node,
meaning it is live for P2, hence it cannot be removed. In this situation, if the
transformation were to remove the locally dead field from P1, then it would lead

1For the sake of simplicity, we will assume that xs was constructed with the CNil and CCons

tags. Also its producers are irrelevant in this example.



A Modern Look at GRIN 861

P1 P2

C2C1 C3

Figure 6.1: Producer-consumer group

to a type mismatch at C2, since C2 would receive two CPair nodes with different
number of arguments, with possibly different types for their first fields. In order
to resolve this issue the transformation has to rename the tag at P1 to CPair’,
and create new patterns for CPair’ at C1 and C2 by duplicating and renaming the
existing ones for CPair. This way, we can avoid potential memory operations at
the cost of code duplication.

In fact, even the code duplication can be circumvented by introducing the no-
tion of basic blocks to the intermediate representation. Basic blocks allow us to
transfer control between different code segments meanwhile maintaining the same
local environment (local variables). This means, we can share code between the
different alternatives of a case expression. We still need to generate new alterna-
tives (new patterns), but their right-hand sides will be simple jump instructions to
the basic blocks of the original alternative’s right-hand side.

6.5 The undefined value

Another option would be to only dummify the locally dead fields. In other words,
instead of removing the field at the producer and restructuring the consumers, the
transformation could simply introduce a dummy value for that field. The dummy
value could be any placeholder with the same type as the locally dead field. For
instance, it could be any literal of that type. A more sophisticated solution would
be to introduce an undefined value. The undefined value is a placeholder as well,
but it carries much more information. By marking certain values undefined instead
of just introducing placeholder literals, we can facilitate other optimizations down
the pipeline. However, each undefined value has to be explicitly type annotated
for the heap points-to analysis to work correctly. Just like the other approach
mentioned earlier, this alternative also solves the problem of code duplication at
the cost of some modifications to the intermediate representation. Previously we
needed structural extensions facilitating code sharing (basic blocks), now we had
to introduce a new basic value (typed undefined).



862 P. Podlovics, Cs. Hruska, and A. Pénzes

7 Idris Front End

Currently, our compiler uses the Idris compiler as its front end. The infrastructure
can be divided into three components: the front end, that is responsible for generat-
ing GRIN IR from the Idris byte code; the optimizer, that applies GRIN-to-GRIN
transformations to the GRIN program, possibly improving its performance; and
the back end, that compiles the optimized GRIN code into an executable.

7.1 Front end

The front end uses the bytecode produced by the Idris compiler to generate the
GRIN intermediate representation. The Idris bytecode is generated without any
optimizations by the Idris compiler. The code generation from Idris to GRIN is
really simple, the difficult part of refining the original program is handled by the
optimizer.

7.2 Optimizer

The optimization pipeline consists of three stages, as can be seen in Figure 7.1.
In the first stage, the optimizer iteratively runs the so-called regular optimizations.
These are the program transformations described in Urban Boquist’s PhD the-
sis [5]. A given pipeline of these transformations are run until the code reaches a
fixed-point, and cannot be optimized any further. This set of transformation are
not formally proven to be confluent, so theoretically different pipelines can result
in different fixed-points1. Furthermore, some of these transformations can work
against each other, so a fixed-point may not always exist. In this case, the pipeline
can be caught in a loop, where the program returns to the same state over and over
again. Fortunately, these loops can be detected, and the transformation pipeline
can be terminated.

GRIN code gen. DDE

Regular opts.

Regular opts.

Binary generation

iteratively

iteratively

Figure 7.1: Idris compilation pipeline

1Although, experiments suggest that these transformations are confluent.



A Modern Look at GRIN 863

Following that, in the second stage, the optimizer runs the dead data elimina-
tion pass. This pass can be quite demanding on both the memory usage and the
execution time due to the several data-flow analyses it requires, and the unrefined
implementation. As a consequence, the dead data elimination pass is executed only
a single time during the entire optimization process. Since the dead data elimination
pass can enable other optimizations, the optimizer runs the regular optimizations
a second time right after the DDE pass. This also means, that the liveness analysis
could collect more precise information about certain variables, which implies that
another pass of DDE could optimize the GRIN program even further. However, in
order to run the DDE pass multiple times its implementation has to be improved
(see section 9).

7.3 Back end

After the optimization process, the optimized GRIN code is passed onto the back
end, which then generates an executable using the LLVM compiler framework.
The input of the back end consists of the optimized GRIN code, the primitive
operations of Idris and a minimal runtime (the latter two are both implemented in
C). Currently, the runtime is only responsible for allocating heap memory for the
program, and at this point it does not include a garbage collector.

