
Acta Cybernetica 25 (2022) 909–921.

Improved Loop Execution Modeling
in the Clang Static Analyzer∗

Péter Szécsiab, Gábor Horváthac, and Zoltán Porkolábad

Abstract
The LLVM Clang Static Analyzer is a source code analysis tool which aims

to find bugs in C, C++, and Objective-C programs using symbolic execution,
i.e. it simulates the possible execution paths of the code. Currently the
simulation of the loops is somewhat naive (but efficient), unrolling the loops
a predefined constant number of times. However, this approach can result in
a loss of coverage in various cases.

This study aims to introduce two alternative approaches which can extend
the current method and can be applied simultaneously: (1) determining loops
worth to fully unroll with applied heuristics, and (2) using a widening mecha-
nism to simulate an arbitrary number of iteration steps. These methods were
evaluated on numerous open source projects, and proved to increase coverage
in most of the cases. This work also laid the infrastructure for future loop
modeling improvements.

Keywords: static analysis, symbolic execution, loop modeling

1 Introduction
During software development it is natural to make mistakes. Consequently, writing
various test cases is required in order to validate the behavior of the program. In
addition to the costs of test writing, it is possible that the developers fail to cover all
possible critical cases. Furthermore, test writing and running often happens later
than code development, but the costs of error correction increases proportionally
to elapsed time [2]. This proves that testing alone is not necessarily sufficient to
ensure code quality.

The static analysis tools offer a different approach for code validation [6, 1].
Moreover, they can potentially check for some characteristics of the code – which

∗This study was supported by the ÚNKP-17-2 New National Excellence Program of the Hun-
garian Ministry of Human Capacities and by the EFOP-3.6.2-16-2017-00013

aDepartment of Programming Languages and Compilers, Eötvös Loránd University, Budapest,
Hungary

bE-mail: ps95@caesar.elte.hu, ORCID: 0000-0001-9156-1337
cE-mail: xazax@caesar.elte.hu, ORCID: 0000-0002-0834-0996
dE-mail: gsd@caesar.elte.hu, ORCID: 0000-0001-6819-0224

DOI: 10.14232/actacyb.283176

mailto:ps95@caesar.elte.hu
https://orcid.org/0000-0001-9156-1337
mailto:xazax@caesar.elte.hu
https://orcid.org/0000-0002-0834-0996
mailto:gsd@caesar.elte.hu
https://orcid.org/0000-0001-6819-0224
https://doi.org/10.14232/actacyb.283176

910 Péter Szécsi, Gábor Horváth, and Zoltán Porkoláb

cannot be verified by testing – e.g. the adherence to conventions. Unfortunately, it
is impossible to detect every bug using static analysis [8] without a large number
of spurious warnings. Static analyzer tools might not be able to discover some
bugs (these are called false negatives) or report correct code snippets as incorrect
(false positives). As the developer’s time is one of the most valuable resource in
the industry and reports of the automated tools are evaluated manually, industrial
tools aim to keep the ratio of the false positive reports low while still be able to
find real bugs.

The purpose of the Clang Static Analyzer is to find bugs by performing a sym-
bolic execution [4, 3] on the code. During symbolic execution, the program is being
interpreted, on a function-by-function basis, without any knowledge about the run-
time environment. It builds up and traverses an inner model of the execution paths,
called ExplodedGraph, for each analyzed function.

The Static Analyzer – as it is indicated by its name – build around the Clang
compiler [5]. An important technical note is that the building of the ExplodedGraph
is based on the Control Flow Graph (CFG) of the functions. The CFG represents a
source-level, intra-procedural control flow of a statement. This statement can po-
tentially be an entire function body, or just a single expression. The CFG consists of
CFGBlocks which are simply containers of statements. The CFGBlockss essentially
represent the basic blocks of the code but can contain some extra custom informa-
tion. Although basic blocks and CFGBlocks are technically different, in the rest of
the article the term basic blocks will be used for CFGBlocks as well for the sake of
easier understanding and better illustration.

