
Acta Cybernetica 25 (2022) 817–846.

Adaptation of a Refactoring DSL
for the Object-Oriented Paradigm∗

Dávid J. Némethab, Dániel Horpácsiacd, and Máté Tejfelae

Abstract

Many development environments offer refactorings to improve specific
properties of software, but we have no guarantees that these transforma-
tions indeed preserve the functionality of the source code they are applied on.
An existing domain-specific language, currently specialized for Erlang, makes
it possible to formalize automatically verifiable refactorings via instantiating
predefined transformation schemes with conditional term rewrite rules.

We present a proposal for adapting this language from the functional to
the object-oriented programming paradigm, using Java in place of Erlang as a
representative. The behavior-preserving property of discussed refactorings is
characterized with a multilayered definition of equivalence for Java programs,
including the conformity relation of class hierarchies. Based on the decompo-
sition of a complex refactoring rule, we show how new transformation schemes
can be identified, along with modifications and extensions of the description
language required to accommodate them. Finally, we formally define the
chosen base refactoring as a composition of scheme instances.

Keywords: verifiable refactoring, scheme-based refactoring, microrefactor-
ing, program equivalence

1 Introduction
Software development in practice is usually an iterative process. That is, the end
product is not the result of a single step, instead it is constructed by iteratively

∗The research has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications).

aELTE Eötvös Loránd University, Budapest, Hungary, and Faculty of Informatics, 3in Research
Group, Martonvásár, Hungary

bE-mail: ndj@inf.elte.hu, ORCID: 0000-0002-1503-812X
cE-mail: daniel-h@elte.hu, ORCID: 0000-0003-0261-0091
dProject no. ED18-1-2019-0030 (Application Domain Specific Highly Reliable IT Solutions

subprogramme) has been implemented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under the Thematic Excellence Pro-
gramme funding scheme.

eE-mail: matej@inf.elte.hu, ORCID: 0000-0001-8982-1398

DOI: 10.14232/actacyb.284280

mailto:ndj@inf.elte.hu
https://orcid.org/0000-0002-1503-812X
mailto:daniel-h@elte.hu
https://orcid.org/0000-0003-0261-0091
mailto:matej@inf.elte.hu
https://orcid.org/0000-0001-8982-1398
https://doi.org/10.14232/actacyb.284280


818 D. J. Németh, D. Horpácsi, and M. Tejfel

refining an initial prototype. The longest phase in the development lifecycle, main-
tenance [17], also requires the modification and extension of existing code. Changes
made between two iterations can be seen as source-level transformations.

If such a modification preserves the functional behavior of software, it is called a
refactoring. These behavior-preserving transformations are mainly used to improve
non-functional properties (e.g. maintainability) without altering the meaning of
the program [6]. Many development environments offer refactorings, but we have
no guarantees that these transformations indeed preserve the functionality of the
source code they are applied on. Moreover, in case of safety-critical systems, formal
verification of refactorings can also be deemed desirable.

An existing domain-specific language, explained in Section 3, makes it possi-
ble to formalize automatically verifiable refactorings via instantiating predefined
transformation schemes with conditional term rewrite rules [9, 8]. This language
was constructed for refactorings mainly on Erlang and the functional programming
paradigm. The goal of our research was to investigate whether this method could
be applied to other paradigms and languages. Since one of today’s most popu-
lar paradigm is OOP, we have chosen it as our target, and selected Java as its
representative due to its high-level nature and widespread support.

The main contributions of this paper are the following:

• A multilayered definition of equivalence for Java programs, used to charac-
terize the behavior-preserving property of discussed refactorings.

• A case study which shows how new transformation schemes can be identified
from a complex refactoring rule, along with modifications and extensions of
the description language required to accommodate them.

• Semantic functions and predicates related to abstractions of the target para-
digm, which we use to describe transformation preconditions.

The rest of the paper is structured as follows. As an introduction, Section 2
presents the foundations of our work and also summarizes results related to it. Sec-
tion 3 gives a brief overview of the adapted refactoring language. In Section 4 we
discuss general decision concerns of the adaptation process, including the choice of
target language; refinement of equivalence; and methods to synthesize new refac-
toring schemes. Section 5 presents a case study where we identify new schemes
based on the decomposition of a complex refactoring rule; modify and extend the
description language to accommodate the new schemes; formally define the chosen
base refactoring as a composition of scheme instances; and provide a step-by-step
example of their application to a concrete program. Finally, Section 6 lists further
research directions and Section 7 concludes.

2 Foundations and Related Work
In this section, we give an overview on our method’s foundations by citing publi-
cations that described them, and also present related work on approaches aimed



Adaptation of a Refactoring DSL for OOP 819

at specifying and/or verifying refactorings. Please note that the direct base of this
paper, the scheme-based methodology, is discussed separately in Section 3.

2.1 Foundations

Strategic term rewriting. In his dissertation [10], Kalleberg discusses language
agnostic methods for source code analysis and transformation using data and func-
tion abstraction techniques. From the latter he emphasizes strategic term rewriting,
which serves as a basis for program transformations defined with the combination of
traversal strategies and rewrite rules. He mentions System S [20] as an underlying
formal model, and also a possible implementation in the form of the Stratego [3]
language.

Microrefactorings. The concept of microrefactorings, grounded by Opdyke in
his fundamental work [13], is widely incorporated to discussions addressing verified
program transformations. The main idea of this method is to decompose complex
refactorings in order to obtain small, atomic transformations which are easier to
write, understand and verify. Then, the original refactoring can be reconstructed
using these microsteps as its building blocks, potentially resulting in a pre-verified
transformation. Note that in this case, the composite correctness is a consequence
of the microsteps being refactorings themselves.

Object-oriented refactorings. In his previously cited publication [13], Opdyke
also presents refactorings characteristic of object-oriented systems. Based on the
method of microsteps, he gives decompositions for three complex transformations,
discussing both breakdown strategy and target language metatheory in detail. He
also provides informal correctness proofs along with the described refactorings.

Characterization of program equivalence. Schäfer et al. enhance the concept
of microrefactorings in two novel aspects [15]. In order to eliminate the need for
complex and fragile preconditions, they chose to dynamically check whether the
application of a transformation results in an equivalent program. In the cited
paper equivalence is characterized with the preservation of data flow, control flow
and binding. Additionally, intermediate steps in a composite refactoring are allowed
to consume and produce code over an extension of the target language, potentially
increasing the expressiveness of transformations.

2.2 Related Work

Verbaere et al. present a scripting language for refactoring in [19]. It is a hybrid-
paradigm DSL with a functional part for defining transformations and sublanguages
based on logic and path queries to describe complex relations between program ele-
ments. Compared to our approach, transformations are expressed not declaratively
with syntactic patterns, but with imperative commands to modify code at the level



820 D. J. Németh, D. Horpácsi, and M. Tejfel

of its internal representation. In addition, neither scheme-like language elements,
nor verifiability is addressed in the work.

In [11], Leitão proposes a pattern language for refactoring Lisp programs. Like
ours, it is a high-level DSL utilizing code patterns with metavariables, therefore
transformations are specifiable in it without the knowledge of internal represen-
tations. The DSL itself is expressed within Lisp, resulting in an embedding that
makes its language elements more easily executable, but at the cost of them con-
taining more syntactic noise. Again, possible transformations are not outlined with
generalized strategies, and verifiability is not discussed.

Li and Thompson describe the refactoring DSL of Wrangler, a tool for the in-
teractive and extensible analysis and transformation of Erlang programs in [12].
Like us, they also distinguish primitive and composite refactorings, providing two
high-level sublanguages with templates (code patterns) and combinators. The pre-
defined strategies they offer for composite transformations make their descriptions
more concise, but they do not apply this methodology to primitive refactorings.
Moreover, as the proposed DSL follows the syntax of Erlang closely, definitions
contain much syntactic noise.