The first task of the back end is to compile the GRIN code into LLVM IR
code which is then optimized further by the LLVM Modular Optimizer [34]. Cur-
rently, the back end uses the default LLVM optimization pipeline. After that, the
optimized LLVM code is compiled into an object file by the LLVM Static Com-
piler [33]. Finally, Clang links together the object file with the C-implemented
primitive operations and the runtime, and generates an executable binary.

8 Results

In this section, we present the initial results of our implementation of the GRIN
framework. The measurements presented here can only be considered preliminary,
given the compiler needs further work to be comparable to systems like the Glasgow
Haskell Compiler or the Idris compiler [7]. Nevertheless, these statistics are still
relevant, since they provide valuable information about the effectiveness of the
optimizer.

8.1 Measured programs

The measurements were taken using the Idris front end and LLVM back end of
the compiler. Each test program — besides “Length” — was adopted from the
book Type-driven development with Idris [8] by Edwin Brady. These are small
Idris programs demonstrating a certain aspect of the language.

“Length” is an Idris program, calculating the length of a list containing the
natural numbers from 1 to 100. This example was mainly constructed to test how



864 P. Podlovics, Cs. Hruska, and A. Pénzes

the dead data elimination pass can transform the inner structure of a list into a
simple natural number (see Section 6).

8.2 Measured metrics

Each test program went through the compilation pipeline described in Section 7,
and measurements were taken at certain points during the compilation. The pro-
grams were subject to three different types of measurements.

• Static, compile time measurements of the GRIN code.
• Dynamic, runtime measurements of the interpreted GRIN code.
• Dynamic, runtime measurements of the executed binaries.

The compile time measurements were taken during the GRIN optimization
passes, after each transformation. The measured metrics were the number of
stores, fetches and function definitions. These measurements ought to illus-
trate how the GRIN code becomes more and more efficient during the optimiza-
tion process. The corresponding diagrams for the static measurements are Dia-
grams 8.0b to 8.0b. On the horizontal axis, we can see the indices of the trans-
formations in the pipeline, and on the vertical axis, we can see the number of the
corresponding syntax tree nodes. Reading these diagram from left to right, we can
observe the continuous evolution of the GRIN program throughout the optimization
process.

The runtime measurements of the interpreted GRIN programs were taken at
three points during the compilation process. First, right after the GRIN code is
generated from the Idris byte code; second, after the regular optimization passes;
and finally, at the end of the entire optimization pipeline. As can be seen on
Figure 7.1, the regular optimizations are run a second time right after the dead data
elimination pass. This is because the DDE pass can enable further optimizations.
To clarify, the third runtime measurement of the interpreted GRIN program was
taken after the second set of regular optimizations. The measured metrics were the
number of executed function calls, case pattern matches, stores and fetches. The
goal of these measurements is to compare the GRIN programs at the beginning and
at the end of the optimization pipeline, as well as to evaluate the efficiency of the
dead data elimination pass. The corresponding diagrams for these measurement
are Diagrams 8.0a to 8.0a.

The runtime measurements of the binaries were taken at the exact same points
as the runtime measurements of the interpreted GRIN code. Their goal is simi-
lar as well, however they ought to compare the generated binaries instead of the
GRIN programs. The measured metrics were the size of the binary, the number of
executed user-space instructions, stores, loads, total heap memory usage (in bytes)
and execution speed (in milliseconds)1. The binaries were generated by the LLVM
back end described in Section 7.3 with varying optimization levels for the LLVM
Optimizer. The optimization levels are indicated in the corresponding tables: Ta-

1The execution speed was measured by averaging the result of 1000 measurements.



A Modern Look at GRIN 865

bles 8.1 to 8.4. Where the optimization level is not specified, the default, O0 level
was used. As for the LLVM Static Compiler and Clang, the most aggressive, O3
level was set for all the measurements.

There are also measurements for the binaries generated by the Idris compiler.
These were compiled using the highest (O3) optimization level and the C back end.
For these executables, the size is not included, because Idris compiles a full-fledged
runtime system into the binary. Since our Idris back end only has a mnimal runtime
yet, the sizes of the binaries are not comparable. However, all other metrics are,
because during these measurements, Idris’ garbage collector was never triggered.
This can be accomplished by configuring the initial size of the heap memory through
the runtime system of Idris. This allows us to compare Idris and GRIN binaries
despite the yet non-implemented garbage collector for GRIN.

8.3 Measurement setup

All the measurements were performed on a machine with Intel(R) Core(TM)

i7-4710HQ CPU @ 2.50GHz processor and Ubuntu 18.04 bionic operating sys-
tem with 4.15.0-46-generic kernel. The Idris compiler used by the front-end is
of version 1.3.1, and the LLVM used by the back end is of version 7.