Thus during the analysis – based on the function CFGs – an ExplodedGraph
is built up. A node of this graph (called ExplodedNode) contains a ProgramPoint
(which determines the location) and a State (which contains any known informa-
tion at that point). Its paths from the root to the leaves are modeling the differ-
ent execution paths of the analyzed function. Whenever the execution encounters
a branch, a corresponding branch will be created in the ExplodedGraph during
the simulated interpretation. Hence, branches lead to an exponential number of
ExplodedNodes. This combinatorial explosion is handled in the Static Analyzer by
stopping the analysis when given conditions are fulfilled. Terminating the analysis
process may cause loss of potential true positive results, but it is indispensable for
maintaining a reasonable resource consumption regarding the memory and CPU
usage.

These conditions are modeled by the concept of budget. The budget is a col-
lection of constraints on the shape of the ExplodedGraph including:

1. The maximum number of traversed nodes in the ExplodedGraph. If this
number is reached then the analysis of the simulated function stops.

2. The size of the simulated call stack. When a function call is reached then
the analysis continues in its body as if it was inlined to the place of call
(interprocedural). There are several heuristics that may control the behavior
of inlining process. For example the too large functions are not inlined at all,
and the really short functions are not counted in the size of call stack.

Improved Loop Execution Modeling in the Clang Static Analyzer 911

3. The number of times a function is inlined. The idea behind this constraint
is that the more a function is analyzed, the less likely it is that a bug will
appear in it. If this number is reached then that function will not be inlined
again in this ExplodedGraph.

4. The number of times a basic block is processed during the analysis. This
constraint limits the number of loop iterations. When this threshold is reached
the currently analyzed execution path is aborted. The budget expression can
be used in two ways. Sometimes it means the collection of the limitations
above, sometimes it refers to one of these limitations. This will always be
distinguishable from the context.

2 Motivation

Currently, the analyzer handles loops quite simply. It unrolls them 4 times by
default and then cuts the analysis of the path where the loop would have been
unrolled more than 4 times. This behavior is enforced by the above presented basic
block visiting budget.

One of the problems with this approach to loop modeling is the loss of coverage.
Specifically, in cases where the loop is statically known to make more than 4 steps,
the analyzer do not analyze the code following the loop. Thus, the naive loop
handling (described above) could lead to entirely unchecked code. Listing 1 shows
a small example exercising this behavior.

1 void foo () {
2 i n t a r r [6] ;
3 f o r (i n t i = 0 ; i < 6 ; i++) {
4 ar r [i] = i ;
5 }
6 /∗ r e s t o f the func t i on ∗/
7 }

Listing 1: Since the loop condition is known at every iteration, the analyzer will
not check the ’rest of the function’ part in the current state.

According to the budget rule concerning the basic block visit count, the analysis
of the loop stops in the fourth iteration even if the loop condition is simple enough
to see that unrolling the whole loop would not be too much extra work relatively.
Running out of the budget implies (in this case) that the rest of the function
body remains unanalyzed, which may lead to not finding potential bugs. Another
problem can be seen on Listing 2:

912 Péter Szécsi, Gábor Horváth, and Zoltán Porkoláb

1 i n t num() ;
2 void foo () {
3 i n t n = 0 ;
4 f o r (i n t i = 0 ; i < num() ; ++i) {
5 ++n ;
6 }
7 /∗ r e s t o f the funct ion , n < 4 ∗/
8 }

Listing 2: The loop condition is unknown but the analyzer will not generate a
simulation path where n ≥ 4 (which can result coverage loss).

This code fragment results in an analysis which keeps track of the values of n
and i variables (this information is stored in the State). In every iteration of the
loop the values are updated accordingly. Note that updating the State means that
a new node is inserted into the ExplodedGraph with the new values. Since the body
of the num() function is unknown, the analyzer can not find out its return value.
Thus it is considered as unknown. This circumstance makes the graph to split into
two branches. The first one belongs to the symbolic execution of the loop body
assuming that the loop condition is true. The other one simulates the case where
the condition is false and the execution continues after the loop. This process is
done for every loop iteration, however, at the 4th time, assuming the condition is
true, the path will be cut according to the budget rule. Even though the analyzer
generates paths to simulate the code after the loop in the above described case, the
value of variable n will always be less than 4 on these paths and the rest of the
function will only be checked with this assumption. This can result in coverage loss
as well, since the analyzer will ignore the paths where n is more than 4.

3 Proposed Solution

In this section two solutions are presented to resolve the above mentioned limita-
tions on symbolic execution of loops in the Clang Static Analyzer. It is important
to note that these enhancements are incremental in the sense that the analyzer falls
back to the original method on examples which are too complex to handle at the
moment. For the sake of simplicity we will use a "division by zero" bug to illustrate
the analyzer’s behavior in the following examples.