In [16], Schäfer and de Moor present a high-level yet precise specification lan-
guage for refactoring definitions. As already mentioned while discussing [15] in
the previous section, they still aim for dynamic correctness guarantees instead of
relying on overly complex preconditions. The language itself is built upon the ab-
stractions of the target language, but its definitions are still imperative and lack
syntactic patterns as well as general strategies.

Garrido and Meseguer present a mathematically rigorous framework for the
formal specification and implementation of Java refactorings in [7], which they
demonstrate by several verified refactorings. Although the proposed language con-
tains reusable constructs akin to transformation schemes, in general it is defined
on a lower level of abstraction than ours: refactorings are specified imperatively in
the realm of the underlying formal semantics.

That is, neither of the above-mentioned related works offer a standalone refac-
toring language that enables users to describe executable transformations declara-
tively by high-level code patterns, while aiding usability and potential verifiability
with general refactoring schemes for pragmatically composable microrefactorings.

3 Scheme-Based Refactoring

The basis of our work is an existing domain-specific language which makes it pos-
sible to define executable and verifiable refactorings using syntactic code patterns
over the to-be-refactored language [9]. This allows to specify transformations with-
out knowing any internal representations. The main idea of this existing method is
to provide pre-verified refactoring skeletons, called schemes, which can be instanti-
ated with conditional term rewrite rules, resulting in composable microrefactorings
that serve as building blocks for complex transformations. In the following we give
a brief overview of its description language and the verification technique it uses.



Adaptation of a Refactoring DSL for OOP 821

3.1 Description Language
The core of the description language is conditional term rewriting – a powerful
tool for specifying program transformations based on syntactic patterns. As an
illustration of this existing description language, we present a rewrite rule embedded
in it. Note how the example resembles Erlang, the original target language of the
method we aim to adapt to Java, and OOP in general.

1 [#Head | #Tail]
2 ------------------------
3 #X = #Head, [#X | #Tail]
4 when
5 fresh(#X)

In this example, the part before the when keyword defines the actual transforma-
tion in the form of a matching (above the line) and a replacement (below the line)
pattern. During pattern matching, corresponding code segments are assigned to
matching metavariables (indicated by a hashmark-prefix in the example). The sec-
ond part (after the when keyword) specifies the precondition of the transformation,
that is rewriting takes place only if the precondition holds.

The problem with term rewriting, however, is that it is a low-level approach
which makes definitions of complex refactorings complicated and error prone, es-
pecially in the case of extensive transformations with many compensational mod-
ifications (e.g. a refactoring renaming a function has to modify the original call
sites as well). To make refactoring definitions safer and even verifiable, the dis-
cussed method restricts the set of possible transformations by introducing high-
level, reusable refactoring schemes. The provided schemes already contain the
necessary control logic, and only have to be parameterized by term rewrite rules to
yield concrete microrefactorings.

1 function signature refactoring swapFirstTwoParameters()
2 #F(#A, #B, #Ps..)
3 -----------------
4 #F(#B, #A, #Ps..)

The example above, also taken from the original, to-be-adapted language, pre-
sents an instance of one of its schemes, namely function signature refactoring. The
resulting refactoring swaps the first two parameters of the selected function not
only in its definition but in its applications as well.

Microrefactorings defined as scheme instances can then be composed to obtain
more complex transformations. In the following example, we show how two refac-
torings can be applied sequentially.

1 composite refactoring f()
2 do
3 g()
4 function().h()



822 D. J. Németh, D. Horpácsi, and M. Tejfel

Note that in addition to (here not explicitly present) combinators controlling the
order of application, selectors are also provided to dynamically change the target
to be modified. For example, here h is executed on the enclosing function of the
original target.

3.2 Verification

In this section, we briefly specify the ideas behind, and requirements of, the to-be-
adapted method’s verification process, which we need to take into account during
the adaptation. For a more detailed description, please refer to the original publi-
cation [9].

By restricting the set of specifiable transformations, automatic verification be-
comes feasible. Naturally, the verified property in this case is behavior-preservation
with regards to an appropriately constructed definition of equivalence. The chosen
formal model is the operational semantics of the target language, which makes it
possible to mathematically reason about the execution of programs, e.g. by sym-
bolically computing the possible outputs and side effects of a given function.

The verification process is two-fold. At first, the provided refactoring schemes
are manually verified based on assertions concerning their rewrite rule parameters,
collectively called the contract of the scheme. Then, scheme instances are examined
whether the concrete rewrite rules used in them satisfy the contract of the instan-
tiated scheme. Given schemes are appropriately identified, conformity to contracts
becomes automatically verifiable.

Generally, in order to achieve this, contracts should demand no more than equiv-
alences of specific rewrite rule patterns. The reason behind is that in this case, the
formal method presented by Ciobaca et al. [4] can be applied to carry out the veri-
fication automatically with the correct tooling. The cited work reduces equivalence
to the correctness property of a uniquely constructed, aggregated program which
becomes verifiable with the formal proof system discussed by Stefanescu et al. [18].
The basis of this method is the operational semantics of the target language, which
is embedded into reachability logic [14]. The proposed proof system is sound, but
not necessarily complete, however, as neither the to-be-adapted refactoring lan-
guage, nor our adaptation aims for completeness, the soundness of the verification
backend can be considered adequate in both cases.

4 Adapting the Framework

Even though aiming for language independence, the refactoring framework briefly
introduced in Section 3 [8] was developed having Erlang as its target language.
The main motivation behind this paper is to recreate the existing framework for
a significantly different target language, ultimately achieving another step towards
making it more language-agnostic. In the following sections we discuss general
aspects of the adaptation process.



Adaptation of a Refactoring DSL for OOP 823

4.1 Choosing the Target Language

Erlang is a functional and dynamically typed programming language. While select-
ing the alternative target language, our main concern was to choose a candidate
belonging to another paradigm. In this way, we can possibly reason about how the
framework should be adapted not only to a different language, but also to a differ-
ent paradigm. Considering this, it becomes important that the selected language
must be as high-level as possible, that is, it should be an appropriate representative
of the chosen paradigm without much syntactic or semantic noise.

Due to its popularity, we chose the object-oriented paradigm. As for the repre-
sentative, we considered classroom-variants of Java, namely COOL [1] and Bantam
Java [5] but in the end we decided on Java. The reasoning behind this decision is
based on the fact that unlike alternatives listed above, tool support required for
executability and formal semantics needed for verification are only available for
Java. However, as the main goal of our work is not complete language support, we
had to restrict the target language substantially. Moreover, the formal semantics
we plan to use defines Java 1.4 [2], therefore we cannot support e.g. generics or
lambda functions.

More precisely, our currently supported target language is Java 1.4 – as de-
scribed by its formal syntax and semantics in [2] – but with the exclusion of the
following features:

• non-structured control statements, but with the exception of return

(e.g. no continue, break, etc.),

• exception handling (e.g. no throw, catch, etc.),

• modifiers apart from visibility keywords (e.g. no static, final, etc.),

• field initializer expressions (e.g. no class A { int x = 0; }, etc.),

• class initializer blocks (e.g. no class A { { /* ... */ } }, etc.),

• local class definitions (e.g. no class A { class B {} }, etc.),

• packages, but with the exception of the default one
(e.g. no package a.b;, etc.),

• reflection (e.g. no A.class, etc.),

• concurrency (e.g. no Thread.start(), etc.),

• JVM manipulation (e.g. no ClassLoader.loadClass("A"), etc.)

• and, naturally, language elements that were introduced in later versions of
Java, e.g. generics, lambda functions, annotations, etc.
(e.g. no List<T>, (c) -> c + 1, @Resource, etc.).

A number of these restrictions could be bypassed, for example by using anony-
mous classes instead of lambda functions. Some of them, however, like the loss
of generics, indeed limit the current usability of our framework, but we hope to
incrementally extend the list of supported language elements in the future.



