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Prospects on Solving an Optimal Control Problem

with Bounded Uncertainties on Parameters using

Interval Arithmetic

Etienne Bertinabc, Elliot Brendelad, Bruno Hérisséae,
Julien Alexandre dit Sandrettobf, and Alexandre Chapoutotbg

Abstract

An interval method based on Pontryagin’s Minimum Principle is pro-
posed to enclose the solutions of an optimal control problem with embedded
bounded uncertainties. This method is used to compute an enclosure of all
optimal trajectories of the problem, as well as open loop and closed loop enclo-
sures meant to validate an optimal guidance algorithm on a concrete system
with inaccurate knowledge of the parameters. The differences in geometry
of these enclosures are exposed, and showcased on a simple system. These
enclosures can guarantee that a given optimal control problem will yield a
satisfactory trajectory for any realization of the uncertainties. Contrarily,
the probability of failure may not be eliminated and the problem might need
to be adjusted.

Keywords: optimal control, Pontryagin’s principle, interval arithmetic,
bounded uncertainties, penalization

1 Introduction

Optimal control of aerospace systems is performed by modeling the considered
system by dynamics depending on multiple uncertain parameters (for example,
aerodynamic coefficients, mass,...). Usually, optimal control problems are solved
for nominal values of these parameters, as in Figure 1. Then the robustness of the
solution is demonstrated by dispersing the parameters around nominal values with

aDTIS, ONERA, Université Paris Saclay, F-91123 Palaiseau, France, E-mail:
firstname.lastname@onera.fr

bU2IS, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France. E-mail:
firstname.lastname@ensta-paris.fr

cORCID: https://orcid.org/0000-0003-4245-2964
dORCID: https://orcid.org/0000-0002-0458-4993
eORCID: https://orcid.org/0000-0002-9241-0810
fORCID: https://orcid.org/0000-0002-6185-2480
gORCID: https://orcid.org/0000-0002-7230-0710

DOI: 10.14232/actacyb.285798
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Figure 1: Optimal trajectory, velocity space trajectory and control for Goddard’s
re-entry problem in Cartesian Geo-centered coordinates1. In green the boostback
burn, in thin blue the ballistic phase and in red the landing burn. Burn phases
are characterized by a saturated control (||u|| = 1) and a dash in velocity space,
while ballistic phases are characterized by no control (||u|| = 0). The model, the
parameters and the initial and final positions are taken from [4]. More details on
the model and boundary conditions are given in Section 5.

Monte Carlo simulations [5]. Another approach is to solve a chance constrained
optimal control problem in order to guarantee a probability of success [7]. These
methods do not exclude the eventuality of failure, which can be problematic on crit-
ical systems. In addition these problem-solving methods often introduce numerical
approximations, which question the validity of the results.

Interval arithmetic has shown their ability to address several control problems
[9], providing validated solutions while dealing with method uncertainties (numer-
ical approximations) as well as with model uncertainties (unknown but bounded
parameters). For instance the reachable set of a dynamic system can be over-
approximated. This over-approximation can demonstrate that a system will remain

1Standard coordinates for rocket trajectory are altitude and latitude; Cartesian coordinates
were chosen instead to allow some consistency with figures in Section 5
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out of a critical region, thus guarantee its safety [2]. These methods can also be
used to design robust optimal control. For instance, [11, 12] propose algorithms
to compute a control that stirs a system to a desired state for any realization of a
bounded noise while achieving the lowest upper bound on the cost.

Pontryagin’s Maximum Principle [13] (PMP) provides necessary optimality con-
ditions for the resolution of optimal control problems by transforming an optimal
control problem into a root-finding problem. Derived methods have proven their
efficiency and their precision compared to direct methods [13, 14], but their conver-
gence strongly depends on their initialization and a prior knowledge of the solution
structure is needed.

Our goal is to address an aerospace challenge highlighted by [3], which is to
enclose the trajectory of a reusable launch vehicle subject to external perturbations.
The trajectory during the landing burn is computed online so the control is not
known beforehand. Computing an enclosure could guarantee that the vehicle lands
safely on the landing platform.

To that end, the return version of Goddard’s problem [5] is considered. It con-
sists in performing the landing of the first stage of a rocket while minimizing its fuel
consumption. The optimal trajectory of this system for nominal values of the pa-
rameters and the associated control are presented on Figure 1. Uncertainties on the
parameters will be added into the model in the form of intervals and deterministic
enclosures will be computed by combining interval arithmetic and the necessary op-
timality conditions given by the application of PMP. Although this method cannot
be applied to Goddard’s problem yet, this paper exposes our reasoning on simplified
problems.

Firstly, Section 2 introduces the problem considered. Section 3 presents the
interval and optimal control methods that will be later used. Section 4 proposes
three enclosures that can be utilized to discuss the reliability of an optimal control
problem with uncertainties. Section 5 showcases these enclosures on a simplified
problem. Lastly, Section 6 proposes some uses of these enclosures and the remaining
work to apply these methods on Goddard’s problem.

Notations

Interval variables and interval vectors are always enclosed in brackets: [x].
Any variable that is not enclosed in bracket is a real or vector variable.
Interval valued functions are enclosed in brackets: [f ] : [x] 7→ [f ]([x]).
The bounds of an interval [a] are noted a, a. Its middle point is noted mid ([a]).
(.) such as in y(.) denotes a time function: y(.) : t ∈ [0, T ] 7→ y(t) ∈ Rn.
y(τ) and yτ are different, the later being a vector unrelated to function y(.).

A hat as in ξ̂ denotes a variable that is related to an estimation.
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2 Control problem with uncertainties

In this section, the optimal control problem and the incorporation of uncertain
parameters are presented. Then three enclosures meant to discuss the relevance of
an optimal control problem will be introduced.