3.1 Loop Unrolling Heuristics

We have identified heuristics and patterns (such as loops with small number of
branches and small known static bound) in order to find specific loops which are
worth to be completely unrolled. This idea is inspired by the following example:

1 void foo () {
2 f o r (i n t i = 0 ; i < 6 ; i++) {
3 /∗ s imple loop which does not

Improved Loop Execution Modeling in the Clang Static Analyzer 913

4 change ’ i ’ or s p l i t the s t a t e ∗/
5 }
6 i n t k = 0 ;
7 i n t l = 2/k ; // D iv i s i on by zero
8 }

Listing 3: Complete unrolling of the loop makes it possible to find the division by
zero error.

Currently, a loop has to fulfill the following conditions in order to be unrolled:

1. The loop condition should arithmetically compare a variable – which is known
at the beginning of the loop – to a literal (like: i < 6 or 6 ≥ i)

2. The loop should modify the loop variable only once per iteration in its body
and the difference needs to be constant. (This way the maximum number of
steps can be estimated.)

3. There is no alias created to the loop variable.

4. The estimated number of steps should be less than 128. (Simulating loops
which takes thousands of steps because they could single handedly exhaust
the budget.)

5. The loop must not generate new branches or use goto statements.

By using this method, the bug on the Listing 3 example is found successfully.

3.2 Loop Widening
The final aim of widening is quite the same as the unrolling, to increase the cov-
erage of the analysis. However, it achieves its goal in a very different way. During
widening the analyzer simulates the execution of an arbitrary number of iterations.
The analyzer already had a widening algorithm which reaches this behavior by
discarding all of the known information before the last step of the loop. So the
analyzer creates the paths for the first 3 steps and simulate them as usual, but in
order to avoid losing the first precise simulation branches, the widening (i.e. the
invalidating) happens before the 4th step. This way the coverage will be increased,
however, this method is disabled by default, since it can easily result in too much
false positives. Consider the example on Listing 4.

1 i n t num() ;
2 void foo () {
3 bool b = true ;
4 f o r (i n t i = 0 ; i < num() ; ++i) {
5 /∗ does not change ’b ’ ∗/
6 }
7 i n t n = 0 ;

914 Péter Szécsi, Gábor Horváth, and Zoltán Porkoláb

8 i f (b)
9 n++;

10 n = 1/n ; // Fa l se p o s i t i v e :
11 // Div i s i on by zero
12 }

Listing 4: Invalidating every known information (even those which are not modified
by the loop) can easily result in false positives.

In this case the analyzer will check that unfeasible path where the variable b
is false, so n is not incremented and lead into a division by zero error. Since this
execution path would never be performed while running the analyzed program,
it is considered a false positive. Our aim was to give a more precise approach
for widening. There was already conversation within the community about some
possible enhancements [7].

One of the main principles is that the analysis should still continue after the
block visiting budget is exhausted and the information of only those variables should
be invalidated which are possibly modified by the loop, e.g. a statement, like arr[i]
= i where i is the loop variable, means that we discard the data on the whole arr
array but nothing else. For this reason we developed a solution which checks every
possible way in which a variable can be modified in the loop. Then these cases are
evaluated and if it encounters a modified variable which cannot be handled by the
invalidation process (e.g.: a pointer variable), then the loop will not be widened
and we return to the conservative method. This mechanism ensures that we do
not create nodes that contain invalid states. This approach helps us to cover cases
and find bugs like the one illustrated on Listing 5 without reporting false positives
presented on Listing 4.

1 i n t num() ;
2 void foo () {
3 i n t n = 0 ;
4 f o r (i n t i = 0 ; i < num() ; ++i) {
5 ++n ;
6 }
7 i f (n > 4) {
8 i n t k = 0 ;
9 k = 1/k ; // D iv i s i on by zero e r r o r

10 }
11 }

Listing 5: Invalidating the information on only the possible changed variables can
result higher coverage (while limiting the number of the found false positives).

The bug is found by invalidating the known information on variable n (and i
as well). This makes the analyzer to create a branch where it checks the body of
the if statement and finds the bug. However, this solution has its own limitations
when dealing with nested loops. Consider the case on Listing 6.