824 D. J. Németh, D. Horpácsi, and M. Tejfel

4.2 Refining Program Equivalence
What transformations we consider refactorings is mainly determined by the under-
lying notion of semantic equivalence. Indeed, both intuitional and formal correct-
ness is based on its chosen definition, which is also an important parameter of the
verification backend discussed in Section 3.2. An oversimplified version of the clas-
sic characterization of program equivalence demands observed programs to produce
the same output for the same input. The problem with this notion, however, is
that it is not close enough to abstractions of the target language for a refactoring
programmer to being reasoned about on the level of source code. To overcome this
issue, we propose to replace the aforementioned definition of equivalence with one
of its – more easily specifiable – characterizations, e.g. the preservation of data
flow, control flow and binding, as suggested by Schäfer et al. [15].

In addition, individual refactorings are mainly designed not to modify a whole
program, but rather specific parts of it – we call the actual extent of a transfor-
mation its scope. We claim that as a result, it is more natural to think and reason
about the correctness of a refactoring concerning only its scope. To support this
assumption, instead of using a global definition of program equivalence, we intro-
duce several, generally stricter variants of it, specialized for the possible types of
transformation scopes. Ideally, it must be separately proven that each local equiv-
alence implies the chosen global one. In the discussed framework, transformation
scope, and therefore equivalence level, can be matched with refactoring schemes.

The following example shows – possibly in its simplest form – how ambiguous
it could be to reason about program equivalence in case of partial code fragments,
typically seen in rewrite rules.

int x = 0; int x = 1;

Deciding whether the specific code transformation of rewriting the first variable
declaration to the second one should be considered a refactoring is not straightfor-
ward. In fact, the answer depends on the wider context: if the modified statement
is located in an unused private method, the behavior of the enclosing program is
guaranteed to remain the same. However, a situation where the behavior truly
changes can easily be imagined. This ambiguity is why we reason about a scope-
dependent equivalence definition: we do not want the developer of the refactoring
to think about conditions which reach out of the current transformation scope.

Another interesting observation arises from the examination of the following
pair of class definitions:

class A {
public int f() { return 6; }

}

class A {
public int f() { return 3 * g(); }
public int g() { return 2; }

}



Adaptation of a Refactoring DSL for OOP 825

In this case, the first question is that how do we characterize the meaning of
a class definition? Based on intuition, our proposal is to reduce their equivalence
to the equivalence of their public interfaces. On the other hand, adding a new
method to a public API while preserving the semantics of its existing methods
surely does not alter the previously accessible functionality of the examined library.
Therefore, this example shows that the mathematical relation we are looking for is
not necessarily an equivalence (≡, i.e. a relation which is reflexive, transitive and
symmetric): exchanging the property of symmetry for antisymmetry, the resulting
partial ordering (4) can model the asymmetric nature of program transformations
better than an equivalence.

In conclusion, we summarize three types of equivalence levels:

• Local. In the lowest level of abstraction, i.e. in case of a refactoring de-
fined over expressions and statements, we cannot leverage any information
about the environment of the target. Therefore, here we expect syntactic
equivalence.

• Block. One abstraction level higher, in case of refactorings concerning code
blocks, we can assume that the overall behavior does not depend on block-
local variables as long as the blocks themselves are equivalent. We can extend
this level to methods if we consider their bodies blocks and their formal
parameters block-local variables.

• Class. As mentioned above, in case of refactorings modifying classes we
only want to ensure that the transformed class hierarchy provides at least
the public interface of the original library, but also in a semantically block-
equivalent way.

4.3 Synthesizing Schemes

When trying to tackle the task of constructing new refactoring schemes, we have to
take three main design goals into account: generality, usability and verifiability. The
first two of them are interconnected, as schemes possessing a high level of generality
tend to be more difficult to instantiate; and conversely, schemes usable with minimal
effort usually show a lack of generality. The additional requirement of verifiability
demands schemes to appropriately split the two-fold correctness-checking problem
between proving their parametric validity wrt. their contract, and checking whether
concrete rewrite rules in scheme instances satisfy these assumptions.

With the aim of invoking an intuitional understanding in the reader, we present
the main ideas behind two possible iterative techniques for scheme construction.

• Top-down. The top-down approach starts from a higher level of abstrac-
tion and tries to identify new schemes, or concretize (break down) existing
ones based on general categorization possibilities. Two recommended initial
categorization dimensions could be the elements of the target language and
aspects of program equivalence. For example, if our target language offers



826 D. J. Németh, D. Horpácsi, and M. Tejfel

only fields and methods, and we characterize program equivalence with data
flow and binding, the top-down method would yield 4 initial schemes: data
flow refactoring of fields, data flow refactoring of methods, binding refactoring
of fields, binding refactoring of methods.

• Bottom-up. The basis of the bottom-up direction is a number of complex,
desirably representative refactorings of the target language. Firstly, these
complex refactorings have to be decomposed in order to obtain microsteps
from them. Then, the resulting refactorings are generalized until they become
schemes. Finally, the results can be validated by reconstructing the original
base refactorings from scheme instances. Instead of providing a concrete
example here, we refer the reader to Section 5, where we discuss this approach
in detail.

Both methods have their advantages and disadvantages. The top-down tech-
nique yields general schemes by definition, but usually the results are too abstract
to be practically usable. On the contrary, schemes constructed with the bottom-up
method are inherently usable, but not necessarily general. We can overcome these
weaknesses by refining the obtained schemes iteratively. In the former case this
means the consideration of additional categorization possibilities, while in the lat-
ter more concrete refactorings can be added as a base of the generalization process.

5 Case Study

In this section, we present a case study where we identify new schemes based on
the bottom-up method. That is, we select and decompose a complex refactoring;
modify and extend the description language to accommodate the newly generalized
schemes; formally define the chosen base refactoring as a composition of scheme
instances; and finally illustrate the usage of the described transformations with
their step-by-step application to a concrete example.

Please note that we do not consider the chosen refactoring and the resulting
scheme instances as main contributions of this paper. They rather provide only a
base for the presented adaptation process of the language discussed in [9] and [8]
to OOP. Constructing a refined and widely usable scheme library for Java is still a
future work of ours – see Section 6 for details.

5.1 The Base Refactoring

As the result of the bottom-up scheme synthesis process highly depends on the
chosen base refactoring, it is crucial to select one which can be considered a suit-
able representative of program transformations defined over the target language.
Related work offer numerous candidates. For example, we could pick generalize
function from [8] or extract method from [15]. Although on these we could il-
lustrate the concept of decomposition, none of them depend heavily enough on



Adaptation of a Refactoring DSL for OOP 827

object-oriented abstractions. On the other hand, refactorings from Opdyke [13] are
too general and complicated for our purposes.

To overcome this problem, we specifically construct a refactoring capable of
demonstrating both decomposition and object-oriented concepts. For the former,
we reuse extract method from Schäfer, which we extend with lift method found in
Opdyke’s dissertation to address the latter. We call this construction lift segment
and informally specify its semantics as follows. This refactoring, when applied to
a consequent region of statements (code segment), lifts its target to the superclass
in a separate method. The arguments of the transformation are the visibility and
name of the method to be introduced. See Figure 1 for a concrete example.

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int x = 1;
6 a = x;
7 g();
8 int y;
9 a = y;
10 }
11 void g() { a = b = 0; }
12 }

1 class A {
2 int a, b;
3 void g() { a = b = 0; }
4 void h(int x) { a = x; g(); }
5 }
6 class B extends A {
7 void f() {
8 int y;
9 int x = 1;
10 h(x);
11 a = y;
12 }
13 }

Figure 1: Program code before and after lift segment. The refactoring was applied
to the segment marked in blue on the left, with the package visibility modifier
and h as function name. Parts of the code changed by the transformation are also
highlighted in blue on the right.

