
Acta Cybernetica 25 (2022) 647–675.

Strongly Possible Functional Dependencies for SQL∗

Munqath Alattarab and Attila Saliac

Abstract

Missing data is a large-scale challenge to research and investigate. It
reduces the statistical power and produces negative consequences that may
introduce selection bias on the data. Many approaches to handle this prob-
lem have been introduced. The main approaches suggested are either missing
values to be ignored (removed) or imputed (filled in) with new values [14].
This paper uses the second method. Possible worlds and possible and certain
keys were introduced in [22, 25], while certain functional dependencies (c-FD)
were introduced in [23] as a natural complement to Lien’s class of possible
functional dependencies (p-FD) by [26], and Weak and strong functional de-
pendencies were studied in [25]. The intermediate concept of strongly possible
worlds introduced in a preceding paper [3] and results in strongly possible keys
(spKey’s) and strongly possible functional dependencies (spFD’s) were stud-
ied. Also, a polynomial algorithm to verify a single spKey was given and it
was shown that it is NP-complete in general to verify an arbitrary collection
of spKeys. Furthermore, a graph-theoretical characterization was given for
validating a given spFD X →sp Y .

We show, that the complexity to verify a single strongly possible func-
tional dependency is NP-complete in general, then we introduce some cases
when verifying a single spFD can be done in polynomial time. As a step
toward axiomatization of spFD’s, the rules given for weak/strong and cer-
tain functional dependencies are checked. Appropriate weakenings of those
that are not sound for spFD’s are listed. The interaction between spFD’s
and spKey’s and certain keys is studied. Furthermore, a graph theoretical
characterization of implication between singular attribute spFD’s is given.

∗Research of the second author was partially supported by the National Research, Development
and Innovation Office (NKFIH) grants K–116769, K–132696 and SNN-135643. This work is also
supported by the National Research, Development and Innovation Fund (TUDFO/51757/2019-
ITM, Thematic Excellence Program), the BME NC TKP2020 grant of NKFIH Hungary and it
is also connected to the scientific program of the ”Development of quality-oriented and harmo-
nized R+D+I strategy and functional model at BME” project, supported by the New Hungary
Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

aDepartment of Computer Science and Information Theory, Budapest University of Technology
and Economics, Hungary

bInformation Technology Research and Development Center, University of Kufa, Iraq, E-mail:
m.attar@cs.bme.hu, ORCID: 0000-0002-4673-4902

cAlfréd Rényi Institute of Mathematics, Budapest, Hungary, E-mail: sali.attila@renyi.hu,
ORCID: 0000-0002-4837-6360

DOI: 10.14232/actacyb.287523

648 Munqath Alattar and Attila Sali

Keywords: strongly possible functional dependencies, strongly possible keys
NULL values, data imputation, matchings in bipartite graphs, list coloring

1 Introduction

Incomplete data in databases are allowed in many of the modern systems. For
example, when raw data is collected from different sources in data warehousing,
some of the attributes may be available in some of the sources and may not be in
some others. For this reason, it is important to treat constraints over incomplete
tables. Aliriza et al. [12] showed that encountering up to half of the data values
missing is common. So using analysis methods that work only with complete data
tables makes mining the data more complicated.

Incompleteness occurs in database tables for different reasons. Date [10] iden-
tified seven types of NULL’s as follows: value not applicable, value unknown, value
does not exist, value undefined, value not valid, value not supplied, and value is the
empty set. We consider the second, third, and seventh types as this paper deals
with data consumption in an incomplete database table. We consider the symbol
N/A for the other types of missing data and we assume it belongs to each domain
and it is considered as a regular domain value for comparisons and analysis.

Missing values problem complicates data analysis. It also causes a loss of data ef-
ficiency and effectiveness [14]. Although some data analysis approaches get over the
problem of incomplete databases, still most approaches require complete databases.
To overcome the missing data problem, there are mainly two main methods, either
ignoring the incomplete tuples or filling them with domain values chosen by some
heuristics. [14].

Possible worlds, introduced by Köhler et al. [22], are obtained by replacing
each missing data value with a value from its attribute’s domain, which can be
infinite. For an incomplete table, every possible world is a complete table that may
contain some duplicated tuples. They defined a possible (certain) keys as a key that
are satisfied by some (every) possible world of a (non-total) database table. For
example, the table in Table 2a satisfies the possible key {Course Name} as there
is a possible world that satisfies it, and every possible world of the table satisfies
the certain key {Course Name, Y ear, Semester}. Furthermore, no possible world
of the table satisfies the key {Lecturer}. Weak (strong) functional dependencies
were defined by [25] as FD’s that are satisfied by some (every) possible world. The
table in Table 1a satisfies the strong FD 2(Name mrg status→ gender) because
every possible world satisfies it, and the weak FD �(mrg status → gender), as
there exist some possible worlds, but not all, satisfying the implication.

Most often, especially when the attribute’s domain is not known, there is no
reason to consider any other attribute value than the already existing values of the
table. Types of cars, diagnoses of patients, applied medications, dates of exams,
course descriptions, etc, are some examples. For that, the strongly possible world is

Strongly Possible Functional Dependencies for SQL 649

Table 1: Possible and Strongly Possible Worlds

(a) Incomplete Table

Name gender mrg status age

⊥ female married 32

Sarah female ⊥ ⊥
David ⊥ divorced 38

James male single ⊥
James male widower 47

(b) Possible World

Name gender mrg status age

30 female married 32

Sarah female lawyer high

David Apple divorced 38

James male single -12

James male widower 47

(c) Strongly Possible World

Name gender mrg status age

David female married 32

Sarah female single 32

David male divorced 38

James male single 38

James male widower 47

defined as a possible world achieved by substituting each occurrence of NULL with
a value from the corresponding attribute’s existing values [3]. Strongly possible
key(FD) is a key(FD) that satisfied by a strongly possible world. Values that are
shown in each attribute of a table represent a part of that attribute’s domain.
When the attribute domain is unknown, choosing values out of its real domain to
fill in a NULL may distort the data. For example, it would be unsuitable using value
other than the ones appearing in the marriage status attribute to fill the ⊥ in the
second row in Table 1a. Other values like numbers, symbols, or any other strings
with distant meanings may cause distortion. Therefore, a more meaningful and

650 Munqath Alattar and Attila Sali

semantically acceptable possible (strongly possible) world would be provided using
one of the already shown values in the attribute. As the possible world in Table 1c
is preferred to the one in Table 1b. Strongly possible worlds were introduced by
[3] where strongly possible keys (spKey’s) were studied. The natural extension to
strongly possible functional dependencies was investigated in [4].

1.1 Contributions

In the present paper, we study spFD’s that were earlier introduced in [4, 5] as a
generalized version of functional dependency constraint using the visible domain
concept and we continue the work started in [3]. We provided a graph-theoretical
condition for the spFD satisfaction in [4]. We give a list of axioms of weak/strong
and certain FD’s that are sound for spFD’s, as well and describe several possible
sound weakenings for those that are not sound. Interactions between spKeys and
strongly possible FDs/certain FDs are investigated, and also the spFD’s between
singular attributes are studied. The main contributions of this paper are as follows:

• We analysed the properties of strongly possible keys and introduced a (worst-
case exponential time) algorithm to verify a single spKey in [3]. A polynomial-
time solution for the same problem is given and we show that verifying an
arbitrary system of strongly possible keys is NP-complete, thus resolving an
open problem from [3].