Improved Loop Execution Modeling in the Clang Static Analyzer 915

1 i n t num() ;
2 void foo () {
3 i n t n = 0 ;
4 f o r (i n t i = 0 ; i < num() ; ++i) {
5 ++n ;
6 f o r (i n t j = 0 ; j < 4 ; ++j) {
7 /∗body that does not change n∗/
8 }
9 }

10 /∗ r e s t o f the funct ion , n <= 1 ∗/
11 }

Listing 6: The naive widening method does not handle well the nested loops. In
this example the outer loop will not be widened.

In this scenario, when the analyzer first step into the outer loop (so it assumes
that i < num() is true) and encounter the inner loop, it consumes its (own) block
visiting budget. (This implies that it will be widened, although in this case it means
that only the inner loop counter (j) information is discarded.) After moving on to
the next iteration, we may assume that we are on the path where the outer loop
condition is true again. Due to the fact that the budget was already exhausted
in the previous iteration, the next visit of the first basic block of the inner loop
(the condition) means that this path will be completely cut off and not analyzed.
This results in the outer loop not reaching the step number where it would been
widened. Furthermore, the outer loop will not even reach the 3rd step, even the
2nd is stopped at in its body (as described above). This causes the problem that
even though the loop widening method is used, the rest of the function will be
analyzed by the assumption n <= 1.

In order to deal with the above described nested loop problem, we have imple-
mented a replay mechanism. This means that whenever we encounter an inner loop
which already consumed its budget, we replay the analysis process of the current
step of the outer loop after performing a widening first. This ensures the creation
of a path which assumes that the condition is false and simulates the execution
after the loop while the possibly changed information are discarded. This way the
analyzer will not exclude some feasible path because of the simple loop handling
which solves the problem.

An additional note to the widening process is that it makes sense to analyze the
branch where the condition is true with the widened State as well. The example
on Listing 7 shows a case where this is useful.

1 i n t num() ;
2 void foo () {
3 i n t n = 0 ;
4 i n t i ;
5 f o r (i = 0 ; i < num() ; ++i) {
6 i f (i == 7) {
7 break ;

916 Péter Szécsi, Gábor Horváth, and Zoltán Porkoláb

8 }
9 f o r (i n t j = 0 ; j < 4 ; ++j) {/∗ ∗/}

10 }
11 i n t n = 1 / (7 − i) ;
12 // ^ Pos s i b l e d i v i s i o n by zero
13 }

Listing 7: The replay mechanism successfully helps us to find the possible error the
outer loop.

This way the analyzer will produce a path where the value of i is known to be
7, so it will be able find the possible division by zero error.

4 Evaluation

The effect of the described loop modeling approaches was measured on various
popular C/C++ open source projects. These are the following:

Project LoC Language
TinyXML 20k C++

Curl 21k C
Redis 40k C
Xerces 228k C++
Vim 540k C

OpenSSL 550k C
PostgreSQL 950k C
FFmpeg 1080k C

4.1 Coverage and the number of explored paths

Keeping track of these statisics are already part of the analyzer. The coverage
percentage is based on the ratio of the visited and the total number of basic blocks in
the analyzed functions (instead of the number of visited statements), which results
in a small imprecision. It is important to note that the introduced loop modeling
methods require having additional loop entrance and exit point information in the
CFG. This can lead to having more basic blocks in the CFG and it can affect the
statistics. As a result, even statistics produced by using the current loop modeling
approach were measured with this information added to the CFG.

The coverage and the number of explored paths are generated for every trans-
lation unit and then summarized. This means that header files which are included
in more than one translation unit can influence more statistics. However, by using
this summarization process consistently for every measurement the results reflect
the reality.

Improved Loop Execution Modeling in the Clang Static Analyzer 917

The tables presented in this section summarize measurement results using dif-
ferent loop modeling approaches: the current practice (denoted by Normal) and
the hereby introduced loop unrolling (Unroll) and loop widening (Widen) methods
separately and simultaneously (U+W).

Table 1 shows the coverage difference using the introduced approaches. On most
of the projects, analysis coverage was strictly increased by using any of the proposed
approaches. The widening method had a stronger influence on the coverage in the
average case. However, the complete unroll of specific loops could result in a higher
coverage as well (e.g. Curl, Redis). In general, enabling both of them was the most
beneficial with respect to the coverage.