5.2 Decomposition of the Base Refactoring

To advance towards new schemes, we present the decomposition of the base refac-
toring step-by-step. We start by dividing the base refactoring itself, and then we
continue breaking down the resulting subtransformations recursively, until we get
refactorings which are sufficiently simple. For each decomposition step, we provide
both an informal reasoning and also a concise list of the derived subtasks. Please
note that these descriptions are only meant to invoke a high-level insight in the
reader. The presented microrefactorings will be explained in detail in Section 5.7.

As mentioned, first we need to decompose the base refactoring. The joining
point between the two main components of our custom construction seems natural
to choose for its division.

Lift segment:

1. extract segment,

2. lift method.



828 D. J. Németh, D. Horpácsi, and M. Tejfel

The decomposition of extract segment has already been presented by Schäfer et
al. [15]. Their process consists of three iterative steps, where each of them refines
the result of the previous one. This decomposition is specifically defined in a way
that separates transformations which together would potentially modify more than
one of the three equivalence aspects, namely control flow, data flow and binding.

Extract segment:

1. move segment to block,

2. extract block to lambda,

3. refine and extract lambda.

To preserve name binding, statements of the selected segment is moved in reverse
order, one by one to a new block. In this way, variable declarations can be handled
separately – this is indeed required, as extracting a referenced declaration might
change bindings, and therefore behavior.

Move segment to block:

1. insert new block,

2. move selected statements in the block one by one, in reverse order, han-
dling variable declarations separately.

After the initial segment has been extracted to a new block, it can be trans-
formed into a lambda without the fear of modifying binding during the process.
At this point, however, control flow becomes fragile because of the potential jump
statements located inside the segment. If value returns are present, the return type
of the new method can also be calculated here.

Extract block to lambda:

1. inspect jump statements,

2. inspect external assignments (due to limitations of Java).

In the next step, transformations modifying the data flow are used to make
data dependencies related to the lambda (and thus to the initial segment) explicit
in the form of parameters and a possible return value. Finally, the now binding-
and data/control flow independent lambda can be extracted.

Refine and extract lambda:

1. make data dependencies explicit,

2. extract lambda to method.

As the last step, based on the decomposition of Opdyke [13], we define how a
method should be lifted to its superclass.



Adaptation of a Refactoring DSL for OOP 829

Lift method:

1. lift referenced local fields,

2. lift referenced local methods1,

3. lift independent method.

In the following subsections we show how microrefactorings listed above can be
defined with the adapted framework.

5.3 Extending the Description Language

In this section we discuss modifications and extensions of the description language
required to accommodate the new refactoring schemes. As part of the process, not
only do we introduce new scheme clauses related to the object-oriented paradigm,
but we also mention new language elements meant to make even existing refactoring
definitions more concise.

In the base language, pseudovariable this represents the target of the current
refactoring. Because this identifier has a different meaning in the object-oriented
paradigm, we replace ours with target to avoid confusion. Additionally, we make
syntactic patterns more expressive by the flexible handling of the ; delimiter in
them: instead of a concrete syntactic element, we interpret it as an abstract se-
quencing symbol with multiple possible manifestations. For example, pattern #S;#S’

matches both {}{} and {};{}.
Finally, we introduce the following scheme clauses:

• target: A clause dedicated to match the target of the refactoring. On the
one hand, this can eliminate pattern duplications in the original matching
pattern. Moreover, referring to the context of the target in the matching
pattern also becomes possible. The following examples respectively present
the above-mentioned interpretations of the target clause:

1 target
2 ----------
3 { target }
4 target
5 #S ; #S’

1 target ; #S’
2 ------------
3 #S’ ; target
4 target
5 #S

Concrete usage analogous with the previous examples can be found, respec-
tively, in scheme instances moveIntoNextBlock and moveToTop, see Section 5.6.
The first one eliminates duplication from the description of a move transfor-
mation by using the target expression in its rewrite-pattern-pair. The second
one uses the target expression to make the selected code’s environment ac-
cessible for a precondition.

1Note the recursion.



830 D. J. Németh, D. Horpácsi, and M. Tejfel

• shadowed references: Clause for specifying a compensational transformation
for changes in binding induced by moving code. For example, this is where
we can restore binding to a field by using the this qualifier after shadowing it
with a local declaration – as seen in the description of the block refactoring
scheme in Section 5.5.

• top level definition: Clause to define or modify a file-level program entity
(e.g. class or interface). For example, the second variant of the lambda
scheme uses this clause to modify an interface, as seen in Section 5.5.

• definition in class: Clause for defining a new member (e.g. field or method)
inside the enclosing class of the refactoring target. A concrete example can
be found in scheme instance extract in Section 5.6, where the clause is used
to introduce a new method.

• definition in super: Clause for defining a new member inside the superclass
of the refactoring target’s enclosing class. This is, for example, how we lift a
method in the second variant of the class refactoring scheme by removing it
from the base class and reintroducing it in the superclass by the definition in
super clause, see in Section 5.5.

5.4 Constructing the Metatheory

By metatheory we denote the semantic functions and predicates that capture, and
provide a high-level interface for, various static semantic information about the
target language. In particular, the metatheory defines what predicates the precon-
ditions of schemes and scheme instances can be built from. To make the metatheory
intuitively usable, we define these functions and predicates over a high-level model
that closely resembles the abstractions of the target language. The basis of this
model is the AST metamodel, therefore we will implicitly use operations commonly
defined on it.

In the following we group elements of our metatheory by the semantic property
they provide information about, separately listing the ones which are closely related
to the object-oriented paradigm.

Data flow. Information about data flow can be used to check variables and fields
before and during a transformation, or even while verifying a scheme or an instance.
Here we declare functions for obtaining variables and fields through a given entity:
variableReads, variableWrites and accessedFields.

Control flow. One of the main notions of control flow analysis is the concept of
the path of execution, describing a possible ordering of statements for a given lan-
guage entity. Here we reuse the definition of controlSuccessor and exitNode from
Schäfer et al. [15], referring to possible control flow successors and the symbolic
exit point of a method, respectively. We also introduce the callGraph of a method



Adaptation of a Refactoring DSL for OOP 831

definition, which is the maximal, directed, vertex-labeled graph of method defini-
tions containing all possible (see dynamic binding) call relations starting from the
selected method definition.

Binding. One of our most important semantic functions is definitionScope.

Definition 1. The scope of method definition d is the set which contains exactly
the classes whose instances resolve method calls with d’s signature to d.

As a demonstration, consider the following example:

1 class A {
2 public void f() { /* ... */ }
3 }
4 class B extends A {
5 public void f() { /* ... */ }
6 }
7 class C extends B {
8 public void f() { /* ... */ }
9 }
10 class D extends B {}

Here the scope of A::f() consists of A, the scope of B::f() consist of B and D,
and the scope of C::f() consist of C.

Paradigm. Statically reasoning about the behavior of object-oriented software is
made difficult by dynamic aspects of the paradigm, namely polymorphism and dy-
namic binding. Apart from trivial query functions (e.g. isSubType, superHierarchy,
subHierarchy), our main concern here is to find a proper approximation of behavioral
properties which may influence our class-conformity relation (see Section 4.2).

Considering the microrefactorings we identified in Section 5.2, a number of
them requires a new method definition to be added into a class. In the following,
we will call such to-be-added definitions predefinitions. Our goal regarding the
metatheory is to provide a safe approximation for deciding whether a predefinition
could potentially change how a method reachable from public API behaves. For
the sake of simplicity, we do not statically check whether two method definitions
are equivalent – we simply assume that they are not. In conclusion, we propose the
following definitions about the so-called intra- and interhierarchy-reachability of a
predefinition.

Please note that the following definitions are meant as readable alternatives to
the underlying logic formulae.

Definition 2. We say that predefinition p is reachable if it

• overrides a method,
• and is inter- or intrahierarchy-reachable.