The actual commands for the binary generation are detailed in Program code 8.1.
That script has two parameters: N and llvm-in. N is the optimization level for the
LLVM Optimizer, and llvm-in is the LLVM program generated from the optimized
GRIN code.

A modern look at GRIN 19

bles 8.1 to 8.4. Where the optimization level is not specified, the default, O0 level
was used. As for the LLVM Static Compiler and Clang, the most aggressive, O3
level was set for all the measurements.

There are also measurements for the binaries generated by the Idris compiler.
These were compiled using the highest (O3) optimization level and the C back end.
For these executables, the size is not included, because Idris compiles a full-fledged
runtime system into the binary. Since our Idris back end only has a mnimal runtime
yet, the sizes of the binaries are not comparable. However, all other metrics are,
because during these measurements, Idris’ garbage collector was never triggered.
This can be accomplished by configuring the initial size of the heap memory through
the runtime system of Idris. This allows us to compare Idris and GRIN binaries
despite the yet non-implemented garbage collector for GRIN.

8.3 Measurement setup

All the measurements were performed on a machine with Intel(R) Core(TM)

i7-4710HQ CPU @ 2.50GHz processor and Ubuntu 18.04 bionic operating sys-
tem with 4.15.0-46-generic kernel. The Idris compiler used by the front-end is
of version 1.3.1, and the LLVM used by the back end is of version 7.

The actual commands for the binary generation are detailed in Program code 8.1.
That script has two parameters: N and llvm-in. N is the optimization level for the
LLVM Optimizer, and llvm-in is the LLVM program generated from the optimized
GRIN code.

1 opt-7 -ON <llvm-in> -o <llvm-out>

2 llc-7 -O3 -relocation-model=pic -filetype=obj -o <object-file>

3 clang-7 -O3 prim_ops.c runtime.c <object-file> -s -o <executable>

Program code 8.1: Commands for binary generation

As for the runtime measurements of the binary, we used the perf tool, the
runtime of Idris and the minimal runtime of GRIN. The perf command can be
seen in Program code 8.2 which was used to count the number of executed user
space instructions, stores, loads and to measure the execution speeds. The runtimes
were used to determine the memory usage, and to make sure that Idris’ garbage
collector is never triggered.

1 perf stat -e cpu/mem-stores/u -e "r81d0:u" -e instructions:u

<executable>↪→

Program code 8.2: Command for runtime measurements of the binary

Program code 8.1: Commands for binary generation

As for the runtime measurements of the binary, we used the perf tool, the
runtime of Idris and the minimal runtime of GRIN. The perf command can be
seen in Program code 8.2 which was used to count the number of executed user
space instructions, stores, loads and to measure the execution speeds. The runtimes
were used to determine the memory usage, and to make sure that Idris’ garbage
collector is never triggered.

A modern look at GRIN 19

bles 8.1 to 8.4. Where the optimization level is not specified, the default, O0 level
was used. As for the LLVM Static Compiler and Clang, the most aggressive, O3
level was set for all the measurements.

There are also measurements for the binaries generated by the Idris compiler.
These were compiled using the highest (O3) optimization level and the C back end.
For these executables, the size is not included, because Idris compiles a full-fledged
runtime system into the binary. Since our Idris back end only has a mnimal runtime
yet, the sizes of the binaries are not comparable. However, all other metrics are,
because during these measurements, Idris’ garbage collector was never triggered.
This can be accomplished by configuring the initial size of the heap memory through
the runtime system of Idris. This allows us to compare Idris and GRIN binaries
despite the yet non-implemented garbage collector for GRIN.

8.3 Measurement setup

All the measurements were performed on a machine with Intel(R) Core(TM)

i7-4710HQ CPU @ 2.50GHz processor and Ubuntu 18.04 bionic operating sys-
tem with 4.15.0-46-generic kernel. The Idris compiler used by the front-end is
of version 1.3.1, and the LLVM used by the back end is of version 7.

The actual commands for the binary generation are detailed in Program code 8.1.
That script has two parameters: N and llvm-in. N is the optimization level for the
LLVM Optimizer, and llvm-in is the LLVM program generated from the optimized
GRIN code.

1 opt-7 -ON <llvm-in> -o <llvm-out>

2 llc-7 -O3 -relocation-model=pic -filetype=obj -o <object-file>

3 clang-7 -O3 prim_ops.c runtime.c <object-file> -s -o <executable>

Program code 8.1: Commands for binary generation

As for the runtime measurements of the binary, we used the perf tool, the
runtime of Idris and the minimal runtime of GRIN. The perf command can be
seen in Program code 8.2 which was used to count the number of executed user
space instructions, stores, loads and to measure the execution speeds. The runtimes
were used to determine the memory usage, and to make sure that Idris’ garbage
collector is never triggered.