Table 2 presents the numbers of analyzed execution paths. As expected, both
introduced loop modeling methods resulted in a higher number of simulated paths
on (almost) all of the projects. The only exception is the unrolling approach on
the FFmpeg project, which caused the budget limiting the number of traversed

Table 1: The code coverage of the analysis on the evaluated projects expressed in
percentage

Project Normal Unroll Widen U + W
TinyXML 84.2 84.2 85.1 85.1

Curl 76.2 76.9 77.7 77.2
Redis 68.5 69.1 68.5 71.3
Xerces 92.3 92.4 92.7 92.7
Vim 60.4 60.6 60.6 60.7

OpenSSL 97.4 97.5 97.7 97.7
PostgreSQL 76.9 77.0 76.9 76.9
FFmpeg 86.1 86.3 87.0 86.8

Table 2: The numbers of explored execution paths using different loop modeling
approaches

Project Normal Unrolling Widening U + W
TinyXML 14 452 15 460 14 765 15 773

Curl 18 272 18 577 28 835 24 279
Redis 69 857 70 097 98 446 100 929
Xerces 395 615 398 077 430 989 433 358
Vim 155 451 157 266 188 136 173 121

OpenSSL 687 175 687 932 700 464 701 013
PostgreSQL 382 660 383 874 453 188 419 118
FFmpeg 466 613 458 480 571 399 521 725

918 Péter Szécsi, Gábor Horváth, and Zoltán Porkoláb

ExplodedNodes to exhaust earlier, slightly decreasing the number of checked paths.
Enabling both of the features resulted in similar or fewer number of explored paths
than the runs using only widening. This effect can be explained in two ways: (1) the
analyzer prefers to completely unroll loops rather than widen them, which results
in a more precise modeling of the state and can exclude unfeasible paths, (2) the
simultaneous use of the methods can lead to exhausting the budget on earlier paths,
where the analysis will be terminated.

4.2 Found bugs

The number of bug reports using the different loop modeling methods can be seen
in Table 3. The increase in analysis coverage and in the number of checked paths
usually implies an increased number of found bugs, which indeed can be observed
on the numbers. However, it is important to note that the upsurge of the number of
explored execution paths described in Table 2 considerably outweighs the moderate
rise in the number of bug reports. In some cases enabling a proposed feature could
result in less results due to two important factors: (1) the more information we
collect by precisely analyzing the execution paths does not result in false conclusion,
(2) the global budget is exceeded for exploring new paths and some of the earlier
checked will be skipped. Unfortunately, case (2) is a possible scenario, however, the
increased coverage using the described features shows that this way we still explore
more interesting cases. Since the loop widening method creates more new paths
by discarding information on the values of variables, it could introduce the risk of
analyzing paths that lead to false positives. However, from the results it seems
that this was not a problem in practice: relative to the increase in the number
of analyzed paths, the number of reports hardly increased. Moreover, based on
studying the environment of the found bugs, the ratio of false positive findings was
low (beside some clear true positive) among the newly detected bugs.

Table 3: The number of bug reports produced by the analyzer.

Project Normal Unrolling Widening U + W
TinyXML 1 1 3 3 (+200%)

Curl 16 16 16 16 (0%)
Redis 55 58 55 59 (+7.27%)
Xerces 62 62 61 61 (-1.61%)
Vim 74 74 76 78 (+5.4%)

OpenSSL 152 152 153 153 (+0.66%)
PostgreSQL 323 323 327 331 (+2.48%)
FFmpeg 425 420 423 454 (+6.82%)

Improved Loop Execution Modeling in the Clang Static Analyzer 919

4.3 Analysis time

The running time on different projects is showed in Table 4. Although the widening
method lead into more analyzed execution paths, the analysis time increase was
more intense after enabling the unrolling process. This is possible due to the fact
that unrolling leads to long paths where the State usually contains more informa-
tion (constraints on variable values), which is very expensive in respect of running
time. In general there was a manageable increase in the analysis time at all exam-
ined projects which suggests a good scalability of the proposed improvements.

Table 4: Average measured time of the analysis expressed in minutes. (Average of
5 runs.)