2.1 Optimal Control Problem (OCP)

The following non-interval optimal control problem is considered

min
u(.)∈U

∫ T

0

`(y(t), u(t))dt+ Ψ(y(T )) s.t.


ẏ(t) = f(y(t), u(t), ξ(t), t),

y(0) = y0

T is fixed.

(1)

Interpretation : the system, a launcher for instance, is characterized by the
following data:

• A state y(t) e.g. position, velocity and mass of the launcher. The time
function y(.) is called a trajectory.

• An initial state y0.

• Dynamics ẏ(t) = f(y(t), u(t), ξ(t), t) e.g. the time derivative of position is
velocity, the derivative of velocity is the forces divided by mass etc. . . .

• A control input u(.) e.g. the reactor thrust vector.

• Parameters ξ(.) e.g. aerodynamic coefficients, maximum thrust. . . .

• A continuous cost `(y(t), u(t)) e.g. fuel consumption.

• A final cost Ψ(y(T )) e.g. the distance between the final state and the target.

System (1) is considered controllable. Hence for any initial state y0 and specific
parameter function ξ(.), an optimal control u(.) can be found. As a consequence, a
control can be defined implicitly as the solution of an OCP, as opposed to explicit
methods such as time series or gain tables. For instance, the Model Predictive
Control (MPC) approach defines the control as the solution of an optimal control
problem; the controller solves this optimal control problem at each time step to
determine the control to be applied. Some parts of a launch vehicle trajectory are
also defined by an OCP: [3] states that the control during the landing burn is the
optimal solution of a problem that is solved autonomously during the flight.

Bounded uncertainties on the initial state and the parameters will be added
into this model. The initial state y0 and parameter function ξ(.) take their values
in interval enclosures: y0 ∈ [y0] and ξ(t) ∈ [ξ],∀t, where [ξ] and [y0] are intervals of
the form

[
ξ, ξ
]

or boxes (see definition in Section 3.2.1).
Since they are challenging to simulate with validated simulation, optimal con-

trol problems with varying time horizons and state dependant transitions are not
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considered in this paper. However, it is worth noting that time dependent tran-
sitions, or switches, are possible (see Section 3.2.3). This assumption excludes
Goddard’s problem. The bang-bang transition from a zero control to a saturated
control seen in Figure 1 is a state dependent transition and cannot be simulated
with our method, unless a precise switch time is forced. Section 6.2 discusses the
steps to be taken to apply this method to Goddard’s problem.

Note also that the presented method requires additional regularity conditions
which will be presented in Section 4.

2.2 Representation of the uncertainties in the OCP

Parameters are bounded functions of time: ∀t ∈ [0, T ], ξ(t) ∈ [ξ]. It is also assumed
that each function ξ(.) is infinitely differentiable. This ensures that dynamics have
all the needed mathematical properties to be simulated.

The time dependency establishes a general framework without invalidating the
important assumptions of the optimality criterion used (see Section 3.1.2). It covers
indeed more scenarios than the approach considering that the parameters are un-
known constant values, which is an implicit assumption in [5] in which parameters
are picked randomly at the start and stay constant during the simulations.

The most encompassing framework would consider that parameters are also
functions of the state as a whole. However that would arise the need for more
assumptions (bounded spatial derivatives. . . ).

2.3 Contributions

The motivation is to assess whether a given OCP outputs an adequate trajectory
for any realization of the initial state and parameter functions. A trajectory is
characterized by two realizations of the parameter function: the actual parameter
function ξ(.) and the parameter function estimated by the system ξ̂(.). Both are
taken amidst the same bound [ξ] but they may differ as the actual parameters are
often unknown in practice.

Hence, the following three enclosures of the solution of (1) are proposed:

• An anticipative enclosure containing trajectories whose control is computed
with the perfect knowledge of the parameter function: ξ̂(.) = ξ(.).

• An open loop2 enclosure containing trajectories whose control is computed
once at the start with an inaccurate parameter function ξ̂(.) 6= ξ(.) and then
followed blindly.

• A closed loop3 enclosure containing trajectories whose control is computed
several times online with accurate measurements of the state but an inaccu-
rate parameter function ξ̂(.) 6= ξ(.).

2also known as feed forward
3also known as feedback
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Measures of the state are considered accurate, contrarily to parameters that
are unknown. The reason is that knowing parameter in advance is fundamentally
impossible because it requires seeing into the future, while having accurate mea-
surement is only a matter of hardware. Bounded errors on measurements will be
considered in future works.

These three enclosure can be used to validate all solutions of an OCP and assess
risks. Contrarily to the approach in [11], which optimizes a single control that
works for all realizations of the bounded uncertainties, the proposed method does
not output a control directly. Instead, it can guarantee that a given optimal control
problem will produce a satisfactory control for all realizations of the uncertainties
on the initial state and parameter function.

To take the example of launch vehicles [3], an OCP is solved right before the
landing burn to compute a guidance trajectory. This OCP is designed to provide a
trajectory to the landing platform with any possible dynamics and from any possible
state the launcher may be in right before the landing burn. The proposed approach
is to use a conservative enclosure of all possible dynamics and of all possible states
before the landing burn to derive enclosures of all trajectories that are solutions
of a given OCP with these initials states and dynamics. If every element in the
enclosures satisfy the final constraint of finishing on the landing platform, then the
OCP is guaranteed to output a satisfactory trajectory in practice and it may be
used on an actual launcher.

This is only a necessary condition. Since the enclosures are conservative, the
fact that the enclosure does not satisfy the constraints does not prove the existence
of a realization of the uncertainties that will cause the launcher to violate the
constraints. Nevertheless, on such critical systems, the possibility of failure is not
tolerated and may justify changing the OCP.

3 Mathematical preliminaries

In this section, a numerical method for optimal control is presented as well as
interval-based validation methods. Those methods will be combined in Section 4.