832 D. J. Németh, D. Horpácsi, and M. Tejfel

Definition 3. We say that predefinition p is interhierarchy-reachable if there exists
a definition which

• is located outside the class hierarchy of p
• and refers to a signature of p that

– is qualified with either one of the superclasses of p’s enclosing class,
– or with a class belonging to the definition scope of p,

• and which is non-constrained intrahierarchy-reachable.

Definition 4. We say that predefinition p is intrahierarchy-reachable if

• it overrides a public method,
• or there exists a definition which

– refers to the unqualified signature of p
– and is Dp-constrained intrahierarchy-reachable where

∗ Dp is the definition scope of p.

Definition 5. Definition d is D-constrained intrahierarchy-reachable if

• Di is not empty, and

– either the visibility of d is public,
– or there exists a definition d′ that

∗ refers to the unqualified signature of d,
∗ and is Di-constrained intrahierarchy-reachable

– where Di is the intersection of D and Dd where
∗ Dd is the definition scope of d.

Definition 6. Definition d is non-constrained intrahierarchy-reachable if it is

• Dd-constrained intrahierarchy-reachable where

– Dd is the definition scope of d.

In short, interhierarchy-reachability denotes whether a predefinition could be
called from an external public API, while intrahierarchy-reachability indicates if a
predefinition could be resolved from a public API inside its class hierarchy. The
reason why the latter is slightly more complex is the fact that in that case, there
is a possibility for specific call-chains, starting from a public method and almost
reaching a predefinition, to be broken due to disjoint definition scopes.

We illustrate these reachability-definitions with the following three examples.
In the first one, the essence of interhierarchy-reachability is shown.

1 class A {
2 protected void f() { /* ... */ }
3 }
4 class B extends A {
5 /* protected void f() { /* ... */ } */
6 }



Adaptation of a Refactoring DSL for OOP 833

7 class C extends B {}
8 class D extends C {
9 protected void f() { /* ... */ }
10 }
11 class X {
12 public void g(A a, C c, D d) {
13 a.f(); c.f(); d.f();
14 }
15 }

Here, the now commented-out B::f() denotes the to-be-added definition. Its
enclosing hierarchy consists of classes A, B, C and D, where B and C form its definition
scope. Class X lies outside of this hierarchy. In definition X::g(A, C, D), which is
obviously reachable because of its public visibility, signatures A::f(), C::f() and
D::f() are called. In this method, the d.f() call is safe, as the dynamic type of
d can only be D, and D is not in the scope of predefinition B::f() – therefore, the
newly added method could not possibly be called. However, the other two calls
are unsafe, because for both of them there exists a compatible class from the scope
of the predefinition. For example, in both cases the dynamic type of the called
object can be C, which would result in signatures A::f() and C::f() being resolved
to predefinition B::f() – therefore, it is interhierarchy-reachable.

The second example demonstrates an intrahierarchy-reachable predefinition.

1 class A {
2 protected void f() { /* ... */ }
3 public void g() { f(); }
4 }
5 class B extends A {
6 /* protected void f() { /* ... */ } */
7 }

Once again, the commented-out B::f() denotes the predefinition. The publicly
defined, and therefore intrahierarchy-reachable A::g() in its superclass calls A::f()

without qualifiers. Generally, this would not necessarily be problematic – see the
next example. This call, however, is still unsafe, because the definition scopes of
A::g() – i.e. {A, B} – and B::f() – i.e. {B} – are not disjoint. Indeed, as a result,
on instances of B, the publicly accessible signature B::g() is resolved to definition
A::g(), which then calls predefinition B::f() in place of signature A::f().

The last example shows how disjoint definition scopes can prevent a predefinition
from being intrahierarchy-reachable.

1 class A {
2 protected void f() { /* ... */ }
3 public void g() { f(); }
4 }
5 class B extends A {
6 /* protected void f() { /* ... */ } */
7 public void g() {}
8 }



834 D. J. Németh, D. Horpácsi, and M. Tejfel

Compared to the previous example, definitions A::f() and A::g(), as well as
predefinition B::f() remain the same. The only difference is the introduction of
definition B::g(), which reduces the definition scope of A::g() to just {A}. As a
result, the scopes of A::g() and B::g() become disjoint, thus there are no classes
where A::g() could call B::f(). Because there are no other references to signature
f() inside this hierarchy, the predefinition here is not intrahierarchy-reachable.

5.5 Identifying Refactoring Schemes

During the discussion in previous sections, we introduced all concepts and tools nec-
essary for constructing our own schemes, based on a generalization of microstreps
that were presented in the form of the chosen base refactoring’s decomposition. To
define a scheme, we have to provide its name, potential clauses, rewrite control
logic, preconditions and contracts. We also assign a level of equivalence to each
scheme in accordance with its transformation scope. In the following we briefly
show the four scheme(families) we specified: local, block, lambda and class.

Local refactoring scheme. The local scheme can be used to define simple,
block-local refactorings on the level of single expressions and statements. It has no
special preconditions or control logic.

1 local refactoring <name>
2 <matching pattern>
3 ---------------------
4 <replacement pattern>
5 target
6 <optional target pattern>
7 when
8 isInsideBlock(target)
9 and <optional preconditions>

In fact, the local scheme can be considered as a way to purely embed conditional
term rewrite rules into the language. The sole precondition requires its target to
be inside a block (line 8). Naturally, the assigned equivalence level is local and
the contract of the scheme demands the matching and replacement patterns to be
locally equivalent when preconditions hold.

Block refactoring scheme. The block scheme can be seen as an extension to
the local one. It can be used to refactor entire code blocks and even contains some
simple control logic.

1 block refactoring <name>
2 <matching block-pattern>
3 ---------------------------
4 <replacement block-pattern>
5 target
6 <optional target pattern>



Adaptation of a Refactoring DSL for OOP 835

7 shadowed references
8 #reference
9 --------------
10 #qualifiedName
11 when
12 #qualifiedName = #reference.qualifiedName()
13 and <optional preconditions>

Inside the matching and replacement patterns we allow a special type of pat-
tern matching. If keyword target is explicitly referenced there in a way that its
context is unboundedly matched (this is achievable with multipatterns (e.g. #S..)
at the beginning and/or end of mentioned pattern holes), bounding multipatterns
will be matched until the boundary of the enclosing code block. See instance
moveIntoNextBlock in the next section for an example.

If we move statements in a block, it is possible to introduce unwanted variable
shadowings, therefore to alter the original binding. The control logic of the scheme,
as can be seen in its shadowed references clause, automatically compensates this by
appending the original name qualification (line 12) to the shadowed reference.

This scheme was designed with the block equivalence level in mind. Its contract
requires the block-equivalence of matching and replacement patterns considering
preconditions and automatic name qualification.

Lambda refactoring scheme. As Schäfer et al. [15] suggest in their work,
lambda functions are practical because of their ability to act either as data or
as code, making it possible to destruct error-prone refactorings which modify both
data and control flow at once into multiple smaller, cleaner transformations. Unfor-
tunately, the formal semantics we plan to base the verification on does not support
lambda functions, therefore we have to use interfaces and anonymous class instances
instead.

We have identified two variants of the lambda scheme: one for introducing new
and one for modifying existing lambda interfaces and instances. Here we present
the latter.

1 lambda refactoring <name>
2 <matching lambda-pattern>
3 ----------------------------
4 <replacement lambda-pattern>
5 top level definition
6 <interface definition (#F) for the matching lambda-pattern>
7 -----------------------------------------------------------
8 <interface definition for the replacement lambda-pattern>
9 when
10 #F.references().size() = 1
11 and #F.references().contains(target)
12 and <optional preconditions>



836 D. J. Németh, D. Horpácsi, and M. Tejfel

The main task here is to automatically update underlying interface definitions.
For example, we expect the framework to propagate changes between the match-
ing and replacement lambda applications to the corresponding interface, denoted
by metavariable #F in the description of the scheme. As we want to keep the
transformation scope local (we are only discussing special method calls), in the
preconditions we verify that the lambda interface is not used anywhere else, i.e. it
is only referenced once (line 10) and that one reference is the target of the refac-
toring (line 11). In accordance with this, the scheme is based on the local level of
equivalence and its contract demands the matching and replacement patterns to be
locally equivalent considering preconditions and interface versions.