1 perf stat -e cpu/mem-stores/u -e "r81d0:u" -e instructions:u

<executable>↪→

Program code 8.2: Command for runtime measurements of the binaryProgram code 8.2: Command for runtime measurements of the binary



866 P. Podlovics, Cs. Hruska, and A. Pénzes

8.4 Length

The first thing we can notice on the runtime statistics of the GRIN code, is that
the GRIN optimizer significantly reduced the number of heap operations, as well
as the number of function calls and case pattern matches. Moreover, the DDE pass
could further improve the program’s performance by removing additional heap
operations.

The compile time statistics demonstrate an interesting phenomena. The number
of stores and function definitions continuously keep decreasing, but at a certain
point, the number of fetches suddenly increase by a relatively huge margin. This
is due to the fact that the optimizer usually performs some preliminary transfor-
mations on the GRIN program before inlining function definitions. This explains
the sudden rise in the number of fetches during the early stages of the optimiza-
tion process. Following that spike, the number of heap operations and function
definitions gradually decrease until the program cannot be optimized any further.

Diagram 8.1: Length - GRIN statistics

(a) Runtime (b) Compile time

The runtime statistics for the executed binary are particularly interesting. First,
observing the O0 statistics, we can see that the regular optimizations substantially
reduced the number of executed instructions and memory operations, just as we
saw with the interpreted GRIN code. Also, it is interesting to see that the DDE
optimized binary did not perform any better than the regularly optimized one;
however, its size decreased by more than 20%.

We can also notice the huge memory usage difference between the Idris program
and the GRIN programs that were only optimized by LLVM but not by GRIN. This
because the rather simple code generation scheme of the Idris front end as discussed
in 7.1. However, after running the optimizations, the optimized GRIN programs
consume considerably less memory, and have better execution times as well.

It is worth noting that the Idris binary executed significantly more instructions,
and performed a lot more stores and loads than the unoptimized GRIN binary, yet



A Modern Look at GRIN 867

it had a better execution time. The excessive number of memeory operations can be
explained by Idris’ calling convention. The function arguments are always psuhed
onto the stack by the caller, and popped by the callee. This results in a lot of stack
memory stores and loads which are reflected in the measurements. However, since
the stack memory operations are quite fast, they have no significant impact on the
execution times.

As for the high number of executed instructions, we can only hypothesize that
it’s caused by the Idris runtime system. Idris uses the runtime system to allocate
memory through multiple function calls. In GRIN, the memory operations are kind
of ”inlined” into the generated LLVM code. This might mean that the binaries
generated by the Idris compiler could execute a lot more instructions for every
memory operation.

Table 8.1: Length - CPU binary statistics

Stage Size Instructions Stores Loads Memory Time

idris - 2822725 366880 1064977 9440 0.838

normal-O0 23928 769588 212567 233305 674080 1.993

normal-O3 23928 550065 160252 170202 674080 1.056

regular-opt 19832 257397 14848 45499 8200 0.463

dde-O0 15736 256062 14243 45083 5776 0.525

dde-O3 15736 284970 33929 54555 5776 0.461

Also, it should be pointed out that the aggressively optimized DDE binary
performed much worse than the O0 version. This is because the default optimization
pipeline of LLVM is designed for the C and C++ languages. As a consequence, in
certain scenarios it may perform poorly for other languages. In the future, we plan
to construct a better LLVM optimization pipeline for GRIN.

8.5 Exact length

For the GRIN statistics of “Exact length”, we can draw very similar conclusions as
for “Length“. However, closely observing the statistics, we can see, that the DDE
pass completely eliminated all heap operations from the program. In principle, this
means, that all the variables can be put into registers during the execution of the
program. In practice, some variables will be spilled onto stack, but the heap will
never be used.

The binary statistics show that the optimized GRIN programs really do not use
any heap memory. As for the other measured metrics, we do not see any major
improvements.



868 P. Podlovics, Cs. Hruska, and A. Pénzes

Diagram 8.1: Exact length - GRIN statistics

(a) Runtime (b) Compile time

Table 8.2: Exact length - CPU binary statistics

Stage Size Instructions Stores Loads Memory Time

idris - 260393 23320 68334 1888 0.516

normal-O0 18800 188469 14852 46566 4112 0.464

normal-O3 14704 187380 14621 46233 4112 0.455

regular-opt 10608 183560 13462 45214 112 0.451

dde-O0 10608 183413 13431 45189 0 0.453

dde-O3 10608 183322 13430 44226 0 0.448

8.6 Type level functions

The GRIN statistics for this program may not be particularly interesting, but they
demonstrate that the GRIN optimizations work for programs with many type level
computations as well.