• A graph-theoretical characterization was given in [4] to verify when spFD
X →sp Y holds in an SQL table T containing NULL’s. We use that here
to show that the satisfaction problem for a single spFD X →sp Y is NP-
complete.

• We give a list of the axioms of Weak/Strong and Certain FD’s that are sound
for spFD’s, with several possible weakenings or restrictions that keep sound-
ness for those that are not sound.

• An interaction between the spKeys and sp/c-FDs is studied and the weakening
and transitivity rules are introduced.

• We analyzed the case when the spFD’s are restricted to singular attributes.
A complete characterisation of the implication problem of this special case is
given based on the fact that all the possible extensions of any NULL occur-
rences are shown in the table.

1.2 Paper structure

The organization of this paper is as follows. Section 2 contains the necessary defi-
nitions. Section 3 discusses related work. Algorithmic and complexity questions of
strongly possible keys and strongly possible functional dependencies are introduced
in Section 4. In section 5, some spFD’s implication properties are studied. First
the case if one side of an spFD is fixed is treated. Then sound implication rules for

Strongly Possible Functional Dependencies for SQL 651

spFD’s are listed. The proof of their correctness are given in [5]. Then the special
case of spFD’s between single attributes is treated using graph theoretical methods.
Finally, Section 6 contains concluding remarks and future research directions.

2 Definitions

In this section, we recall some basic definitions introduced in [4]. Let R =
{A1, A2, . . . An} be a relation schema. The set of all the possible values for each
attribute Ai ∈ R is called the domain of Ai and denoted by Di = dom(Ai) for i =
1,2,. . . n.

An instance T = (t1,t2, . . . ts) over R is a list of tuples that each tuple is a
function t : R →

⋃
Ai∈R dom(Ai) and t[Ai] ∈ dom(Ai) for all Ai in R. Note that

this definition of tuples emphasizes that the order of the attributes in schema R
is irrelevant and by taking a list of tuples we use the bag semantics that allows
several occurrences of the same tuple. For a tuple tr ∈ T and X ⊂ R, let tr[X] be
the restriction of tr to X.

It is assumed that ⊥ is an element of each attribute’s domain that denotes
missing information. tr is called V -total for a set V of attributes if tr[A] 6= ⊥,
∀A ∈ V . Also a tuple tr is a total tuple if it is a R-total. t1 and t2 are weakly
similar on X ⊆ R denoted as t1[X] ∼w t2[X] defined by Köhler et al. [22] if:

∀A ∈ X (t1[A] = t2[A] or t1[A] = ⊥ or t2[A] = ⊥).

Furthermore, t1 and t2 are strongly similar on X ⊆ R denoted by t1[X] ∼s t2[X]
if:

∀A ∈ X (t1[A] = t2[A] 6= ⊥).

For the sake of convenience, we write t1 ∼w t2 if t1 and t2 are weakly similar on
R and use the same convenience for strong similarity. Thus, if t1 and t2 are both
weakly similar to a NULL-free tuple t, then t1 ∼w t2. This is true because both of
the non-total tuples t1 and t2 could be extended to be equal to the total tuple t.

Let T = (t1, t2, . . . ts) be a table instance over R. T ′ = (t′1, t
′
2, . . . t

′
s) is a possible

world of T , if ti ∼w t′i for all i = 1, 2, . . . s and T ′ is completely NULL-free. That is,
we replace the occurrences of ⊥ = t[Ai] with a value from the domain Di different
from ⊥ for all tuples and all attributes.

Weak functional dependency 3X → Y holds in T if there exists a possible world
T ′ such that T ′ |= X → Y in the classical sense, that is functional dependency
X → Y holds in T ′ meaning that if t′i[X] = t′j [X] then t′i[Y] = t′j [Y] is satisfied, for
all pairs of tuples t′i, t

′
j ∈ T ′. Strong functional dependency 2X → Y holds in T if

functional dependency X → Y holds in all possible worlds T ′ of T . X is a possible
key if there exists a possible world T ′ such that X is a key in T ′, and X is a certain
key if it is a key in every possible world of T . The following was proven in [22].

Theorem 1. X ⊆ R is a certain (possible) key iff

∀t1, t2 ∈ T : t1[X] 6∼w t2[X] (t1[X] 6∼s t2[X]).

652 Munqath Alattar and Attila Sali

Table 2: Complete and Incomplete Datasets

(a) Incomplete Dataset

Course Name Year Lecturer Credits Semester

Mathematics 2019 ⊥ 5 1

Datamining 2018 Sarah 7 ⊥
⊥ 2019 Sarah ⊥ 2

(b) Complete Dataset

Course Name Year Lecturer Credits Semester

Mathematics 2019 Sarah 5 1

Datamining 2018 Sarah 7 2

Datamining 2019 Sarah 7 2

2.1 Strongly possible worlds

The concepts of visible domain and strongly possible world were introduced in [3].

Definition 1. The visible domain of an attribute Ai (V Di) is the set of all distinct
values except ⊥ that are already used by tuples in T :

V Di = {t[Ai] : t ∈ T} \ {⊥} for Ai ∈ R

For example, the visible domain of the Credits attribute in Table 2a is {5, 7}.
So, for any dataset with no information about the attributes’ domains, we define
their structure and domains by the data itself. It is more reliable and realistic when
considering only what information we have in a given dataset and depending on
extracting the relationship between data to overcome the missing data problem.
Strongly possible worlds are obtained by using the visible domain values in place
of the occurrence of NULL’s.

Definition 2. A possible world T ′ of T is called strongly possible world (spWorld)
if t′[Ai] ∈ V Di for all t′ ∈ T ′ and Ai ∈ R.

We defined strongly possible keys (spKey’s) and strongly possible functional de-
pendencies (spFD’s) in [3, 4] respectively by strongly possible worlds as follows.

Definition 3. Strongly possible functional dependency X →sp Y holds in table T
over schema R if there exists an spWorld T ′ of T such that T ′ |= X → Y . X is a
strongly possible key if there exists an spWorld T ′ of T such that X is a key in T ′,
in notation sp〈X〉. Note that this is not equivalent to spFD X →sp R since we use
the bag semantics.

Strongly Possible Functional Dependencies for SQL 653

In Table 2a, the spKey of the two attributes {Course Name, Year} is satisfied,
and so is the spFD CourseName→sp Semester, as the strongly possible world in
Table 2b shows it.

For a schema R, the NULL-free subschema (NFS) is a subset RS ⊆ R that
corresponds to SQL’s NOT NULL constraint. A table T over R satisfies NFS RS if
it is RS-total, that means every tuple t ∈ T is RS-total (∀A ∈ RS : t[A] 6= ⊥). If
T satisfies NFS RS , then we say T is over (R,Rs). Also, if Σ is a set of integrity
constraints (for example spFD’s), then a table T over (R,Rs) is an Armstrong
instance of Σ if

(1) T |= σ ⇐⇒ Σ |= σ for any constraint σ, and

(2) ∀A ∈ R \RS , ∃t ∈ T such that t[A] = ⊥.