Project Normal Unrolling Widening U + W
TinyXML 0:51 0:51 0:52 0:52 (+2%)

Curl 0:50 1:06 0:55 1:05 (+30%)
Redis 2:06 2:11 2:28 2:10 (+3%)
Xerces 3:38 3:34 3:37 3:39 (+0.5%)
Vim 3:11 3:26 3:18 3:27 (+3%)

OpenSSL 2:04 2:22 2:13 2:19 (+8.3%)
PostgreSQL 7:03 8:32 7:48 7:59 (+13%)
FFmpeg 9:40 10:22 10:14 11:20 (+17%)

5 Future work

The heuristic patterns for completely unrolled loops could be extended to involve
loops whose bound is a known variable which is not changed in the body. Further-
more, even more general rules would be beneficial: consider loops where the value
variables are known at the beginning and they are affected by a known constant
change by every iteration. These improvements have not been implemented yet
due to some technical and framework limitations.

During the widening process we invalidate any possibly changed information.
However, a change made on a pointer could mean that we need to invalidate all
variables due to the lack of advanced pointer analysis. Therefore, introducing
pointer analysis algorithms to the analyzer could help to develop a more precise
invalidation process.

The infrastructural improvements enable the analyzer to provide entry points for
bug finding modules (checkers) on loop entrances/exits and identify the currently
simulated loop for every ExplodedNode. On top of these entry points new checkers
can be implemented.

920 Péter Szécsi, Gábor Horváth, and Zoltán Porkoláb

6 Conclusion

Two alternative approaches was introduced for improving the simulation of loops
during symbolic execution. These were implemented and subsequently evaluated on
various open source projects, with a clear improvement of code coverage in general.
The new methods make it possible to explore previously skipped, feasible execution
paths, especially when both of them are used in conjunction.

The required changes done to the underlying infrastructure should also ease the
implementation of future enhancements. In particular, information tracked by the
analysis about location contexts were expanded with additional fields. While code
coverage was measured to have increased by an average of 0.8% and the number of
explored execution paths by an average of 16%, there was a noticeable performance
penalty as well. A general increase in the execution time was observed, with an
average of 9.5%. The number of simulated paths also increased proportionally with
the time taken, suggesting this time was well spent. In conclusion, if the user does
not mind taking ∼10% more time for a more comprehensive analysis, then it is
beneficial to enable the proposed feature set by default.

7 Acknowledgment

We would like to thank to the members of the CodeChecker team at Ericsson for
their valuable and helpful suggestions on the paper.

References

[1] Bessey, Al, Block, Ken, Chelf, Ben, Chou, Andy, Fulton, Bryan, Hallem, Seth,
Henri-Gros, Charles, Kamsky, Asya, McPeak, Scott, and Engler, Dawson. A
few billion lines of code later: Using static analysis to find bugs in the real
world. Commun. ACM, 53(2):66–75, February 2010. DOI: 10.1145/1646353.
1646374.

[2] Boehm, Barry and Basili, Victor R. Software defect reduction top 10 list.
Computer, 34(1):135–137, January 2001. DOI: 10.1109/2.962984.

[3] Hampapuram, Hari, Yang, Yue, and Das, Manuvir. Symbolic path simulation
in path-sensitive dataflow analysis. SIGSOFT Softw. Eng. Notes, 31(1):52–58,
September 2005. DOI: 10.1145/1108768.1108808.

[4] King, James C. A new approach to program testing. In Proceedings of the
international conference on Reliable software, 1975.

[5] Lattner, Chris. LLVM and Clang: Next generation compiler technology. URL:
https://llvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.html, 2008. Lec-
ture at BSD Conference.

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1109/2.962984
https://doi.org/10.1145/1108768.1108808
https://llvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.html

Improved Loop Execution Modeling in the Clang Static Analyzer 921

[6] Michael, Zhivich and Robert, K. Cunningham. The real cost of software errors.
IEEE Security & Privacy, 7(2):87–90, 2009. DOI: 10.1109/MSP.2009.56.

[7] Phabricator. Community conversion about loop widening. URL: https://
reviews.llvm.org/D12358, 2015.

[8] Rice, Henry G. Classes of recursively enumerable sets and their decision prob-
lems. Trans. Amer. Math. Soc., 74:358–366, 1953.

https://doi.org/10.1109/MSP.2009.56
https://reviews.llvm.org/D12358
https://reviews.llvm.org/D12358

	Introduction
	Motivation
	Proposed Solution
	Loop Unrolling Heuristics
	Loop Widening

	Evaluation
	Coverage and the number of explored paths
	Found bugs
	Analysis time

	Future work
	Conclusion
	Acknowledgment