The binary statistics look promising for “Type level functions”. Almost all
measured performance metrics are strictly decreasing, which suggests that even
the default LLVM optimization pipeline can work for GRIN. Also, the optimized
GRIN programs use almost half as much memory as the Idris program.



A Modern Look at GRIN 869

Diagram 8.1: Type level functions - GRIN statistics

(a) Runtime (b) Compile time

Table 8.3: Type level functions - CPU binary statistics

Stage Size Instructions Stores Loads Memory Time

idris - 525596 70841 158363 29816 0.637

normal-O0 65128 383012 49191 86754 44212 0.581

normal-O3 69224 377165 47556 84156 44212 0.536

regular-opt 36456 312122 34340 71162 15412 0.516

dde-O0 32360 312075 34331 70530 15236 0.532

dde-O3 28264 309822 33943 70386 15236 0.513

8.7 Reverse

Unlike, the previous programs, “Reverse” could not have been optimized by the
dead data elimination pass. The pass had no effect on it. Fortunately, the regular
optimizations alone could considerably improve both the runtime and compile time
metrics of the GRIN code.

The binary statistics are rather promising. The binary size decreased by a
substantial margin and the number of executed memory operations has also been
reduced by quite a lot. Furthermore, the optimized GRIN programs use less than
one third of the memory that the Idris program uses.



870 P. Podlovics, Cs. Hruska, and A. Pénzes

Diagram 8.1: Reverse - GRIN statistics

(a) Runtime (b) Compile time

Table 8.4: Reverse - CPU binary statistics

Stage Size Instructions Stores Loads Memory Speed

idris - 350215 37893 101040 7656 0.576

normal-O0 27112 240983 25018 58253 18640 0.498

normal-O3 31208 236570 23808 56617 18640 0.481

regular-opt-O0 14824 222085 19757 53125 2384 0.467

regular-opt-O3 14824 220837 19599 52827 2384 0.454

8.8 General conclusions

In general, the measurements demonstrate that the GRIN optimizer can consid-
erably improve the performance metrics of a given GRIN program. The regular
optimizations themselves can usually produce highly efficient programs, however,
in certain cases the dead data elimination pass can facilitate additional optimiza-
tions, and can further improve the performance.

The results of the binary measurements indicate that the GRIN optimizer per-
forms optimizations orthogonal to the LLVM optimizations. This supports the
motivation behind the framework, which is to transform functional programs into
a more manageable format for LLVM by eliminating the functional artifacts. This
is backed up by the fact, that none of the fully optimized normal programs could
perform as well as the regularly or DDE optimized ones. Also, it is interesting to
see, that there is not much difference between the O0 and O3 default LLVM opti-
mization pipelines for GRIN. This motivates further research to find an optimal
pipeline for GRIN.

Finally, it is rather surprising to see, that the dead data elimination pass did not
really impact the performance metrics of the executed binaries, but it significantly



A Modern Look at GRIN 871

reduced their size. Firstly, it might be unorthodox to expect speedup from dead
code elimination; however, dead data elimination does not only remove unused
code, but it transforms the underlying data representations that the program uses.
For instance, it could reduce the size of nodes such that they fit into fewer registers,
which could help the register allocator, and thus improve the performance of the
program. Also, it could remove the elements of a list, leaving only its spine, thus
reducing the initial number of heap operations required to allocate the list. Finally,
it could help the garbage collector by not allocating unused heap objects as well as
reducing the size of the memory map it has to traverse.

Not seeing any performance gains can be explained by the fact, that most of
these programs are quite simple, and do not contain any compound data structures.
Dead data elimination can shine when a data structure is used in a specific way, so
that it can be locally restructured for each use site. However, when applying it to
simple programs, we can obtain sub par results.

Nevertheless, the binary size reduction is still notable, and demonstrates that
even for simple programs, dead data elimination can still have a significant impact.

9 Future Work

Currently, the framework only supports the compilation of Idris, but we are working
on supporting Haskell by integrating the Glasgow Haskell Compiler as a new front
end. As of right now, the framework can generate GRIN IR code from GHC’s STG
representation, but the generated programs still contain unimplemented primitive
operations. The main challenge is to somehow handle these primitive operations.
In fact, there is only a small set of primitive operations that cannot be trivially
incorporated into the framework, but these might even require extending the GRIN
IR with additional built-in instructions.