This is the classical Armstrong instance extended by requiring that if an attribute
is not in the NULL-free subschema, then it certainly contains NULL’s.

3 Related work

Keys and functional dependencies are two main constraints that enforce the se-
mantics of relational databases. Database tables of real database systems usually
contain occurrences of null values and for some cases, this happens in candidate key
columns. Many studies have been done on handling the missing values problem.

Aliriza et.al. introduced a framework of imputation methods in [14] and evalu-
ated how the selection of different imputation methods affected the performance in
[12]. Experimental analyses of several algorithms for imputation of missing values
were provided by [16, 13, 2, 7]. An approach introduced by Zhang et.al. discussed
and compared different approaches that use only known values [29].

Sree [11] suggests that it is necessary to substitute the missing values with
values based on other information in the dataset to overcome the biased effects
that affect the accuracy of classification. Likewise, for each NULL in an attribute,
we use the attribute’s existing values. Cheng et.al.[8] used a clustering algorithm to
cluster data and calculate coefficient values between different attributes producing
the minimum average error.

Interactions of functional dependencies and other integrity constraints with null
values have long been studied. Early investigations focused on “fixing” the database
using the Chase procedure, such as Grahne did in [15]. Imlienski and Lipski [19]
also investigated the properties of Chase concerning NULL’s. Kiss and Márkus [21],
provided a chase procedure for functional and inclusion dependencies to provide
graph manipulation rules for dependency inference.

The two most used interpretations of NULL’s are “value unknown at present”
and “no information”. The first one leads to possible world semantics that is NULL’s
are substituted by domain values to obtain total tables. A three-valued model of
FD satisfaction is given by Vassilou [27]. It takes into account that all possible
words of a table T are considered and a functional dependency either holds, does

654 Munqath Alattar and Attila Sali

not hold or may hold on T . This latter means that in some possible worlds it
holds, and in some other ones it does not hold. Fuzzyness is naturally associated
with imperfect information. For fuzzy relational databases, the truth value of FD’s
was studied by Achs and Kiss in [1] Levene and Loizou defined weak and strong
functional dependencies based on possible world concept. A weak FD holds in some
of the possible worlds and a strong FD holds in all possible worlds. A sound and
complete axiom system is given for them in [25].

Both of unknown, as well as non-existing data can be treated by the “no in-
formation” approach. Lien [26] defined functional dependencies that hold if strong
similarity on the LHS implies equality on RHS. The equality here means that when
two tuples are equal on an attribute, if the attribute value is NULL in one tuple,
then the other tuple must also be NULL in the same attribute. This dependency is
same as the possible FD (p-FD) of Köhler and Link [23]. The novelty of the latter
paper is the concept of certain functional dependencies. A c-FD holds if the weak
similarity on LHS implies equality on the RHS, and the equality here is defined
in the same way as the equality of attribute values on RHS of p-FD’s. An axiom
system for functional dependencies with NULL’s was given by Atzeni and Morfuni
[6], but the drawback was that they allowed no NULL’s on the LHS.

Levene and Loizou introduced weak and strong FD’s, where weak (strong) func-
tional dependency is satisfied if it holds in some (every) possible world [25]. We
also used the possible world semantics to introduce our strongly possible functional
dependency and it fits between weak and strong FD’s. Let suppose we have a table
instance with at least one non-NULL value is there in each attribute, then a c-FD
X w → Y satisfaction implies the satisfaction of the spFD X →sp Y . But the
satisfaction of X →sp Y does not imply the satisfaction of the p-FD X s → Y .
For example, Y ear →sp Credits is satisfied in Table2a, while Y ear s → Credits is
violated. Example 1 shows a brief comparison of the different functional dependen-
cies. This example is shown in [4], we repeat it here after fixing a typo appearing
in the conference version.

Example 1. Let T be the following SQL table.

employee dept manager salary

Knuth NULL Chomsky 100,000

Turing CS von Neumann NULL

Turing NULL Gödel NULL

In the following table, we compare the six types of FD’s shown in the SQL table:
3-valued [27], weak and strong [25], possible [26], certain [23] and strongly possible
functional dependencies (spFD’s).

Strongly Possible Functional Dependencies for SQL 655

3-valued weak strong possible certain spFD

e→ d unknown T F F F T

e→ m F F F F F F

e→ s unknown T F T T T

d→ d T T T T F T

d→ m unknown T F T F F

m→ e T T T T T T

m→ d T T T T T T

Possible and certain keys were introduced by Köhler et. al. [22], such that a
set K of attributes is a possible (certain) key if it is a key in some (every) possible
world. The ”strongly possible” concept of the present paper is in between of these
two, where a strongly possible world is a possible world also. As possible worlds
may use any value from an attribute domain to substitute a NULL it may allow
an infinite set of values. On the other hand, strongly possible worlds allow only a
finite set of values and created from finite attribute domains. Some of the results
in [22] assume that some attribute domains are infinite. In this paper, we study
the dependencies without that assumption.

Imielinski [18] introduced the construction of OR-relations which is another
closely related concept to our spFD’s. An OR-tuple over schema R(A1, A2, . . . , An)
is a mapping t : R → ∪ni=1P0(dom(Ai)) such that t[Ai] ∈ P0(dom(Ai)), where
P0(X) is the collection of finite subsets of set X. An OR-relation r is a bag of OR-
tuples and a possible world r′ for r is a collection of tuples t′ such that t′[Ai] ∈ t[Ai]
for all t ∈ r. A wFD 3X → Y is satisfied by an OR-relation r iff there is a possible
world r′ of r such that r′ |= X → Y . Hartmann and Link already noted in [17]
that Union rule does not hold for wFD’s in OR-relations. Our strongly possible
world concept can be modelled by OR-relations in such a way that if t[Ai] = ⊥ for
some tuple in an SQL table T , then t[Ai] is replaced by the OR-set V D(Ai), the
visible domain of Ai. So strongly possible worlds and spFD’s can be considered as
special cases of possible worlds of OR-relations and wFD’s in them. Our analysis
shows, that most of the classical implication rules, axioms do not hold even in this
special case.

Finally, Wei and Link [28] aim to define a solid generalization of functional
dependencies that do not rely on the interpretation of NULL’s. Also, the two papers
[23, 28] studied the databases normalization based on the appropriate functional
dependencies. It is a future research topic on how our spFD’s could be applied
for normalization, as normalization is important to eliminate redundancy that may
cause inconsistency at updates.

656 Munqath Alattar and Attila Sali

4 Algorithmic and complexity questions

In this section the complexity questions connected to strongly possible keys and
strongly possible functional dependencies are studied. The main problems are NP-
complete in general, but several important special cases can be solved in polynomial
time.

4.1 Strongly possible keys

Following is the algorithmic question we study here. Let T be a SQL table and
Σ be a collection of strongly possible key constraints, does T |= Σ hold? We may
assume, without loss of generality, that there exists at least one spWorld for every
treated table. This is a reasonable assumption, as the non-existence of an spWorld
happens only if a table contains only NULL’s in an attribute.