3.1 Numerical resolution of a control problem

As a first step, properties of dynamical systems will be recalled and the flow and re-
solvent notations will be introduced. Then these notations will be used to formalize
the indirect method known as Pontryagin’s Minimum Principle.

3.1.1 Flow and resolvent of an ordinary differential equation (ODE)

Consider an ODE in the form:{
ẋ(t) = g(x, ξ(t), t)
x(t0) = x0
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To simplify notations and since parameters only depend on time, g(x, ξ(t), t) is
denoted by g(x, t) whenever doing so does not impede comprehension.

A solution can be approximated by numerical methods, such as Euler’s method,
or more efficient Runge-Kutta methods [6]. Integrating the dynamics between two
boundary times τ and T can be seen as a flow function Φτ,T . The function Φτ,T
takes an initial state, simulates it from τ to T and returns the final state. If g
is twice differentiable, the flow Φτ,T has a spatial derivative in xτ which is the
resolvent Rτ,T (xτ ) of the linearized system [8].

To illustrate these notations, consider two boundary times τ and T . Let x(.) be
the solution of the ODE: {

ẋ(t) = g(x, t)
x(τ) = xτ

Φτ,T (xτ ) is the state of the solution at time T , Φτ,T (xτ ) = x(T ).

If z(.) is the solution of the same ODE with an initial perturbation δx:{
ż(t) = g(z, t)
z(τ) = xτ + δx

then its final state will be z(T ) = x(T ) +Rτ,T (xτ ) · δx+ o(||δx||). The resolvent of
the linearized system enables a first order approximation of the final error caused
by an initial perturbation, and as such, it is the spatial first derivative of the flow.

The resolvent can sometimes be computed analytically, notably for linear time
invariant systems: if ẋ = A · x then Rτ,T (xτ ) = exp((T − τ)A). If no analytic
formula is available, Rτ,T (xτ ) can be computed by integrating the following ODE:

ẋ(t) = g(x)

Ṙτ,t(xτ ) =
∂g

∂x
(x(t)) ·Rτ,t(xτ )

x(τ) = xτ

Rτ,τ (xτ ) = In.

(2)

In the following sections, the spatial arguments will often be removed to simplify
notations. Hence Rτ,T means Rτ,T (xτ ).

3.1.2 Optimal control

An OCP is considered as in Section 2

min
u(.)∈U

∫ T

τ

`(y(t), u(t))dt+ Ψ(y(T )) s.t.

 ẏ(t) = f(y(t), u(t), ξ(t)),∀t ∈ [τ, T ],
y(τ) = yτ
T is fixed.

This control can be computed by multiple methods that mainly fall in two
categories:



108 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

• direct methods: the control is discretized, thus turning the infinite dimensional
problem into a high dimensional Euclidean optimization problem.

• indirect methods: using a characterization of the optimal trajectory and con-
trol, the infinite dimensional optimization problem is transformed into a sim-
pler problem.

The second approach is considered in this article.
To characterize the optimal solution, a new variable is added, the co-state p(.)

which is analog to the dual multiplier in constrained Euclidean optimization. p(.)
is a vector valued time function on the time range [0, T ] and the vectors p(t) are
the same dimension as the vectors y(t).

The main result is the following theorem. This is a simplified version that is
sufficient for the problem tackled. It does not explicit the domain of each function
and does not address abnormal cases. A complete theorem can be found in [4, 13].

Pontryagin’s Minimum Principle4 (PMP): If (y(.), u(.)) are a normal opti-
mum, then there exists a non trivial co-state p(.) such that (y(.), p(.), u(.)) satisfy
the following equations:

H(y, p, u, t) = `(y, u) + p.f(y, u, ξ(t))
ṗ(t) = −∂H

∂y
(y(t), p(t), u(t), t)

p(T ) =
∂Ψ

∂y
(yT )

u(t) ∈ arg minuH(y(t), p(t), u, t)∀t ∈ [τ, T ],

whereH is called the pre-Hamiltonian. The optimal control u(.) is defined implicitly
as minimizing the pre-Hamiltonian at every time.

In many control problems this implicit definition yields an explicit expression.
That is, there is a function µ : y, p, t→ µ(y, p, t) such that:

u(t) ∈ arg min
u
H(y, p, u, t) ⇐⇒ u(t) = µ(y, p, t). (3)

For instance, [4] shows that in Goddard’s problem, the minimization condition
implies that the control (i.e. the thrust vector) has the same orientation as a part
of the co-state and that the magnitude of the control tends to be either saturated
or zero based on a switching function that depends solely on the state and co-
state (which leads to a bang-off-bang control as seen on Figure 1). Thus, the
control in Goddard’s problem is determined by the state and the co-state. In
the double integrator problem defined in Section 5, the control minimizes the pre-
Hamiltonian H(y, p, u) = ||u||2/2 + pv · u, which yields the explicit expression
u(t) = µ(y, p, t) = −pv.

4Also known as Pontryagin’s Maximum Principle. There are multiple formalization of this
principle in the literature.
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Noting gy(y, p, t) = f(y, µ(y, p, t), t) and gp(y, p, t) = −∂H/∂y(y, µ(y, p, t), p, t).
The equations of the PMP can be combined with those of Problem (1) to form the
following two point boundary value problem:

ẏ(t) = gy(y(t), p(t), t)

ṗ(t) = gp(y(t), p(t), t)

y(τ) = yτ , p(τ) is free

y(T ) is free, p(T ) =
∂Ψ

∂y
(yT )

(4)

This is a problem of finding the value of p(τ) and y(T ) such that integrating from the
state at time τ leads to the state at time T and vice versa. In many applications, it
is enough to solve the Initial Value Problem (IVP), that is finding p(τ). By splitting
the flow of Section 3.1.1, note φyτ,T (yτ , pτ ) the flow function that returns the final

state y(T ) and φpτ,T (yτ , pτ ) the flow function that returns the final co-state p(T ).
For a given yτ , the IVP can be written as follow:

find pτ such that C(yτ , pτ ) = φpτ,T (yτ , pτ )− ∂Ψ

∂y

(
φyτ,T (yτ , pτ )

)
= 0. (5)

The IVP (5) is solved with a shooting method. First a guess of the initial co-
state is taken. Then the system is shot, i.e. the ODE is integrated until the final
time. Then the initial guess is corrected depending on how far the system landed
from the target. This is repeated until a satisfactory co-state is found.