Besides the addition of built-in instructions, the GRIN intermediate represen-
tation can be improved further by introducing the notion of function pointers and
basic blocks. Firstly, the original specification of GRIN does not support modular
compilation. However, extending the IR with function pointers can help to achieve
incremental compilation. Each module could be compiled separately with indirect
calls to other modules through function pointers, then by using different data-flow
analyses and program transformations, all modules could be optimized together
incrementally. In theory, if the entire program is available for analysis at compile
time, incremental compilation could produce the same result as whole program
compilation. In practice, the LLVM compiler already uses link-time optimizations
which implement a very similar idea.

Secondly, the original GRIN IR has a monadic structure which can make it
difficult to analyze and transform the control flow of the program. In certain
cases it would be beneficial to explicitly transfer control from one program point
to another. There two main use cases for this: code sharing (see section 6.4) and
explicit tail recursion. Fortunately, replacing the monadic structure of GRIN with
basic blocks can resolve both of these issues.



872 P. Podlovics, Cs. Hruska, and A. Pénzes

Whole program analysis is a powerful tool for optimizing compilers, but it can
be quite demanding on execution time. This being said, there are certain techniques
to speed up these analyses. The core of the GRIN optimizer is the heap points-to
analysis, an Andersen-style inclusion based pointer analysis [1]. This type of data-
flow analysis is very well researched, and there are several ways to improve the
algorithm’s performance. Firstly, cyclic references could be detected and eliminated
between data-flow nodes at runtime. This optimization allows the algorithm to
analyze millions of lines of code within seconds [14]. Secondly, the algorithm itself
could be parallelized for both CPU and GPU [20], achieving considerable speedups.
Furthermore, some alternative algorithms could also be considered. For example,
Steengaard’s unification based algorithm [28] is a less precise analysis, but it runs
in almost linear time. It could be used as a preliminary analysis for some simple
transformations at the beginning of the pipeline. Finally, Shapiro’s algorithm [26]
could act as a compromise between Steengaard’s and Andersen’s algorithm. In
a way, Shapiro’s analysis lies somewhere between the other two analyses. It is
slower than Steengaard’s, but also much more precise; and it is less precise than
Andersen’s, but also much faster.

Another way to improve on the execution time of the analyses is to drastically
improve their implementations. Currently, the analyses are implemented manually
as abstract interpretations, and are not optimized further in any way. However,
they could reimplemented in well-established, industrial-strength program analysis
frameworks. One option would be the Soufflé Datalog compiler [16]. It uses Datalog
to define logic-based program analyses, then compiles them to highly-parallelized
C++ code. Soufflé facilitates implementing highly scalable data-flow analyses for
whole program compilation.

10 Conclusions

In this paper we presented a modern look at GRIN, an optimizing functional lan-
guage back end originally published by Urban Bouquist.

We gave an overview of the GRIN framework, and introduced the reader to
the related research on compilers utilizing GRIN and whole program optimization.
Then we gave an extension for the heap points-to analysis with more accurate basic
value tracking. This allowed for defining a type inference algorithm for the GRIN
intermediate representation, which then was used in the implementation of the
LLVM back end. Following that, we detailed the dead data elimination pass and the
required data-flow analyses, originally published by Remi Turk. We also presented
an extension of the dummification transformation which is compatible with the
typed representation of GRIN by extending the IR with the undefined value.
Furthermore, we gave an alternative method for transforming producer-consumer
groups by using basic blocks. Our last contribution was the implementation of the
Idris front end.

We evaluated our implementation of GRIN using simple Idris programs taken
from the book Type-driven development with Idris [8] by Edwin Brady. We mea-



A Modern Look at GRIN 873

sured the optimized GRIN programs, as well as the generated binaries. It is impor-
tant to note, that the measurements presented in this paper can only be considered
preliminary, given the compiler needs further work to be comparable to other sys-
tems. Nevertheless, these statistics are still relevant, since they provide valuable
information about the effectiveness of the optimizer. The results demonstrate that
the GRIN optimizer can significantly improve the performance of GRIN programs.
Furthermore, they indicate that the GRIN optimizer performs optimizations or-
thogonal to the LLVM optimizations, which supports the motivation behind the
framework. As for dead data elimination, we found that it can facilitate other trans-
formations during the optimization pipeline, and that it can considerably reduce
the size of the generated binaries.

All things considered, the current implementation of GRIN brought adequate
results. However, there are still many promising ideas left to research.

References

[1] Andersen, Lars Ole. Program analysis and specialization for the C program-
ming language. PhD thesis, University of Cophenhagen, 1994.

[2] Augustsson, Lennart. Haskell B. User Manual, 1992. Programming Method-
ology Group Report, Dept. of Comp. Sci, Chalmers Univ. of Technology,
Göteborg, Sweden.