In [3], an algorithm is given using bipartite matchings for the case when a single
spKey needs to be checked, i.e, Σ = {sp〈K〉}. If K = {A1, A2 . . . Ab}, then the
running time of that algorithm is O(|R|(|T |+ |T ?|)) +O((|T |+ |T ?|)|E|), where T ?

is the set of total tuples T ? = {t? ∈ Πb
i=1V Di : ∃t ∈ T such that t[K] ∼w t?[K]}.

However, the size of T ? can be an exponential function of size of T . In [4], we gave
a polynomial-time refinement of that algorithm. The refined algorithm states that
if a single spKey sp〈K〉 is to be checked, then considering T |K is enough, because
of K is a key if and only if the tuples are pairwise distinct on K. Next proposition
was introduced in [3], it gave a sufficient condition to determine the satisfaction
of a given spKey. Let us assume that T ? ⊆ V D1 × V D2 × . . . × V Db is defined
by T ? = {t? ∈ V D1 × V D2 × . . . × V Db : ∃t ∈ T : t[K] ∼w t?}, and define a
bipartite graph G = (T, T ?;E) with {t, t?} ∈ E ⇐⇒ t[K] ∼w t?[K]. Note that we
use here the standard bipartite graph notation, T and T ? are the partite classes.
Propositions 1, 2 and 3, Theorem 2, and Algorithm 1 were proven in [4]. We repeat
them here to be self-contained.

Proposition 1. T |= sp〈K〉 holds if and only if there exists a matching in G =
(T, T ?;E) covering T .

We may resort to generating only part of T ? to ensure that the algorithm will
run in polynomial time. Let T = {t1, t2 . . . tm} and `(ti) = |{t? ∈ V D1×V D2×. . .×
V Db : t? ∼w ti[K]}|. Note that `(ti) =

∏
j : ti[Aj]=⊥ |V Dj |, then these values can be

calculated by scanning T once and using appropriate search tree data structures to
hold values of visible domains of each attribute. Sort tuples of T in non-decreasing
`(ti) order, i.e. assume that `(t1) ≤ `(t2) ≤ . . . ≤ `(tp). Let j = max{i : `(ti) < i}
and Tj = {t1, t2, . . . tj}, and furthermore, T ?

j = {t? : ∃t ∈ Tj : t? ∼w t[K]} ⊆
V D1×V D2× . . .×V Db. Note that |T ?

j | ≤ 1
2j(j− 1). If ∀i = 1, 2, . . . ,m : `(ti) ≥ i,

then define j = 0 and T ?
j = ∅.

Proposition 2. T |= sp〈K〉 holds if and only if j = 0 or there exists a matching
in G′ = (Tj , T

?
j ;E|Tj×T?

j
) covering Tj.

Strongly Possible Functional Dependencies for SQL 657

Proposition 2 was proven in [4] and it gives the basis of a polynomial-time
algorithm to determine whether T |= sp〈K〉 holds or not.

Algorithm 1 Verifying T |= sp〈K〉

Input: Table T over schema R, K ⊆ R
Output: Strongly possible world T ? showing T |= sp〈K〉 if exists

1: procedure spKey(item T , item R, item K)
2: Calculate `(t) : t ∈ T
3: Sort Ti in non-decreasing `(ti) order
4: j ← max{i : `(ti) < i}
5: Construct bipartite graph G′ = (Tj , T

?
j ;E|Tj×T?

j
)

6: M = MaxMatching(G′)
7: if |M | < j then return T 6|= sp〈K〉
8: T ? ←M ∩ T ?

j

9: for k = j + 1 to |T | do
10: Generate t?k 6∈ T ? such that tk ∼w t?k
11: T ? ← T ? ∪ {t?k}
12: end for
13: return T ?

14: end if
15: end procedure

Algorithm 1 was introduced in [4] and its running time is O(|K| · |T | log |T | +
|T |5). Theorem 2 shows that the spKey problem is NP-complete in general, and its
proof is in [4]. We reduced the problem of deciding whether T |= Σ for a collection Σ
of spKey constraints to the problem of finding the maximal common independent
set of three or more matroids in [3]. This matroid intersection problem is NP-
complete, however the reduction given was not one-to-one, so it did not prove, just
hinted the NP-completeness of spKey problem. Finally, by modifying an argument
of [22], we could prove the following theorem in [4] by a Karp-reduction of 3SAT
to our problem.

Theorem 2. The strongly possible key satisfaction problem is NP-complete.

In some special cases, T |= Σ can be verified in polynomial time, where Σ is a
collection of strongly possible key constraints, as the following Proposition shows.

Proposition 3. Let us assume that T is a table over schema R, furthermore let Σ =
{sp〈K1〉, sp〈K2〉, . . . , sp〈Km〉} be a collection of spKey constraints. If Ki ∩Kj = ∅
for i 6= j, then T |= Σ can be decided in polynomial time.

658 Munqath Alattar and Attila Sali

4.2 Graph theoretical characterization of strongly possible
functional dependencies

In this section, we introduce a graph-theoretical characterization that determines
when T |= X →sp Y . Recall that for a table T over Schema R T |= X →sp

Y if and only if there exists an spWorld T ′ of T such that T ′ |= X → Y . If
T = {t1, t2, . . . , tp} and T ′ = {t′1, t′2, . . . , t′p} with ti ∼w t′i, then t′i is called an
sp-extension or in short an extension of ti. Let X ⊆ R be a set of attributes and
let ti ∼w t′i such that for each A ∈ R : t′i[A] ∈ V D(A), then t′i[X] is a strongly
possible extension of ti on X. We exclude any attribute with all NULL values,
because the visible domain for such attribute is the empty set. We recall the weak
similarity graph [4], as a useful tool in investigations of strongly possible functional
dependencies (spFD’s in short).

Definition 4. Let T = {t1, t2, . . . tp} be a table (instance) over schema R. The
weak similarity graph GY with respect to Y ⊆ R is defined as GY = (T,E), where
{ti, tj} ∈ E ⇐⇒ ti[Y] ∼w tj [Y].

Theorem 3 characterizes using weak similarity graphs when T |= X →sp Y
holds. The theorem was proved in [4].

If T |= X →sp Y , then there exists an spWorld T ′ of T such that T ′ |= X → Y .
This latter one holds iff whenever t′1[Y] 6= t′2[Y] then t′1[X] 6= t′2[X] is also satisfied.
Now, if t1, t2 ∈ T are such tuples that t1[Y] 6∼w t2[Y], then certainly t′1[Y] 6= t′2[Y]
holds in any spWorld T ′. That is, in order to T |= X →sp Y hold t′1, t

′
2 must also

satisfy t′1[X] 6= t′2[X]. Recall that by Definition 4, t1[Y] 6∼w t2[Y] holds exactly
when {t1, t2} is an edge in the complement of the weak similarity graph GY . We
may think about t′i[X]’s as colors assigned to vertices of GY and then we obtain
that this coloring must be proper. Now colors that can be assigned to vertices come
from lists special to vertices, namely from the sets strongly possible extensions of t
on X. Let T be a table over schema R, t ∈ T and X ⊆ R. t′ is a strongly possible
extension of t on X if t[X] ∼w t′[X], t′ is X-total and ∀Xi ∈ X : t′[Xi] ∈ V DXi

.
The following theorem introduced in [4] characterizes when T |= X →sp Y holds
using weak similarity graphs. It tells us that the existence of proper coloring of GY

using the lists determined by the strongly possible extensions on X is a necessary
and sufficient condition for T |= X →sp Y to hold.