A shooting method can be complemented with a continuation method5 when
the problem is hard to initialize. See [4, 5] for the application of this method to a
launcher system.

It is worth noting that the more general PMP states that if the dynamics do not
depend on time, then the pre-Hamiltonian is stationary. This is not the case under
our assumption since the dynamics depend on parameters that depend on time.
It follows that the method used in [4, 5] to compute singular arc of the control,
which is based on the stationarity of the pre-Hamiltonian, cannot be used under
our assumption. Hence we currently have no method to enclose singular arcs, apart
from a very crude over-approximation.

3.1.3 First derivative of the IVP

One way to solve the OCP is to apply a zero finding method to Equation (5). It
can be useful to compute the derivatives of φyτ,T (yτ , pτ ) and φpτ,T (yτ , pτ ).

Let the variable x(.) = (y(.), p(.)). This variable is subject to an ODE ẋ = g(x, t)
as seen in System (4). It follows that if g is twice differentiable, a resolvent Rxτ,T

5also known as homotopic method
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can be computed for this system using Equation (2). The resolvent Rxτ,T is split in
four square Matrices:

Rxτ,T =

( ∗ Ryτ,T
∗ Rpτ,T

)
.

The two square matrices marked by ∗ are related to the final deviation caused by a
variation of the initial state and are not useful here. Ryτ,T (resp. Rpτ,T ) is the final
state (resp. co-state) deviation caused by a variation of the initial co-state and is
the spatial derivative of φyτ,T (yτ , pτ ) (resp. φpτ,T (yτ , pτ )).

By splitting the boundary condition Rxτ,τ = Id and taking the upper right and
bottom right corner, boundary condition Ryτ,τ = 0 and Rpτ,τ = Id are obtained. Sim-

ilarly, splitting the dynamic Ṙτ,t(xτ ) = ∂f/∂x(x(t)) ·Rτ,t(xτ ) yields the dynamics
of Ryτ,T and Rpτ,T . Hence ODE (6) is deduced.

ẏ(t) = gy(y(t), p(t), t)

ṗ(t) = gp(y(t), p(t), t)

Ṙyτ,t =
∂gy

∂y
(y, p, t) ·Ryτ,T +

∂gy

∂p
(y, p, t) ·Rpτ,T

Ṙpτ,t =
∂gp

∂y
(y, p, t) ·Ryτ,T +

∂gp

∂p
(y, p, t) ·Rpτ,T

y(τ) = yτ

p(τ) = pτ

Ryτ,τ = 0

Rpτ,τ = Id,

(6)

By simulating ODE (6), the value C(yτ , pτ ) and first derivative ∂C/∂p(yτ , pτ )
of the IVP are obtained.

3.2 Validation methods

First, the general idea of interval arithmetic is recalled. Then two methods based
on this arithmetic are presented: Krawczyk method that encloses the solution of
a vector-valued equation and validated simulation that encloses the evolution of a
dynamical system.

3.2.1 Set representation using interval arithmetic

An interval [a] is a convex subset of R that contains all reals between a lower bound
a and an upper bound a. With a, a ∈ R ∪ {−∞,+∞}. Interval arithmetic can be
used as an alternative to floating-point arithmetic to obtain an enclosure of the
solution of a problem, rather than an approximation [10].
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For each real valued function f : a 7→ f(a), one can create an inclusion function
[f ] : [a] 7→ [f ]([a]) following a set-membership principle: the result of the interval
function [f ] is an interval that contains each possible value of f on [a]

[f ] ([a]) ⊃ {f(a)|∀a ∈ [a]} .
This definition has an inclusion rather than an equality because the set on the

left might not be an interval. Moreover, finding the minimal enclosure of the actual
set is difficult. The tightness of the results depends on the effort put into their
computations. For this reason, there may be multiple inclusion functions for a
single real valued function.

Interval vectors, or boxes, are an axis-aligned rectangular set in a finite dimen-
sional space. They are an inexpensive representation of a high dimensional set
(compared to polytops) but may induce a wrapping effect during computations [9].

Figure 2: Outer tiling of a set. The ellipsoidal set is enclosed by the union of red
boxes.

In lower dimension, an accurate enclosure of a set can be achieved with a paving
of boxes, a set of mutually disjoint boxes which together cover the whole set. A
simple paving is illustrated on Figure 2. A paving in which boxes are all the same
shape and aligned can be called a tiling. Such a representation is potentially very
precise, but the computational cost grows very fast in high dimension. Indeed, to
double the precision, the number of tiles has to be doubled in each direction, which
means 2n as many tiles, where n is the dimension of the vector space. Hence the
complexity of this representation is exponential in the dimension of the state, which
makes it ill-suited for many practical cases.

3.2.2 Krawczyk contractor

Krawczyk’s method is an interval based quasi-Newton algorithm. The formula-
tion used is inspired by [9]. This method encloses the solutions of an equation
C(a) = 0. It uses a contractor [K], an operator which takes an input box and
outputs a smaller box when possible. This contractor is built using [∂C/∂a] ([a]),
an enclosure of the first derivative of C on [a] in the form of an interval matrix.
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Let mid ([a]) the middle point of [a], [K] is defined as follows:

[K]([a]) = mid ([a])−M ·C(mid ([a]))+

(
Id −M ·

[
∂C

∂a

]
([a])

)
·([a]−mid ([a])), (7)

where M is an invertible real matrix, typically M = mid ([∂C/∂a] ([a]))
−1

.