[3] Barendregt, Henk P. Lambda calculi with types. In Handbook of logic in com-
puter science, Volume 2, pages 117–309. Oxford: Clarendon Press, 1992.

[4] Berardi, Stefano. Towards a mathematical analysis of the Coquand-Huet cal-
culus of constructions and the other systems in Barendregt’s cube. Technical
report, Carnegie-Mellon University (USA) and Universita di Torino (Ita1y),
1988.

[5] Boquist, Urban. Code Optimisation Techniques for Lazy Functional Lan-
guages. PhD thesis, Chalmers University of Technology and Göteborg Uni-
versity, 1999.

[6] Boquist, Urban and Johnsson, Thomas. The GRIN project: A highly op-
timising back end for lazy functional languages. In Selected Papers from
the 8th International Workshop on Implementation of Functional Languages,
IFL ’96, pages 58–84, Berlin, Heidelberg, 1997. Springer-Verlag. URL: http:
//dl.acm.org/citation.cfm?id=647975.743083.

[7] Brady, Edwin. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Programming,
23(5):552–593, 2013. DOI: 10.1017/S095679681300018X.

[8] Brady, Edwin. Type-driven development with Idris. Manning Publications
Company, 2017.

http://dl.acm.org/citation.cfm?id=647975.743083
http://dl.acm.org/citation.cfm?id=647975.743083
https://doi.org/10.1017/S095679681300018X


874 P. Podlovics, Cs. Hruska, and A. Pénzes

[9] David Himmelstrup. LLVM Haskell Compiler. URL: http://lhc-compiler.
blogspot.com/.

[10] Dijkstra, Atze, Fokker, Jeroen, and Swierstra, S. Doaitse. The architecture
of the Utrecht Haskell Compiler. In Proceedings of the 2Nd ACM SIGPLAN
Symposium on Haskell, Haskell ’09, pages 93–104, New York, NY, USA, 2009.
ACM. DOI: 10.1145/1596638.1596650.

[11] Douma, Christof. Exceptional GRIN. Master’s thesis, Utrecht University,
Institute of Information and Computing, 2006.

[12] Fluet, Matthew and Weeks, Stephen. Contification Using Dominators. SIG-
PLAN Not., 36(10):2–13, 2001. DOI: 10.1145/507669.507639.

[13] Hall, Cordelia V., Hammond, Kevin, Partain, Will, Peyton Jones, Simon L.,
and Wadler, Philip. The Glasgow Haskell Compiler: A Retrospective. In Pro-
ceedings of the 1992 Glasgow Workshop on Functional Programming, pages
62–71, London, UK, 1993. Springer-Verlag. URL: http://dl.acm.org/

citation.cfm?id=647557.729914.

[14] Hardekopf, Ben and Lin, Calvin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. ACM SIGPLAN Notices,
42(6):290–299, 2007. DOI: 10.1145/1273442.1250767.

[15] John Meacham. Jhc. URL: http://repetae.net/computer/jhc/jhc.shtml.

[16] Jordan, Herbert, Scholz, Bernhard, and Subotić, Pavle. Soufflé: On synthe-
sis of program analyzers. In Chaudhuri, Swarat and Farzan, Azadeh, editors,
Computer Aided Verification, pages 422–430, Cham, 2016. Springer Interna-
tional Publishing.

[17] Lattner, Chris and Adve, Vikram. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In CGO, pages 75–88, San
Jose, CA, USA, 2004.

[18] Leibig, Brian Andrew. An LLVM Back-end for MLton. Technical report, De-
partment of Computer Science, B. Thomas Golisano College of Computing and
Information Sciences, 2013. URL: https://www.cs.rit.edu/~mtf/student-
resources/20124_leibig_msproject.pdf.

[19] Liu, Hai, Glew, Neal, Petersen, Leaf, and Anderson, Todd A. The Intel Labs
Haskell Research Compiler. SIGPLAN Not., 48(12):105–116, 2013. DOI:
10.1145/2578854.2503779.

[20] Mendez-Lojo, Mario and Burtscher, Martin and Pingali, Keshav. A GPU
implementation of inclusion-based points-to analysis. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’12), pages 107–116. ACM, 2012. DOI: 10.1145/2145816.