Let G(V,E) be a graph and L : V → 2N be a mapping that assigns each vertex
a list of colors L(v). A list coloring of G using lists {L(v) : v ∈ V } is a mapping
c : V →

⋃
v∈V L(v) such that c(v) ∈ L(v) and c(u) 6= c(v) if {u, v} ∈ E. We use

Theorem 3 in proofs of sound interference rules.

Theorem 3. Let T = {t1, t2 . . . tm} be a table over schema R. For X,Y ⊆ R,
T |= X →sp Y holds iff GY can be list colored using lists {t1i , t2i . . . t

ri
i } for ti ∈ T ,

where GY is the complement of the weak similarity graph on Y and tji ’s are the
strongly possible extensions of ti on X.

Table 3 illustrates that sets of tuples that are pairwise weakly similar on Y form
a weak similarity clique. Now, tuples from a given clique have a unique non-NULL

Strongly Possible Functional Dependencies for SQL 659

value in each attribute of Y , unless they all contain NULL in that attribute. In both
cases, there is a way to extend each tuple that tuples in the same clique become
identical on Y . So those tuples that are in one weak similarity clique on Y can
be list colored by the same color on X so that T |= X →sp Y . Note that weak
similarity cliques of GY are independent vertex sets in GY .

Table 3: Color classes and weak similarity cliques.

X Y[
Same color

] [
Weak Similarity Clique

]

[
Same color

] [
Weak Similarity Clique

]

[
Same color

] [
Weak Similarity Clique

]

4.3 Complexity of strongly possible functional dependencies

List coloring problem is NP-complete even if all lists have length three [24]. This
suggests that deciding whether a given spFD is satisfied in an SQL table is NP-
complete even if all the tuples have a maximum of three extensions. However, it
is not obvious the ”intractable cases” of list coloring problem really correspond to
spFD-satisfaction, so we give a direct proof of NP-completeness.

Definition 5. The spFD-Satisfaction problem is defined as follows.

Input: An SQL-table T over schema R, X,Y ⊆ R.

Question: Does T |= X →sp Y hold?

Theorem 4. The spFD-Satisfaction problem is NP-complete.

Proof. spFD-Satisfaction is in NP, since an spWorld T ′ of T such that T ′ |=
X → Y is a good witness. It is clearly of polynomial size of the input and whether
T ′ |= X → Y holds can be checked in polynomial time by pairwise comparisons of
tuples.
In order to prove that spFD-Satisfaction is NP-hard a Karp-reduction from
3-Color to spFD-Satisfaction is given. Let G = (V,E) be an input of 3-
Color with V = {v1, v2, . . . , vn}. An SQL table T is constructed over schema
R = {A0, A1, . . . , An} of n+ 1 tuples and X = {A0} and Y = {A1, A2, . . . , An} is
set so that the complement GY of the weak similarity graph on Y is isomorphic

660 Munqath Alattar and Attila Sali

to G plus three isolated vertices. Let t1, t2, . . . , tn be defined by induction on i as
follows. t1[A1] = 1. If t1, t2, . . . , ti are defined for A1, A2, . . . , Ai, then let

ti+1[Aj] =

 ⊥ if 1 ≤ j ≤ i
1 if j = i+ 1

furthermore, for j = 1, 2, . . . , i

tj [Ai+1] =

 2 if {vj , vi+1} ∈ E(G)

⊥ if {vj , vi+1} 6∈ E(G)

Finally, let tn+k be defined for k = 1, 2, 3 as tn+k[A0] = k, tn+k[Aj] = ⊥ for
j = 1, 2, . . . , n. Obviously, T can be constructed from G in polynomial time. Our
claim is that G is 3-colorable iff T |= X →sp Y . Indeed, tn+k for k = 1, 2, 3 are
isolated vertices in GY , so GY is list-colorable with extensions of tj over X iff GY

restricted to W = {t1, t2, . . . , tn} is list-colorable. Observe that GY |W is isomorphic
to G = (V,E), Indeed, for 1 ≤ i < j ≤ n ti[Y] 6∼w tj [Y] if {vi, vj} ∈ E(G), because
ti[Aj] = 2 and tj [Aj] = 1, on the other hand if {vi, vj} 6∈ E(G), then ti[Aj] = ⊥
and tj [Aj] = 1, ti[Ai] = 1 and tj [Ai] = ⊥, furthermore ti[A`], tj [A`] ∈ {⊥, 2} for
` 6∈ {i, j}. Finally, V DX = {1, 2, 3}, so the list of extensions of ti on X is {1, 2, 3}
for all 1 ≤ i ≤ n+3. Thus any proper list coloring of GY with extensions of ti on X
gives a 3-coloring of G, and vice versa, any 3-coloring of G can easily be extended
to a proper list coloring of GY with extensions of ti .

However, this problem can be solved in polynomial time for some special cases.
Complete graphs can be reduced to the verifying spKey problem, as the following
proposition shows.

Proposition 4. T |= X →sp Y can be decided in polynomial time if GY is a
complete graph.

Proof. As GY is a complete graph, then the tuples are pairwise distinct by some
non-NULL value on Y , then, all the tuples in T should be pairwise distinctly colored
on X to satisfy the spFD X →sp Y . That is, T |= X →sp Y ⇐⇒ T |= sp〈X〉 that
can be checked in polynomial time using Algorithm 1.

Greedy algorithm can be applied to find a proper list coloring of a graph G =
(V,E) if for ∀v ∈ V the list size of v is at least dG(v) + 1. This can naturally be
applied in our context, as well, that is T |= X →sp Y can be decided in polynomial
time if ∀t ∈ T , number of all extensions of t on X is larger than the number of
weakly similar tuples to t on Y .
In order to apply list coloring, first the lists should be generated. However, the
number of X-extensions of t of a tuple t ∈ T may easily be exponential function of
the size of the input as it was seen in Section4.1. This obstacle can be overcome
by the following observation since it is enough to generate at most ∆(GY) + 1
X-extensions for each tuple t.

Strongly Possible Functional Dependencies for SQL 661

Proposition 5. There exists a list coloring with the lists generated for each tuple
of size less than or equal ∆(GY) + 1 if and only if there exists list coloring with full
lists.

Proof. ⇒ Indeed, same list coloring can be used.
⇐ Assume there exists list coloring with full lists. And let {t1, t2, . . . , tr} be set of
tuples with number of extensions on X at most ∆(GY) and let {tr+1, tr+2, . . . , ts}
be the set of other tuples. Take ∆(GY) + 1 elements lists for {tr+1, tr+2, . . . , ts}.
Then, keep the coloring of {t1, t2, . . . , tr} and then color {tr+1, tr+2, . . . , ts} using
greedy algorithm.

If GY is a tree, the list coloring problem can be solved using dynamic program-
ming techniques in polynomial time [20]. Generally, list coloring problem restricted
to graphs of maximum degree two, such as cyclic graphs, is polynomially solvable
[24].