Class refactoring scheme. The class scheme was designed for refactorings that
modify classes and class members. We constructed three variants in this category:
one for introducing new methods, one for lifting methods and one for lifting fields.
The reason behind excessive concretization was mainly the complexity of precon-
ditions: we wanted to hide them from users inside the scheme. In the following we
discuss the variant intended to add new methods into the enclosing class.

1 class refactoring <name>
2 <matching pattern>
3 ------------------
4 #name(#args..)
5 target
6 <optional target pattern>
7 definition in class
8 #visibility #type #name(#params..) #body
9 when
10 /* omitted for the sake of readability */
11 and <optional preconditions>

Structurally, the scheme looks quite simple: a new method is introduced into the
enclosing class, and the matching pattern is replaced with a corresponding function
call. Missing arguments (e.g. #name, #body, etc.) must be inferred from concrete
instances. However, the scheme’s true complexity is encoded into its preconditions
which we omitted here for the sake of readability. In short, we have to guarantee
that the new definition will not cause compiler errors (names are unique, in case
of overrides visibility and types are correct, etc.) and also want to check that the
predefinition is not reachable (see Section 5.4).

Naturally, this scheme uses the class level of equivalence (which, in this case, is
technically a partial ordering (4), see Section 4.2). However, due to the exhaustive
preconditions, its contract only requires the matching and replacement patterns to
be locally equivalent. Of course when checking this we assume that the precondi-
tions hold and that the new method definition – which is called in the replacement
pattern – has been inserted to the enclosing class.



Adaptation of a Refactoring DSL for OOP 837

5.6 Defining Scheme Instances
Using the schemes introduced in the previous section, we can define the decomposed
microrefactorings as scheme instances. At the end of this part, we also demonstrate
how the base refactoring can be rebuilt from microsteps in a composite specification.

Local refactorings. The only local refactoring is the one which appends a new,
empty code block after its target statement.

1 local refactoring introduceEmptyBlockAfter()
2 #s
3 -------
4 #s ; {}

Block refactorings. There are two block instances: one for moving a statement
into its subsequent block (moveIntoNextBlock) and one for handling declarations
differently during the process (moveToTop). Here we show only the first one, but the
latter could be easily constructed as well.

1 block refactoring moveIntoNextBlock()
2 target ; { #S.. } ; #S’..
3 -------------------------
4 { target ; #S.. } ; #S’..
5 when
6 isSingle(target)
7 and (isVariableDeclaration(target) ->
8 not isReferencedIn(target.declaredVariable(), #S’..))

Note how the transformation is expressed using only pattern matching. As
we can see from the precondition, the block-matching feature helps to obtain the
surrounding context without the use of semantic functions. Here we require the
target to be a single statement (line 6) – as we want to move only one statement at
a time, see Section 5.2 –, and also if it is a declaration (line 7), its declared variable
should not be referenced in the remainder of the block (line 8) – since for these
references, the original declaration would become invisible if we moved it into the
sub-block.

Lambda refactorings. In total, we have defined three lambda refactorings. One
introduces a void (wrapInVoidLambda), the other one constructs a value-returning
lambda (wrapInValueLambda). Now we present the third one (extractInVariables),
which makes data dependencies of an existing lambda explicit.

1 lambda refactoring extractInVariables()
2 new #F() { public #type #name() #body }.#name()
3 -----------------------------------------------------------------
4 new #F() { public #type #name(#inVars..) #body }.#name(#inVars..)
5 when
6 #inVars.. = #body.variableReads().filter(#read :
7 isBefore(#read.variable().declaration(), target))
8 .map(#read : #read.variable()).reduce()



838 D. J. Németh, D. Horpácsi, and M. Tejfel

In the first pattern, metavariable #F will be matched to the underlying interface
of the targeted “lambda”-application. Here you can also see that metavariables
might even be assigned in preconditions. In this particular example, variables read
in the body of the target lambda (#body.variableReads()), but declared before (not
inside) it (line 7), are collected into and later used through metavariable #inVars...
We also take advantage of the fact that the collected variable names can be used
both as formal and actual parameters. (The last line of the precondition is a
technicality: we have to convert the filtered variable reads to the read variables,
and also eliminate duplications (reduce()) from the resulting collection, as it will
be used as a parameter/argument list.)

Class refactorings. Out of the three class refactoring instances, we show the
most interesting one, that is which extracts a lambda to a new method (extract).
The other two (one for lifting methods and one for lifting fields, both named lift)
can be mechanically specified without significant extra content.

1 class refactoring extract(#visibility, #newName)
2 new #F() { public #type #name(#params..) #body }.#name(#args..)
3 ---------------------------------------------------------------
4 #newName(#args..)
5 definition in class
6 #visibility #type #newName(#params..) #body
7 when
8 isSubsetOf(#body.dataAccesses().map(#access : #access.target()),
9 union(#params.., target.enclosingClass().fields(),
10 #body.localVariables()))

Similarly to the previous example, metavariable #F in the first pattern will be
matched to the underlying interface of the targeted “lambda”-application. The dif-
ference here is that we have to check whether the lambda to be extracted is truly
independent from its surroundings, that is, it does not reference variable-like entities
from outside its parameters, body and accessible fields. In other words, the refer-
enced variables (#access.target()) of its body’s data accesses (#body.dataAccesses())
should form a subset of the union of its parameters, local variables and accessible
fields of the enclosing class (line 9-10). This instance also has two parameters, the
name and visibility of the new method.

Composite refactorings Finally, we can reconstruct the initial lift segment
refactoring in the composite definition of lift.

1 composite refactoring lift(#visibility, #name)
2 do
3 extract(#visibility, #name)
4 #extractedMethod = target.enclosingMethod()
5 #extractedMethod.cascadedLift()
6 when
7 isSegment(target)



Adaptation of a Refactoring DSL for OOP 839

Note that here, extract and cascadedLift are further composite refactorings built
from scheme instances mentioned above. In this specification it is also shown how
selectors and combinators can be used to imperatively control the application of
transformations: in line 4, we store a reference to the method extracted in the
previous line in a metavariable, then in the next line we lift it together with its
dependencies by applying cascadedLift through the referencing metavariable.

5.7 Example

In this section, the previously discussed scheme instances and composite refactor-
ings are demonstrated by the stepwise transformation of a concrete Java program
(see Figure 1). Each step is presented by a code fragment pair showing the before-
after state, followed by a short explaination of the applied transformation. Code
highlighted in blue denotes the target of the refactoring on the left, and the cur-
rently modified parts on the right.

The first step is to apply instance lift with the package visibility and function
name h as parameters. Refactoring lift is composite – within it, extract is called,
which is also composite, and its first step is introduceEmptyBlockAfter.

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int x = 1;
6 a = x;
7 g();
8 int y;
9 a = y;
10 }
11 void g() { a = b = 0; }
12 }

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int x = 1;
6 a = x;
7 g();
8 int y;
9 {}
10 a = y;
11 }
12 void g() { a = b = 0; }
13 }

After that, moveIntoNextBlock is applied, but it does not succeed, because the
scope of a declaration that is used in the enclosing block cannot be reduced. The
moveToTop rule is tried next, which will be performed successfully.

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int x = 1;
6 a = x;
7 g();
8 int y;
9 {}
10 a = y;
11 }
12 void g() { a = b = 0; }
13 }

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y;
6 int x = 1;
7 a = x;
8 g();
9 {}
10 a = y;
11 }
12 void g() { a = b = 0; }
13 }

The next statement is moved to the target block using moveIntoNextBlock.