2145831.

http://lhc-compiler.blogspot.com/
http://lhc-compiler.blogspot.com/
https://doi.org/10.1145/1596638.1596650
https://doi.org/10.1145/507669.507639
http://dl.acm.org/citation.cfm?id=647557.729914
http://dl.acm.org/citation.cfm?id=647557.729914
https://doi.org/10.1145/1273442.1250767
http://repetae.net/computer/jhc/jhc.shtml
https://www.cs.rit.edu/~mtf/student-resources/20124_leibig_msproject.pdf
https://www.cs.rit.edu/~mtf/student-resources/20124_leibig_msproject.pdf
https://doi.org/10.1145/2578854.2503779
https://doi.org/10.1145/2145816.2145831
https://doi.org/10.1145/2145816.2145831


A Modern Look at GRIN 875

[21] Okabe, Kiwamu and Muranushi, Takayuki. Systems Demonstration: Writing
NetBSD Sound Drivers in Haskell. SIGPLAN Not., 49(12):77–78, 2014. DOI:
10.1145/2775050.2633370.

[22] Petersen, Leaf, Anderson, Todd A., Liu, Hai, and Glew, Neal. Measuring the
Haskell Gap. In Proceedings of the 25th Symposium on Implementation and
Application of Functional Languages, IFL ’13, pages 61:61–61:72, New York,
NY, USA, 2014. ACM. DOI: 10.1145/2620678.2620685.

[23] Petersen, Leaf, Orchard, Dominic, and Glew, Neal. Automatic SIMD Vec-
torization for Haskell. SIGPLAN Not., 48(9):25–36, September 2013. DOI:
10.1145/2544174.2500605.

[24] Peyton Jones, Simon. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987. URL: https://www.microsoft.com/en-

us/research/publication/the-implementation-of-functional-

programming-languages/.

[25] Plasmeijer, Rinus and Eekelen, Marko Van. Functional Programming and Par-
allel Graph Rewriting. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1993.

[26] Shapiro, Marc and Horwitz, Susan. Fast and accurate flow-insensitive points-
to analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 1–14. ACM, 1997. DOI: 10.

1145/263699.263703.

[27] Shea, Ryan. Alternate control-flow analyses for defunctionalization in the
MLton Compiler, 2016.

[28] Steensgaard, Bjarne. Points-to analysis in almost linear time. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 32–41. ACM, 1996. DOI: 10.1145/237721.237727.

[29] Sulzmann, Martin, Chakravarty, Manuel MT, Jones, Simon Peyton, and Don-
nelly, Kevin. System F with type equality coercions. In Proceedings of the 2007
ACM SIGPLAN international workshop on Types in languages design and im-
plementation, pages 53–66. ACM, 2007. DOI: 10.1145/1190315.1190324.

[30] Terlouw, Jan. Een nadere bewijstheoretische analyse van GSTT’s, 1989.
Manuscript (in Dutch).

[31] Turk, Remi. A modern back-end for a dependently typed language. Master’s
thesis, Universiteit van Amsterdam, 2010.

[32] Weeks, Stephen. Whole-program Compilation in MLton. In Proceedings of the
2006 Workshop on ML, ML ’06, pages 1–1, New York, NY, USA, 2006. ACM.
DOI: 10.1145/1159876.1159877.

https://doi.org/10.1145/2775050.2633370
https://doi.org/10.1145/2620678.2620685
https://doi.org/10.1145/2544174.2500605
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://doi.org/10.1145/263699.263703
https://doi.org/10.1145/263699.263703
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1159876.1159877


876 P. Podlovics, Cs. Hruska, and A. Pénzes

[33] LLVM Static Compiler. URL: https://llvm.org/docs/CommandGuide/llc.
html.

[34] Modular LLVM Analyzer and Optimizer. http://llvm.org/docs/

CommandGuide/opt.html.

https://llvm.org/docs/CommandGuide/llc.html
https://llvm.org/docs/CommandGuide/llc.html
http://llvm.org/docs/CommandGuide/opt.html
http://llvm.org/docs/CommandGuide/opt.html

	Introduction
	Graph Reduction Intermediate Notation
	General overview
	A small example

	Related Work
	The Glasgow Haskell Compiler
	Clean compiler
	GRIN
	Boquist
	UHC
	JHC
	LHC

	Other Intermediate Representations
	MLton
	Intel Research Compiler


	Compiling to LLVM
	Benefits and Challenges
	Heap points-to Analysis
	Type Information from the Surface Language

	Dead Code Elimination
	Dead Code Elmination in GRIN
	Interprocedural Liveness Analysis

	Dead Data Elimination
	Dead Data Elimination in GRIN
	Created-by Analysis
	Grouping Producers
	Transforming Producers and Consumers
	The undefined value

	Idris Front End
	Front end
	Optimizer
	Back end

	Results
	Measured programs
	Measured metrics
	Measurement setup
	Length
	Exact length
	Type level functions
	Reverse
	General conclusions

	Future Work
	Conclusions