Weak similarity graphs can be used on the LHS of an spFD in a special case.
Namely, if components of weak similarity graph GX with respect to X are cycles
of length at least 4, then T |= sp〈X〉, in particular for any Y ⊆ R, T |= X →sp Y
holds.

Proposition 6. If each connected component C of the weak similarity graph GX

with respect to X is a cycle of length ≥ 4, then sp 〈X〉 holds.

Proof. Let T = {t1, t2, . . . , tp} be a table over schema R such that each component
C of the weak similarity graph GX with respect to X is a cycle of length ≥ 4. We
need NULL-free tuples from t′i ∈ V D1 × V D2 × . . .× V Dn such that ti[X] ∼w t′i[X]
and t′i[X]’s are pairwise distinct in order to sp 〈X〉 hold. Since two tuples can only
have identical extensions on X if they are weakly similar on X, it is enough to
construct t′i[X]’s for each component of GX separately. If this single component is
a circle (t1[X] ∼w t2[X] ∼w t3[X] ∼w . . . ∼w tk[X] ∼w t1[X]), then any extension
of t2 is distinct on X from any extensions of t4 . . . tk. There exist A ∈ X such that
t1[A] 6= t3[A] and both t1[A], t3[A] 6= ⊥, because t1[X] 6∼w t3[X]. We need to make
t′2 different from t′1 and t′3, so that we can set t′2[A] = t3[A] and this distinguishes
it from t′1. Applying the same idea around the cycle, ti[X] ∼w ti+1[X] ∼w ti+2[X]
will make t′i and t′i+1 distinct.

5 Implications among strongly possible functional
dependencies

This section treats the implication properties of spFD’s. The cases when one side
of the dependency is a fixed attribute set is characterized, then axioms and rules
of weak, strong, possible and certain FD’s are analysed with respect to spFD’s. In
addition to that, the interactions with different key concepts are treated. Finally,
a complete characterization of the singular attribute case is given.

662 Munqath Alattar and Attila Sali

5.1 Strongly possible functional dependencies with one side
fixed

For T |= X →sp Y , fixing the left-hand side of the spFD, makes the right-hand sides
form a down-set, i.e, if Y ′ ⊂ Y , then T |= X →sp Y

′ also holds. We introduced
Proposition 7 in a proceedings paper [4], we repeat it here to fix an error in the
proof of that version. It shows that for fixed left-hand side of spFD’s, there is no
other restriction for the right-hand sides than forming a down-set.

Proposition 7. Let (R,RS) be a schema and X 6⊆ RS. Let Y be a down-set of
subsets of R\X. Then there exists a table T over (R,RS) such that T |= X →sp Y
holds iff Y ∩ (R \X) ∈ Y.

Proof. Let the maximal elements of Y be Y1, Y2, . . . , Ys, that is Y = {A : ∃i A ⊆ Yi}
and Yi 6⊆ Yj for i 6= j. Let A0 ∈ X \RS be a fixed attribute, and A1, A2, . . . An be
the other attributes of R. Table T contains tuples t0, t1, . . . ts such that

t0[Ai] =

 ⊥ if i = 0

0 if i > 0

and

ti[Aj] =

 0 if Aj ∈ Yi ∪X
i if Aj 6∈ Yi ∪X

for i = 1, 2, . . . , s and j = 1, 2, . . . , n

finally ti[A0] = i for i = 1, 2, . . . , s. So, the table is constructed as follows.

A0 A1 . . . An

⊥ 0 . . . 0

i 0 . . . 0 i . . . i︸ ︷︷ ︸
Yi ∪X

Y ∈ Y ⇐⇒ ∃1 ≤ iY ≤ s : Y ⊆ YiY , so FD X → Y holds in the spWorld
obtained by replacing ⊥ in t0[A0] by iY , because only tuples t0 and tiY can agree
in X. On the other hand, if Y 6∈ Y, then for every 1 ≤ i ≤ s there exists an
attribute Aji ∈ Y \ Yi, so whichever element i ∈ V DA0 is put in place of ⊥ in
t0[A0], we get that t0[X] = ti[X], but t0[Y] 6= ti[Y], hence T 6|= X →sp Y .

We can characterize the case of fixed right-hand side of an spFD as well, as it
is clear that for a fixed set Y ⊂ R, the collection of attribute sets X = {X : T |=
X →sp Y } forms an up-set, where T is a table over a schema R. However, this
condition is the only one we have. This is shown in Proposition 8 and Theorem 5
proved in [4]. We repeat them here for the sake of completeness.

Strongly Possible Functional Dependencies for SQL 663

Proposition 8. Let (R,RS) be a schema, Y ⊂ R be a fixed set of attributes,
furthermore let X be an upset of subsets of R \Y . Then there exists a table T over
(R,RS) such that T |= X →sp Y ⇐⇒ X ∈ X .

The proof uses the Armstrong instance construction for strongly possible keys
from [3].

Theorem 5. Suppose that Σ = {sp 〈K〉 : K ∈ K} is a collection of spKey con-
straints such that if |K| = 1, then K ⊆ RS. Then, there exists an Armstrong table
for (R,RS ,Σ).

5.2 Strongly possible functional dependencies axiomatisa-
tion

The first steps towards a possible axiomatisation of spFD’s were given in [5]. We
studied and analyzed the axioms of weak/strong FD’s given by Levene and Loizou
[25] and also the axioms of certain FD’s given by Köhler and Link [23] in context
of spFD’s. The investigation showed that some of these axioms are not sound for
spFD’s. Table 4 shows the axioms that are still sound for spFD’s and it also shows
several possible weakenings and restrictions that keep soundness for those that are
not. All proofs and counterexamples are detailed in [4, 5]. We repeat them in this
paper to be self-contained.

We may conclude from Table 4 that more than one spFD in the premise of a
rule usually cause problems in soundness. This is caused by the fact that a single
spWorld may not satisfy the different spFD’s due to the limitations of visible do-
mains. This problem must be handled for a complete axiomatization. Particularly,
the fact that composition rule is not sound in general makes usual proof methods
of completeness virtually unusable.

Table 4: spFD Axioms Soundness

Axiom spFD Soundness

Reflexivity Sound: If Y ⊆ X ⊆ R then T |= X →sp Y

Augmentation Sound: If T |= X →sp Y and W ⊆ R, then T |= XW →sp YW

Union

Not Sound: If T |= X →sp Y and T |= X →sp Z,
then T |= X →sp Y Z
Possible weakenings are:

• Strong FD Mixed-union:
If T |= 2X → Y and T |= X →sp Z, then T |= X →sp Y Z
or if T |= X →sp Y and T |= 2X → Z, then T |= X →sp Y Z

• Certain FD Mixed-union:
If T |= X →sp Y and T |= X w → Z, then T |= X →sp Y Z

• NULL-free union:
If T |= X →sp Y and T |= X →sp Z and X ⊆ RS ,
then T |= X →sp Y Z

664 Munqath Alattar and Attila Sali

Transitivity

Not Sound: If T |= X →sp Y and T |= Y →sp Z,
then T |= X →sp Z
Possible weakenings are:

• Strong FD Mixed-transitivity:
If T |= X2→ Y and T |= Y →sp Z or if T |= X →sp Y and
T |= 2Y → Z, then T |= X →sp Z.