840 D. J. Németh, D. Horpácsi, and M. Tejfel

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y;
6 int x = 1;
7 a = x;
8 g();
9 {}
10 a = y;
11 }
12 void g() { a = b = 0; }
13 }

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y;
6 int x = 1;
7 a = x;
8 {
9 g();
10 }
11 a = y;
12 }
13 void g() { a = b = 0; }
14 }

We move the first statement of the originally selected segment to a block using
moveIntoNextBlock as well.

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y;
6 int x = 1;
7 a = x;
8 {
9 g();
10 }
11 a = y;
12 }
13 void g() { a = b = 0; }
14 }

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y;
6 int x = 1;
7 {
8 a = x;
9 g();
10 }
11 a = y;
12 }
13 void g() { a = b = 0; }
14 }

Since the resulting block does not contain a return statement, we can use the
wrapInVoidLambda rule to convert it to a lambda. Note that this also creates the
corresponding interface.

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y; int x = 1;
6 {
7 a = x; g();
8 }
9 a = y;

10 }
11 void g() { a = b = 0; }
12 }

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y; int x = 1;
6 new F() { public void apply() {
7 a = x; g();
8 } }.apply();
9 a = y;
10 }
11 void g() { a = b = 0; }
12 }
13 interface F { void apply(); }

In the next step, the input parameters of the generated lambda are extracted
by refactoring extractInVariables. x is one such parameter, as it is a local variable
declared outside of the lambda, but field a can be accessed inside the class even
with the current unqualified reference.



Adaptation of a Refactoring DSL for OOP 841

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y; int x = 1;
6 new F() { void apply() {
7 a = x; g();
8 } }.apply();
9 a = y;

10 }
11 void g() { a = b = 0; }
12 }
13 interface F { void apply(); }

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y; int x = 1;
6 new F() { void apply(int x) {
7 a = x; g();
8 } }.apply(x);
9 a = y;
10 }
11 void g() { a = b = 0; }
12 }
13 interface F { void apply(int x); }

The last step in extract segment is to convert the lambda to a method with the
extract rule. Although removing the interface that is no longer used is formally
not a part of this rule, such a refactoring could be easily defined, thus we omit it
from the example code to improve readability.

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y; int x = 1;
6 new F() {
7 public void apply(int x) {
8 a = x; g();
9 }
10 }.apply(x);
11 a = y;
12 }
13 void g() { a = b = 0; }
14 }
15 interface F { void apply(int x); }

1 class A {}
2 class B extends A {
3 int a, b;
4 void f() {
5 int y; int x = 1;
6 h(x);
7 a = y;
8 }
9 void g() { a = b = 0; }
10 void h(int x) { a = x; g(); }
11 }

Since the first part of lift, which is responsible for segment extraction, has
been completed, we now proceed to the second subtransformation. This is the –
also composite – cascadedLift that lifts the method created in the previous phase
to the superclass. First, field a used in h is lifted using the lift rule.

1 class A {}
2 class B extends A {
3 int a;
4 int b;
5 void f() {
6 int y;
7 int x = 1;
8 h(x);
9 a = y;

10 }
11 void g() { a = b = 0; }
12 void h(int x) { a = x; g(); }
13 }

1 class A {
2 int a;
3 }
4 class B extends A {
5 int b;
6 void f() {
7 int y;
8 int x = 1;
9 h(x);
10 a = y;
11 }
12 void g() { a = b = 0; }
13 void h(int x) { a = x; g(); }
14 }



842 D. J. Németh, D. Horpácsi, and M. Tejfel

In the next step, method g – referenced in h – is targeted, on which we recursively
call the composite cascadedLift refactoring. Its first step is to select field b used in
g and lift it with the lift rule.

1 class A {
2 int a;
3 }
4 class B extends A {
5 int b;
6 void f() {
7 int y;
8 int x = 1;
9 h(x);

10 a = y;
11 }
12 void g() { a = b = 0; }
13 void h(int x) { a = x; g(); }
14 }

1 class A {
2 int a;
3 int b;
4 }
5 class B extends A {
6 void f() {
7 int y;
8 int x = 1;
9 h(x);
10 a = y;
11 }
12 void g() { a = b = 0; }
13 void h(int x) { a = x; g(); }
14 }

Since g has no more dependencies from its enclosing class, we can lift it to the
superclass with the lift rule.

1 class A {
2 int a, b;
3 }
4 class B extends A {
5 void f() {
6 int y;
7 int x = 1;
8 h(x);
9 a = y;

10 }
11 void g() { a = b = 0; }
12 void h(int x) { a = x; g(); }
13 }

1 class A {
2 int a, b;
3 void g() { a = b = 0; }
4 }
5 class B extends A {
6 void f() {
7 int y;
8 int x = 1;
9 h(x);
10 a = y;
11 }
12 void h(int x) { a = x; g(); }
13 }

With the previous step, we completed the transformations needed to lift the
dependencies of h, so now we can lift h itself using the lift rule. Thus we performed
the second, method-lifting part of our initial refactoring. Since this was the last
one, in this step the whole transformation terminates successfully.

1 class A {
2 int a, b;
3 void g() { a = b = 0; }
4 }
5 class B extends A {
6 void f() {
7 int y;
8 int x = 1;
9 h(x);

10 a = y;
11 }
12 void h(int x) { a = x; g(); }
13 }

1 class A {
2 int a, b;
3 void g() { a = b = 0; }
4 void h(int x) { a = x; g(); }
5 }
6 class B extends A {
7 void f() {
8 int y;
9 int x = 1;
10 h(x);
11 a = y;
12 }
13 }



Adaptation of a Refactoring DSL for OOP 843

6 Future Work
In previous sections we presented a general outline for the adaptation process. Al-
though we aimed to make the case study as constructive as possible, comprehensive
support for the object-oriented paradigm is yet to be realized. Here we share two
natural continuations of our research which may improve upon this aspect.

6.1 More Schemes and Case Studies
The main concept behind the discussed framework is the notion of refactoring
schemes. Therefore it would be beneficial to examine the scheme construction
method in finer detail. For example, it would be interesting to conduct more case
studies and to compare the different schemes obtained from them. Moreover, the
relationship between the top-down and bottom-up approaches also raise additional
questions. For example, could results from the two be unified?

6.2 Verification
After an established set of refactoring schemes is constructed, research could pro-
ceed with formal verification. Considering the current verification backend, this
would mean that almost all language artifacts, including schemes, levels of equiv-
alence and metatheory would need to be formalized in a model compatible with
the chosen operational semantics of the target language. Ideally, schemes could
be verified manually by structural induction, while scheme instantiation, that is,
conformity to scheme contracts would become automatically verifiable.

7 Conclusion
In this paper we presented a proposal for adapting a domain-specific refactoring
language from the functional to the object-oriented programming paradigm, using
Java instead of Erlang as a representative.

As part of this task, we briefly introduced the original refactoring framework
and discussed its description language as well as its verification technique. We also
gave an overview of related research.

Then we approached the problem from a high-level perspective, presenting our
reasoning about how the adaptation process shall be carried out. We showed how
and why the choice of target language and paradigm arose, then discussed how
a multilayered definition of equivalence, or even a partial ordering can help to
characterize the behavior-preserving property of refactorings in a more intuitive
way. We also presented two iterative methods for synthesizing new transformation
schemes in the form of the top-down and bottom-up approaches.

Using the latter, we conducted a complex case study where we showed the
decomposition of a compound refactoring rule called lift segment. With the goal
of reconstructing this transformation inside the adapted framework, we began to
discuss how different parts of the system should be extended to achieve this target.



844 D. J. Németh, D. Horpácsi, and M. Tejfel

In this process, we added new elements to the description language, identified
suitable semantic functions and predicates for the target language metatheory (in-
cluding the notion of inter- and intrahierarchy-reachability) and proposed a set of
generalized refactoring schemes. To conclude the case study, we presented formal,
scheme-based definitions for decomposed building blocks of the original refactor-
ing, and demonstrated them by the stepwise transformation of a concrete program.
Finally, we listed future research directions.