If a ∈ [a] is such that C(a) = 0, then a ∈ [K]([a]). If [K]([a]) is contained in
the interior of [a] then there is a unique solution in [a] or none.

To sum up, Krawczyk contractor is the function: [a] 7→ [a]∩[K]([a]), Krawczyk’s
method is made of the following steps: i) Initialize [a] with the search area. ii)
Repeat [a] ← [a] ∩ [K]([a]) until convergence. Its output is a box containing all
solution of F (a) = 0 in [a].

3.2.3 Validated simulation

A set membership ODE is considered:{
ẋ(t) ∈ [f ](x, t)
x(t0) ∈ [x0].

Validated simulation encloses every solution of this system in a sequence of
boxes (it encloses the solution for any realization of the initial state x0 ∈ [x0] with
any realization of the dynamics f(x) ∈ [f(x)]).

To that end, the time range [0, T ] is discretized in (ti)i∈0..N , t0 = 0, tN = T .
Starting with an enclosure [yi] of the systems at time ti, an enclosure of the system
on the whole time range [ti, ti+1] (called a Picard box) is built. Then an enclosure
of y(ti+1) is computed. In [1], interval Runge-Kutta method are used coupled with
inflating terms that enclose the truncation error of the method. Indeed, if the
dynamics are sufficiently differentiable, the truncation error can be bounded by
evaluating the Lagrange remainder of the difference between the Taylor series of
the actual solution and the Taylor series of the Runge-Kutta approximation. For
instance, if dynamics are four time differentiable, the truncation error of Runge-
Kutta 4 may be enclosed.

The output of validated simulation resembles Figure 10, with the plain boxes
being state boxes and the dashed boxes being Picard boxes.

Validated simulation is akin to simulating multiple systems between two com-
mon time stamps. A time switch is a time horizon shared by all systems, hence all
systems can be simulated by doing a first simulation up until the switch and another
simulation starting right after the switch. Contrarily, a variable time horizons or a
state dependent transitions differs from one system to another. As a consequence,
there is no shared time stamp to use as a duration for the simulation, which makes
validated simulation challenging.
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4 Computation of three informative enclosures

In this section, the main contribution is presented. An interval valued OCP solver
is proposed and is used to build enclosures of the trajectory of a concrete system
using the OCP as a controller.

4.1 Interval OCP solver based on the PMP

As per our assumption, there are multiple possible initial states and multiple possi-
ble dynamics which means infinitely many possible solutions. Hence the following
set membership method to solve the OCP is proposed.

Assumption The presented method requires the dynamics g of the IVP (4) to
be at least twice differentiable and to be k + 1 times differentiable if a validated
simulation method of order k is used. Indeed, Section 3.1.3 states that if g is twice
differentiable, then a first derivative of the IVP (5) may be computed with ODE (6).
As ODE (6) involves ∂g/∂x, if g is k + 1 times differentiable, then ODE (6) is k
times differentiable and a method of order k may be used. This assumptions hold
if f , µ and ` are infinitely differentiable, as will be the case in Section 5.

Method Based on the statements of Section 3.1.2, at a given time τ any couple
(yτ , pτ ) that satisfies the optimality condition C(yτ , pτ ) = 0 is considered optimal.
They will be referred as optimal (state, co-state) couples.

For a given enclosure of the state [yτ ], a Krawczyk operator of the function
pτ → C(yτ , pτ ) is built using Formula (7):

K([pτ ]) = mid ([pτ ]) +M · [C]([yτ ],mid ([pτ ]))

+

(
Id −M ·

[
∂C

∂p

]
([yτ ], [pτ ])

)
· ([pτ ]−mid ([pτ ])),

(8)

where:

• M = mid

([
∂C

∂p

]
([yτ ], [pτ ])

)−1

,

• [C]([yτ ], [pτ ]m) = [φ]pτ,T ([yτ ], [pτ ]m)−
[
∂Ψ

∂y

](
[φ]yτ,T ([yτ ], [pτ ]m)

)
,

•
[
∂C

∂p

]
([yτ ], [pτ ]) =

[
Rpτ,T

]
([yτ ], [pτ ])−

[
∂2Ψ

∂2y

]
([yτ ], [pτ ]) ·

[
Ryτ,T

]
([yτ ], [pτ ]).



114 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

The enclosure
[
Ryτ,T

]
([yτ ], [pτ ]) and

[
Rpτ,T

]
([yτ ], [pτ ]) of the resolvents can be

computed with an analytic formula if it exists, or by integrating ODE (9), which is
an enclosure of ODE (6).

ẏ(t) ∈ [gy](y(t), p(t), [ξ])

ṗ(t) ∈ [gp](y(t), p(t), [ξ])

Ṙyτ,t ∈
[
∂gy

∂y

]
(y, p, [ξ]) ·Ryτ,T +

[
∂gy

∂p

]
(y, p, [ξ]) ·Rpτ,T

Ṙpτ,t ∈
[
∂gp

∂y

]
(y, p, [ξ]) ·Ryτ,T +

[
∂gp

∂p

]
(y, p, [ξ]) ·Rpτ,T

y(τ) ∈ [yτ ]

p(τ) ∈ [pτ ]

Ryτ,τ = 0

Rpτ,τ = Id,

(9)

The enclosure [φ]t0,t1([y0],mid ([p0])) of the flow can be computed by integrating:
ẏ(t) ∈ [gy](y(t), p(t), [ξ])

ṗ(t) ∈ [gp](y(t), p(t), [ξ])

y(τ) ∈ [yτ ]

p(τ) = mid ([pτ ]) .