• Certain FD Mixed-transitivity:
If T |= X →sp Y and T |= Y w → Z, then T |= X →sp Z

• Sp-transitivity:
If T |= X →sp Y and T |= Y →sp Z, and Y ⊆ Rs,
then T |= X →sp Z

Pseudo-
transitivity

Not Sound: If T |= X →sp Y and T |= Y Z →sp V ,
then T |= XZ →sp V
or if T |= X →sp Y Z and T |= Y →sp V , then T |= X →sp ZV
Possible weakenings are:

• Strong FD Mixed-pseudo-transitivity: If any of the given
spFD’s is strong FD, it is sound.

• Certain FD Mixed-pseudo-transitivity I:
If T |= X →sp Y and T |= XY w → Z, then T |= X →sp Z

• Certain FD Mixed-pseudo-transitivity II:
If T |= X →sp Y and T |= Y Z w → V , then T |= XZ →sp V

• NULL-free pseudo-transitivity: If T |= X →sp Y Z and
T |= Y →sp V and Y ⊆ RS , then T |= X →sp ZV .

Composition

Not Sound: If T |= X →sp Y and T |= A→sp B,
then T |= XA→sp Y B
Possible weakenings are:

• Mixed composition: If T |= 2X → Y and T |= A→sp B, or
if T |= X →sp Y and T |= 2A→ B, then T |= XA→sp Y B.

• NULL-free composition: If T |= X →sp Y and T |= A→sp B
and Y A ⊆ RS , then T |= XA→sp Y B.

• Disjoint composition: If T |= X →sp Y and T |= A→sp B
and X ∩A = ∅, then T |= XA→sp Y B.

Decomposition Sound: If T |= X →sp Y Z, then T |= X →sp Y and T |= X →sp Z.

5.2.1 sp-keys and sp-FD/c-FDs interaction

For a relation R, the ordinary functional dependency X → R implies that X is a
key in R, because duplicate rows are prohibited in the relational model [9]. On the
other hand, for an SQL table T , the spFD X →sp T does not imply the spKey
sp〈X〉, because duplicate rows are permitted in the bag semantics of data in SQL
tables.

Strongly Possible Functional Dependencies for SQL 665

We study interaction between sp-keys, certain keys, spFD’s and c-FDs in the
following.

• sp-key/spFD Weakening: sp〈X〉
(X→spY) ∀Y ⊆ R

Indeed, if there exists an spWorld such that all the tuples are pairwise distinct
on X, then X → R holds in that spWorld.

• certain key/spFD Transitivity:
(X→spY) c〈XY 〉

sp〈X〉
The certain key c 〈XY 〉 implies that all the tuples are not pairwise weakly
similar on XY . Then, for every two tuples, they either have distinct and
non-NULL values on X or on Y . But we have X →sp Y , then GY can be list
colored by X extensions, and we can extend the extensions of this coloring in
any way to R. So, by using this coloring, sp 〈X〉 is satisfied.
However, the sp-key/FD Transitivity true in following form is not sound:
(X→spY) sp〈XY 〉

sp〈X〉 . The reason is the fact that there will be a possibility of

encountering a weak similarity on X and distinctness on Y , as illustrated in
Table 5.

Table 5: sp-key/spFD Transitivity dissatisfaction

X Y

1 1 1

1 ⊥ 1

1 2 2

5.3 spFDs for singular attributes

Substituting a value from the visible domain in place of a ⊥ produces a duplication
in that attribute, since for a singular attribute, the visible domain represents all the
possible replacements for any ⊥ occurrence. For example, in Table 6, all possible
substitutions of the NULL in the second tuple on X are {1, 2, 3}, as they form V DA.
A singular attribute can only be an sp-key if there are no ⊥’s in that attribute.
However, spFD’s are possible between singular attributes with NULL’s. Any occur-
rence of a NULL in the LHS of an spFD for a singular attribute causes a duplication,
and this requires a corresponding duplication possibility on the RHS to satisfy the
spFD. In the example in Table 6, X →sp Y holds because, in the first and the third
tuples, there is a duplication possibility on Y for the NULL replacement on X in the
second tuple. On the other hand, Y 6→sp X holds, because any replacement for the
NULL in the third tuple on Y will not get a corresponding duplication possibility
on X.
In the present subsection, we study the case of singular attributes as a special case
of spFD implication. The following proposition shows a bidirectional property for
singular attributes spFD.

666 Munqath Alattar and Attila Sali

Table 6: spFD for Singular Attributes

X Y

1 1

⊥ 1

2 ⊥
3 2

Proposition 9. For singular attributes X and Y , if T |= X →sp Y and |V DX | =
|V DY |, then T |= Y →sp X

Proof. We may assume without loss of generality that V DX = {1, 2, . . . `}. Since
T |= X →sp Y , for every i ∈ {1, 2, . . . `} if t ∈ T is a tuple, then t[X] = i implies
that t[Y] = ai or t[Y] = ⊥. Also, let {b1, b2, . . . , br} ⊂ V DY be those pairwise
distinct visible domain values that satisfy t[Y] = bj ⇒ t[X] = ⊥. Assume that for
1 ≤ i ≤ k we have non-NULL ai such that there exists a tuple t with t[X] = i and
t[Y] = ai, that is, for k+1 ≤ j ≤ ` we have t[X] = j ⇒ t[Y] = ⊥. Table 7 shows the
possible types of tuples on {X,Y } If ai 6= aj for i 6= j, then by |V DX | = |V DY | we
have that r = `− k and the NULL’s can easily be substituted in these two columns
so that 1 ≤ i ≤ k is matched with ai and k+ 1 ≤ j ≤ ` is matched with bj−k so the
two columns are basically identical, that is Y →sp X holds. On the other hand,
if ai = aj for some i 6= j, then we have that r > ` − k since the sizes of divisible
domains of X and Y are the same. Consider a spWorld T ′ of T that satisfies
T ′ |= X → Y functional dependency. Such a T ′ exists, since T |= X →sp Y . Now,
the NULL’s in the tuples that have value bj in Y can only be substituted by values
from {k + 1, . . . `}, because for 1 ≤ i ≤ k there are tuples with non-NULL values
t[X] = i and t[Y] = ai. However, as r > ` − k, we must have 1 ≤ u < v ≤ r and
k + 1 ≤ j ≤ ` so that we have two tuples t, t′ with t[X] = t′[X] = j and t[Y] = bu
and t′[Y] = bv contradicting to T ′ |= X → Y .

Example 2. The table below shows an instance T with T |= X →sp Y and
|V DX | = |V DY | = 2. Value 2 in attribute X is shown only in t4 where t4[Y] = ⊥.
Then, to have |V DX | = |V DY |, we have value a2 in attribute Y is shown only
in tuples having ⊥ on X. Then, X and Y are two singular attributes satisfy a
bidirectional implication property.

Proposition 10. For singular X and Y , if T |= X →sp Y , then|V DX | ≥ |V DY |.

Proof. Let T ′ be a spWorld of T that satisfies functional dependency X → Y that
exists by T |= X →sp Y . Observe that the set of values appearing in column X of T ′

is V DX , while that of values appearing in column Y is V DY . Since if t′1[X] = t′2[X]
implies t′1[Y] = t′2[Y] for any t′1, t

′
2 ∈ T ′, the mapping f : V DY → V DX given by

f(v′) = v if there is a tuple t′ ∈ T ′ such that t′[X] = v, t′[Y] = v′ is well defined
and is an injection.