Based on the case study, we conclude that the first steps towards adapting the
scheme-based refactoring approach to OOP have been successful: we were able to
express a complex Java refactoring in the modified language. As part of this, we
found a suitable decomposition for this transformation, and then we were able to
generalize schemes from the resulting microsteps. By constructing an appropriate
program equivalence, a description language and a metatheory, we managed to
make the identified schemes definable. We have seen that these schemes are already
suitable for expressing the initial base refactoring. Their generality obviously still
falls short, but we hope that a more comprehensive scheme library can be built
with the presented technique in the future.

References
[1] Aiken, Alexander. Cool: A Portable Project for Teaching Compiler Construc-

tion. SIGPLAN Not., 31(7):19–24, July 1996. DOI: 10.1145/381841.381847.

[2] Bogdanas, Denis and Roşu, Grigore. K-Java: A Complete Semantics of Java.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’15, pages 445–456, New York,
NY, USA, 2015. ACM. DOI: 10.1145/2676726.2676982.

[3] Bravenboer, Martin, Kalleberg, Karl Trygve, Vermaas, Rob, and Visser, Eelco.
Stratego/XT 0.17. A language and toolset for program transformation. Science
of Computer Programming, 72:52–70, 2008. DOI: 10.1016/j.scico.2007.11.
003.

[4] Ciobâcă, Ştefan, Lucanu, Dorel, Rusu, Vlad, and Roşu, Grigore. A Language-
Independent Proof System for Full Program Equivalence. Formal Aspects of
Computing, 28(3):469–497, mar 2016. DOI: 10.1007/s00165-016-0361-7.

[5] Corliss, Marc L., Furcy, David, Davis, Joshua, and Pietraszek, Lori. Ban-
tam Java Compiler Project: Experiences and Extensions. J. Comput. Sci.
Coll., 25(6):159–166, June 2010. URI: http://dl.acm.org/citation.cfm?id=
1791129.1791160.

[6] Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., USA, 1999. ISBN: 0201485672.

[7] Garrido, Alejandra and Meseguer, Jose. Formal Specification and Verification
of Java Refactorings. Proceedings - Sixth IEEE International Workshop on

https://doi.org/10.1145/381841.381847
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1007/s00165-016-0361-7
http://dl.acm.org/citation.cfm?id=1791129.1791160
http://dl.acm.org/citation.cfm?id=1791129.1791160


Adaptation of a Refactoring DSL for OOP 845

Source Code Analysis and Manipulation, SCAM 2006, pages 165–174, 2006.
DOI: 10.1109/SCAM.2006.16.

[8] Horpácsi, Dániel, Kőszegi, Judit, and Horváth, Zoltán. Trustworthy Refac-
toring via Decomposition and Schemes: A Complex Case Study. In Lisitsa,
Alexei, Nemytykh, Andrei P., and Proietti, Maurizio, editors, Proceedings of
the Fifth International Workshop on Verification and Program Transforma-
tion, Uppsala, Sweden, 29th April 2017, Volume 253 of Electronic Proceedings
in Theoretical Computer Science, pages 92–108. Open Publishing Association,
2017. DOI: 10.4204/EPTCS.253.8.

[9] Horpácsi, Dániel, Kőszegi, Judit, and Thompson, Simon. Towards Trust-
worthy Refactoring in Erlang. In Hamilton, Geoff, Lisitsa, Alexei, and Ne-
mytykh, Andrei P., editors, Proceedings of the Fourth International Work-
shop on Verification and Program Transformation, Eindhoven, The Nether-
lands, 2nd April 2016, Volume 216 of Electronic Proceedings in Theoretical
Computer Science, pages 83–103. Open Publishing Association, 2016. DOI:
10.4204/EPTCS.216.5.

[10] Kalleberg, Karl Trygve. Abstractions for Language-Independent Program
Transformations. PhD thesis, University of Bergen, Bergen, Norway, 2007.
URI: http://hdl.handle.net/1956/3287.

[11] Leitão, António. A Formal Pattern Language for Refactoring of Lisp Programs.
In Proceedings of the Sixth European Conference on Software Maintenance and
Reengineering, pages 186–192, 2002. DOI: 10.1109/CSMR.2002.995803.

[12] Li, Huiqing and Thompson, Simon. A Domain-Specific Language for Scripting
Refactorings in Erlang. In Fundamental Approaches to Software Engineering,
pages 501–515, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. DOI:
10.1007/978-3-642-28872-2_34.

[13] Opdyke, William F. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1992. UMI
Order No. GAX93-05645. URI: http://hdl.handle.net/2142/72072.

[14] Roşu, Grigore and Ştefănescu, Andrei. From Hoare Logic to Matching Logic
Reachability. In Proceedings of the 18th International Symposium on Formal
Methods (FM’12), Volume 7436 of LNCS, pages 387–402. Springer, Aug 2012.
DOI: 10.1007/978-3-642-32759-9_32.

[15] Schäfer, Max, Verbaere, Mathieu, Ekman, Torbjörn, and de Moor, Oege. Step-
ping Stones over the Refactoring Rubicon. In Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented Programming, Genoa, pages
369–393, Berlin, Heidelberg, 2009. Springer-Verlag. DOI: 10.1007/978-3-
642-03013-0_17.

https://doi.org/10.1109/SCAM.2006.16
https://doi.org/10.4204/EPTCS.253.8
https://doi.org/10.4204/EPTCS.216.5
http://hdl.handle.net/1956/3287
https://doi.org/10.1109/CSMR.2002.995803
https://doi.org/10.1007/978-3-642-28872-2_34
http://hdl.handle.net/2142/72072
https://doi.org/10.1007/978-3-642-32759-9_32
https://doi.org/10.1007/978-3-642-03013-0_17
https://doi.org/10.1007/978-3-642-03013-0_17


846 D. J. Németh, D. Horpácsi, and M. Tejfel

[16] Schäfer, Max and de Moor, Oege. Specifying and Implementing Refactorings.
In Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’10, page 286–301,
New York, NY, USA, 2010. Association for Computing Machinery. DOI:
10.1145/1869459.1869485.

[17] Sommerville, Ian. Software Engineering. Addison-Wesley Publishing Com-
pany, USA, 9th edition, 2010. ISBN: 0137035152.

[18] Stefănescu, Andrei, Park, Daejun, Yuwen, Shijiao, Li, Yilong, and Roşu, Grig-
ore. Semantics-Based Program Verifiers for All Languages. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2016, pages 74–
91, New York, NY, USA, 2016. ACM. DOI: 10.1145/2983990.2984027.

[19] Verbaere, Mathieu, Ettinger, Ran, and Moor, Oege. JunGL: a Scripting Lan-
guage for Refactoring. In Proceedings – International Conference on Software
Engineering, Volume 2006, pages 172–181, 01 2006. DOI: 10.1145/1134311.

[20] Visser, Eelco and Benaisse, Zine-el-Abidine. A Core Language for Rewriting.
Electronic Notes in Theoretical Computer Science, 15:422–441, 1998. DOI:
10.1016/s1571-0661(05)80027-1.

https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1145/1134311
https://doi.org/10.1016/s1571-0661(05)80027-1

	Introduction
	Foundations and Related Work
	Foundations
	Related Work

	Scheme-Based Refactoring
	Description Language
	Verification

	Adapting the Framework
	Choosing the Target Language
	Refining Program Equivalence
	Synthesizing Schemes

	Case Study
	The Base Refactoring
	Decomposition of the Base Refactoring
	Extending the Description Language
	Constructing the Metatheory
	Identifying Refactoring Schemes
	Defining Scheme Instances
	Example

	Future Work
	More Schemes and Case Studies
	Verification

	Conclusion