(10)

Algorithm 1 Computes [K]([pτ ]) for given [yτ ] and [pτ ]

Require: [yτ ] and [pτ ]

Compute
[
Ryτ,T

]
[yτ ], [pτ ] and

[
Rpτ,T

]
([yτ ], [pτ ])

Compute [φ]τ,T ([yτ ],mid (pτ ))
Compute [K]([pτ ]) using Formula (8)

Our OCP solver is an implementation of Krawczyk’s method. Algorithm 1
computes the Krawczyk operator, either with analytic formulae or by integrating
System (9) and System (10). Algorithm 2 is a Krawczyk’s method that outputs
∅ if there is no solution to C((yτ , pτ ) = 0. The convergence criterion is Hausdorff
distance, which is a distance between sets particularly adapted to boxes [9].

Algorithm 2 needs to be initialized with a box ([pτ ])0. This initial box de-
pends on the type of enclosure built. As explained in Section 4.3, the anticipative,
open-loop and closed-loop enclosures are computed using Algorithm 2 with differ-
ent initialization.
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Algorithm 2 Computes a thin enclosure ([pτ ])k of the optimal co-states corre-
sponding to a given state enclosure [yτ ]

Require: An initial searching area ([pτ ])0 and [yτ ]
([pτ ])k ← ([pτ ])0

Compute [K](([pτ ])k) using algorithm 1
while DHausdorff(([pτ ])k, ([pτ ])k ∩ [K](([pτ ])k)) > precision do

if 0 /∈ C(([yτ ], [pτ ])) then
Return ∅

else
([pτ ])k ← [K](([pτ ])k) ∩ ([pτ ])k
Compute [K]([p]) using algorithm 1

end if
end while

4.2 Three enclosures to analyze the problem

For each realization of the initial condition parameters, there are an optimal control
and a trajectory that are solution of the OCP. As a consequence, an OCP with
interval uncertainties defines infinitely many controls and trajectories.

Similarly to many algorithms in the interval arithmetic literature that search a
thin box containing all possible solutions of a problem, the anticipative enclosure
contains all trajectories that are solution of an OCP.

Anticipative enclosure: For any parameter function ξ(.) : [0, T ]→ [ξ] and any
initial state y0 ∈ [y0], the anticipative enclosure contains the trajectory:{

ẏ(t) = f(y(t), u(t), ξ(t))

y(0) = y0,

with u(.) the solution of the OCP:

min
u(.)∈U

∫ T

0

`(y(t), u(t))dt+ Ψ(y(T )) s.t.

{
ẏ(t) = f(y(t), u(t), ξ(t))

y(0) = y0.

ξ(.) corresponds to both the actual realization of the parameters and the esti-
mation made by the system. It is an ideal case in which the actual parameters are
known with perfect accuracy. As such, this enclosure gives little information on the
trajectory of a concrete system. In practice, parameter uncertainties will cause the
system to deviate from its optimal trajectory and exit this enclosure.

The following two enclosures are proposed so as to inform on the behavior of the
system in practical cases. They are meant to enclose the trajectory of a concrete
system that computes its control by solving the OCP with an inaccurate model.
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Open loop enclosure : It encloses a system which follows blindly an initial
solution that was computed with inaccurate parameters. For any couple of param-
eters functions ξ(.), ξ̂(.) : [0, T ]→ [ξ], and any initial state y0 ∈ [y0], the open loop
enclosure contains the trajectory:{

ẏ(t) = f(y(t), û(t), ξ(t))

y(0) = y0,

with û(.) the solution of the OCP:

min
û(.)∈U

∫ T

0

`(ŷ(t), û(t))dt+ Ψ(ŷ(T )) s.t.

{
˙̂y(t) = f(ŷ(t), û(t), ξ̂(.)(t))

ŷ(0) = y0.

ξ(.) corresponds to the actual realization of the parameters, which is unknown.

Hence the system has an inaccurate estimation ξ̂(.). This is close to worst case
analysis, as the worst case being the application of a control tailored for an extreme
scenario to the opposite extreme scenario. This enclosure emphasizes the worst
under or over-shooting possible.

It is possible to make a less pessimistic enclosure by taking into account the
fact that the system can correct its trajectory using sensor data.

Closed loop enclosure : It encloses a system that uses a perfect measure of its
state to recompute the solution of the OCP online (but with inaccurate parameters).
Consider a list of recomputation time (τk)k∈0..K , 0 = τ0 < τ1.. < τK = T . For

any couple of parameters functions ξ(.), ξ̂(.) : [0, T ] → [ξ], and any initial states
y0 ∈ [y0], the closed loop enclosure contains the trajectory of the piecewise-defined
system: {

ẏ(t) = f(y(t), ûk(t), ξ(t)), t),∀t ∈ [τk, τk+1]

y(0) = y0,

with ûk(.) the solution of the OCP:

minû(.)∈U
∫ T
τk
`(ŷ(t), û(t))dt+ Ψ(ŷ(T )) such that

{
˙̂y(t) = f(ŷ(t), û(t), ξ̂(t))

ŷ(τk) = y(τk).

The overall control is made of pieces ûk(.) that are computed with an accurate
measurement of the state y(τk). As in the open-loop enclosure, ξ(.) corresponds to

the actual realization of the parameters, which is unknown, and ξ̂(.) is an inaccurate
estimation. This encloses the actual operation of a system with an optimal control
regulator. The system does not have access to the value of the parameters, but it
compensates using measures of its state.

In this paper, a finite set of recomputation time (τk)k∈0..K is considered. Under
this assumption the closed loop enclosure is a sequence of open loop enclosures.
Future works will investigate scenarios in which the control is recomputed at every
time, which causes the closed loop to have a more unique geometry.

The computation of these enclosures is presented in Section 4.3.
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4.3 The underlying geometry of these enclosures

A simpler system is considered to emphasize the geometry of the enclosures pre-
sented in Section 4.2. The following figures are depiction of the OCP:

min
u(.)∈U

∫ T

τ

u2

2
dt+K

(y(T )− yT )2

2
s.t.

 ẏ(t) = ξ(t)u,
y(τ) = yτ ,
T is fixed.

with ∀t, ξ(t) ∈ [ξ], an uncertain parameter. As the state is one dimensional, state
and co-state can be drawn on a single graph to showcase the important sets.

Open loop enclosure. As seen in Section 3.1.2, in the real case, the optimal
control and trajectory are found by first solving the IVP (5) then integrating Sys-
tem (4).

To build the open-loop enclosure, an enclosure of the solution of the IVP is
computed, then the evolution of System (4) is enclosed. If the initial state is such
that yτ ∈ [yτ ], then the (state, co-state) couples can be anywhere in [yτ ]×Rn, the
orange vertical strip on Figure 3. The (state, co-state) couples that are solution
of the IVP (5) are enclosed in the blue cone. The solutions of the OCP lie in the
intersection (in red) of these two sets. If Algorithm 2 is initialized with a box ([pτ ])0

that is large enough to contain this intersection, then it computes a box enclosure
of this intersection.

Once [pτ ] has been computed, the evolution of System (4) is enclosed using
validated simulation during a time range dt. This integration of System (4) is
shown on Figure 4. This yields a set of possible state, co-state) couples at time
τ + dt, which in turn gives an enclosure of the possible states [yτ+dt]. By going on
until the final time T , the open-loop enclosure is computed.

yτ yτ yT
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Figure 3: Geometric resolution of the
OCP at time τ .

yτ yτ yτ+dt yτ+dt yT
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Figure 4: Simulation of the System (4)
from time τ to time τ + dt.



118 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

Closed loop enclosure. If the system recomputes its control at τ + dt using
accurate measurements from the sensors, the OCP is solved again with an initial
state in [yτ+dt]. This is illustrated in Figure 5, which is similar to Figure 4. An
important point is that the red set of recomputed (state, co-state) couples is not
contained in the purple set obtained by integrating System (4) from a prior step.
This is due to the fact that the prior co-states were computed with the wrong pa-
rameters. Replacing them is a correction. Hence, these trajectories do not respect
the equations of the PMP: applying a control that is optimal for a faulty model
results in a non optimal trajectory.

yτ+dt yτ+dt yT
state space
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e

Figure 5: Closed-loop: recomputation of
the optimal co-states at time τ + dt.
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state space

co
-s

ta
te

sp
ac

e

Figure 6: Anticipative: refining of the
optimal couples at time τ + dt.

Anticipative enclosure. To characterize the actual optimal trajectories, the
following criterion is applied. If a trajectory is optimal from A to B and C is an
intermediate state of that trajectory, then the trajectory is optimal from A to C
and from C to B. If A is the state at time τ , B is the state at time T and C is the
state at time τ + dt, then its (state, co-state) couple at time τ + dt satisfies two
properties.

• Optimality condition between A and C: the couple lies in the purple polyhe-
dron on Figure 6, which is the set obtained by integrating System (4) from
step τ .

• Optimality condition between C and B: the couple is in the blue cone on
Figure 6, which is the set of solutions of the IVP (4) with the initial time
τ + dt.

By taking the intersection of these two sets, the set of optimal (state, co-state)
couples is refined. This refinement can be done by initializing Algorithm 2 with
([pτ+dt])0 the projection of the purple polyhedron on co-state space.
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5 Experimentations

The computation of the three enclosures is showcased on a double integrator with
quadratic cost.

5.1 A naive implementation

Since Krawczyk’s Algorithm 2 operates with boxes, the state representation has
to be a box or a set of boxes. Representing the set of possible states by a box is
computationally efficient but causes crippling wrapping effects. Instead, we propose
a naive implementation that encloses the state at time t in a tiled bounding box,
such as in Figure 2.

To compute an enclosure of state at time t+dt, for each tile that might contain a
possible state, the OCP is solved (see Figure 7) and then the system is integrated.
A first round of OCP resolution and validated integration is done to compute a
bounding box of the state at time t+ dt, then this bounding box is tiled uniformly
and a second round finds which tiles might contain a solution.

yτ yτ yT
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Figure 7: Paving the state enclosure to get a thinner approximation.

Each tile requires several calls to Algorithms 1 and 2 , and since the complexity
of the tiling is exponential in the dimension, this naive method is not adapted to
complicated systems.

5.2 Numerical results on a double integrator

Consider a double integrator in a uniform gravity field and with a reactor thrust.
It is subject to a quadratic continuous cost and a quadratic penalization on the
final state.

min

∫ T

0

||u||2
2

dt+Kv
||v(T )||2

2

+Kr
||r(T )− rT ||2

2

such that


ṙ(t) = v

v̇(t) = −C
mu−Ge2

r(0) = r0, v(0) = v0,

(11)
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where G is the normalized gravity field, e2 is the unit vector of the vertical axis, C
is the maximum thrust and m is the mass of the system, which is assumed to be
constant.

By using the method in Section 3.1.2, this OCP turns into the following two
point boundary value problem:

ṙ(t) = v

v̇(t) = −pv
(
C
m

)2 −Ge2

ṗr(t) = 0

ṗv(t) = −pr
r(0) = r0, v(0) = v0

pr(T )−Krr(T ) = 0, pv(T )−Kvv(T ) = 0.

(12)

The values used are inspired by the take-off problem in [4]. The parameter
nominal values are the same as in [4]. The initial position of the system corresponds
to the final position of the take-off mission. The initial velocity has been chosen to
be coherent with a re-entry mission.

The solution of the nominal case is presented on Figure 8.
The initial position has an uncertainty of around 5 km, which is about 2% of

the span of the trajectory. The initial speed has a relative uncertainty of 1.7% and
the parameter ratio C/m has a relative uncertainty of 0.2%. However, the mission
duration is greater than the optimal duration so as to emphasize the differences
between the enclosures. The longer the mission, the more the system has to fight
gravity, the more uncertainties are accumulated along the vertical axis.

Figures 9, 10 and 11 depict enclosures of the double integrator computed using
Algorithm 2 coupled with a tiling of the state enclosure (as shown on Figure 7).
The initialization of Algorithm 2 depends on the type of enclosure, as explained in
Section 4.3.

Since System (12) is linear time invariant with a strictly triangular matrix, there
are analytic formulae for the flow and the resolvents. We use these analytic formulae
in Algorithm 1. We have also simulated Systems (9) and (10) with DynIbex [1]: a
C++ library for validated simulation. The precision of the results of the simulations
matches those of the analytic formulae. However, these simulations drastically
increase computation time, which in turn significantly restrict the precision of the
tiling. As a consequence, Figures 9, 10 and 11 were done with analytic formulae
rather than validated simulation.

The anticipative enclosure on Figure 9 starts wide because of initial uncertainty
but gets thinner as all the system converge to the target. As a result, the final box
is very thin.

Contrarily, the open-loop enclosure on Figure 10 becomes wider over time and
the final box is very big. Systems over-shoot or under-shoot the target because of
their lack of correction.

Lastly, the closed loop enclosure on Figure 11 is somewhere in between the two
other enclosures. These systems deviate from their optimal trajectory but correct
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it, leading to a bulge on the middle and end of the trajectory that gets abruptly
smaller at the end.

r0rT
z coordinate

r0

rT

x
co

or
d

in
at

e

v0 vT
z velocity

v0

vT

x
ve

lo
ci

ty

0 T
time

0.0

0.5

co
nt

ro
l

(t
h

ru
st

ve
ct

or
)

||u(t)||
ux(t)

uz(t)

Figure 8: Optimal trajectory, velocity space trajectory and control for the a double
integrator with quadratic cost. Unlike Goddard’s problem on Figure 1, the control
changes continuously.
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Figure 9: Anticipative enclosure of position and velocity.
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Figure 10: Open loop enclosure of position and velocity.
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Figure 11: Closed loop enclosure of position and velocity.

6 Discussion

In this section, we propose some uses of the enclosures, then list what needs to be
done to address more complex problems.

6.1 Risk assessment and indicating the relevance of an OCP

These enclosures are similar to those developed in [2]. As such, they can have the
same application. Consider the example of final constraints: the final state must
be in a safe zone. The final position must be in the recuperation platform and the
final velocity must be sufficiently small for the system to land. A similar reasoning
can be held for a state constraint, or other requirements of a mission.

If the final state box of the closed loop enclosure (Figure 11) is contained in the
safe zone, then a system using this OCP in closed loop is guaranteed to satisfy the
final constraint. Similarly, it can be guaranteed that applying the solution of the
OCP in open loop will satisfy the mission (although this is clearly not the case on
Figure 10). Both are strong assessment of robustness. The cost can be enclosed as



Bounded Uncertainties in Optimal Control Problems 123

well, which gives a worst performance index.

When using a floating-point control, the anticipative enclosure will provide an
upper bound to the distance to the actual optimal control. As a consequence, this
provide a criterion to discuss the validity of a floating-point control. To minimize
this criterion, the middle point of the control box of the anticipative enclosure can
be used as a control.

These enclosures could be used to design the model or the concrete system.
For instance, if the final enclosure of the velocity of the anticipative enclosure
(Figure 9) is not entirely contained in the safe zone, that means that there might
be a realization of the initial states and the parameters such that the system will
crash by following the optimal trajectory defined by the OCP.

The existence of such a realization is not guaranteed as those enclosures are
conservative, nevertheless, for critical systems, the mere possibility of the existence
of a failure may require the OCP to be changed.

In Problem (11), this could mean increasing the penalization coefficient Kr and
Kv, thus making the launch more costly but decreasing the uncertainty on the final
state and maybe void the possibility of failure.

Contrarily, if the open-loop or closed-loop enclosures final boxes respect the
final constraint by a significant margin, then the penalization could be decreased
to achieve better performances on other criteria. Alternatively, the uncertainty
could be altered. One could assess the maximum acceptable magnitude of the
uncertainties and use it as specification for the creation of an engine or sensors.
Lastly, if the open loop enclosure respects all the constraints, then it might not be
necessary to elaborate a closed loop regulator.

Of course, these statements hold true as long as the model with uncertainties is
accurate. If parameter uncertainties have been under-estimated or if the model has
neglected a phenomenon, then there is no guarantee that the system will remain in
the enclosures.

6.2 Generalizing to Goddard’s problem

The double integrator with quadratic cost was considered because it is used to
initialize a continuation method to solve Goddard’s problem [4, 5].

In a similar manner to a continuation method, there are two steps to bridge
the gap between the double integrator and Goddard’s problem. First non linear
systems have to be addressed. We need to simulate non linear problems and their
resolvent, which is costly. Then state dependent transitions and variable time
horizons will need to be modeled and enclosed. This means being able to enclose
the evolution of a hybrid system, if possible in a manner that does not induce a
significant over-approximation. This also makes the computation of the resolvent
more challenging.

In addition to that, Goddard’s representation of a spacecraft is in dimension
seven. As a consequence, tiling may no longer be used to improve the precision of
Algorithm 2. An entirely new method may be needed.
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7 Conclusion

In this paper, a resolution tool was proposed for optimal control problems with
embedded uncertainties. This resolution tool is used to compute three enclosures,
an anticipative enclosure containing all possible solutions of the optimal control
problem, and open-loop and closed loop enclosures that bounds the trajectory of a
concrete system that uses this problem as a controller. These enclosures can show
the deviation caused by the uncertainties, identify the critical zone that could be
crossed or more generally assess the relevance of a given optimal control problem.

In later works, we will try to improve our method until it can reliably compute
these enclosures for a problem as complex as Goddard’s.
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