Strongly Possible Functional Dependencies for SQL 667

In the next proposition, we show the bidirectional implication of the spFD in
the singular attributes directed graph of spFD’s.

Proposition 11. Let T be an instance over the relation R. If the spFD’s between
singular attributes Xi ∈ R, for i = 1, 2 . . . , w, form a directed circle in the spFD
graph, that is T |= Xi →sp Xi+1 and T |= Xw →sp X1. Then the reverse direction
of the spFD circle also holds in T , i.e. T |= Xi+1 →sp Xi and T |= X1 →sp Xw.

Proof. As the spFD’s form a circle in the spFD graph, then all the attributes have
the same number of values in their visible domains. Indeed, by T |= Xi →sp

Xi+1, we have |V DXi
| ≥ |V DXi+1

| for any i, and by T |= Xw →sp X1, we have
|V DXw

| ≥ |V DX1
|. So, |V DXi

| = |V DXi+1
| for any i. Hence, by Proposition 9,

the other direction for each spFD is also satisfied by T .

The bidirectional implication of the spFD between the singular attributes does
not show that the complements of their weak similarity graphs are the same, For
example, Y →sp Z and Z →sp Y hold in the table below, but GY 6= GZ . On the

Table 7: Possible types of tuples

X Y

1 a1

1 ⊥

2 a2

2 ⊥
...

...

k ak

k ⊥

k + 1 ⊥
...

...

` ⊥

⊥ a1
...

...

⊥ ak

⊥ b1
...

...

⊥ br

668 Munqath Alattar and Attila Sali

X Y

t1 1 ⊥
t2 ⊥ a2

t3 1 a1

t4 2 ⊥
t5 ⊥ a2

t6 ⊥ ⊥

other hand, X →sp Y and X →sp Z hold, but X 6→sp Y Z.

X Y Z

1 1 ⊥
⊥ 2 1

2 ⊥ 2

Propositions 9 and 11 allow us to introduce the following rule.

Digraph rule Let G = (R,E) be a directed graph If (Ai, Aj) ∈ E and Ai and
Aj are in the same strongly connected component of G, then (Aj , Ai) ∈ E
holds, as well.

Theorem 6. Let T be an SQL table over scheme R = {A1, A2, . . . , An}. If G =
(R,E) is a directed graph defined by (Ai, Aj) ∈ E ⇐⇒ T |= {Ai} →sp {Aj} for
attributes Ai, Aj ∈ R, then G = (R,E) satisfies the Digraph rule. Furthermore, for
every directed graph G = (R,E) that satisfies the Digraph rule there exists an SQL
table T such that (Ai, Aj) ∈ E ⇐⇒ T |= {Ai} →sp {Aj}.

The proof of Theorem 6 is based on a series of propositions.

Proposition 12. Let T be an SQL table over scheme R = {A1, A2, . . . , An} and let
G = (R,E) be the directed graph defined by (Ai, Aj) ∈ E ⇐⇒ T |= {Ai} →sp {Aj}
for attributes Ai, Aj ∈ R. Then G = (R,E) satisfies the Digraph rule.

Proof. Let (Ai, Aj) ∈ E be an edge of the directed graph defined by spFD’s between
singular attributes so that Ai and Aj are in the same strongly connected component
of G. This means that there exists a directed path Aj = X1, X2, . . . Xw = Ai in
G, thus together with edge (Ai, Aj) a directed cycle is obtained. So by Proposition
11, the other direction of the spFD’s hold, i.e T |= Aj →sp Ai.

Strongly Possible Functional Dependencies for SQL 669

Proposition 13. Let G = (R,E) be a strongly connected graph that satisfies the
Digraph rule. Then there exists an SQL table T over schema R = {A1, A2, . . . , An}
such that (Ai, Aj) ∈ E ⇐⇒ T |= {Ai} →sp {Aj}. Furthermore, we may assume
that V D(Ai) = {1, 2} for all i = 1, 2, . . . , n in T and that if (Ai, Aj) 6∈ E, then
there exists two rows of T that agree and non-null in Ai and differ and non-null in
Aj.

Proof. Note that a strongly connected graph G = (R,E) satisfies the Digraph rule
iff (Ai, Aj) ∈ E ⇐⇒ (Aj , Ai) ∈ E. In particular, for any induced subgraph G′ =
(R′, E′) of G = (R,E) also satisfies the Digraph rule. We may assume without loss
of generality that (A1, A2) ∈ E. Let Gk = (Rk, Ek) be the subgraph of G = (R,E)
induced by Rk = {A1, A2, . . . , Ak}. We use induction on k to prove that there exists
an SQL table Tk over Rk such that (Ai, Aj) ∈ Ek ⇐⇒ Tk |= {Ai} →sp {Aj} and
if (Ai, Aj) 6∈ E, then there exists two rows of Tk that agree and non-null in Ai and
differ and non-null in Aj . The base case k = 2 is trivial

T2 =

A1 A2

1 1

2 ⊥
⊥ 2

so T2 = {t0, t1, t2} with t0[Aj] = 1 for j ∈ {1, 2} and

ti[Aj] =

 2 if i = j

⊥ if i 6= j
.

Note that T2 has one entry 2 in each column, and these entries are in different rows,
in column Ai the 2 is in row ti. Now assume that Tk = {t0, t1, t2, . . . , tk} exists
for Gk = (Rk, Ek) such that column Ai has its only entry 2 in row ti and consider
Gk+1. We add new column Ak+1 and a new row (tuple) tk+1 to Tk as follows.

ti[Ak+1] =

 1 if (Ak+1, Ai) 6∈ Ek+1

⊥ if (Ak+1, Ai) ∈ Ek+1

for i = 1, 2, . . . , k and tk+1[Ak+1] = 2.

Furthermore

tk+1[Ai] =

 1 if (Ai, Ak+1) 6∈ Ek+1

⊥ if (Ai, Ak+1) ∈ Ek+1

for i = 1, 2, . . . , k

670 Munqath Alattar and Attila Sali

Tk+1 =

A1 A2 . . . Ak Ak+1

1 1 1 . . . 1 1 1

2 ⊥ 1 . . . 1 1 1

⊥ 2 1 . . .⊥ 1 ⊥

1 ⊥ 2 . . . 1 ⊥ ⊥
...

...
. . .

...
...

⊥ 1 1 . . .⊥ 2 1

1 ⊥ 1 . . .⊥ 1 2

This table satisfies the requirements, since no Ai →sp Aj for 1 ≤ i, j ≤ k is
destroyed by row tk+1 by imputing 1’s in place of ⊥’s in the last row. Similarly,
if we impute a 2 in place of ⊥ in the last column in row ti and everywhere else
1’s in that column, then we get a strongly possible world showing Ak+1 →sp Ai.
Furthermore imputing 2 in place of ⊥’s in tk+1 we get Ai →sp Ak+1 exactly if
(Ai, Ak+1) ∈ Ek+1.

Proof. (of Theorem 6). We use induction on the number t of strongly connected
components of G = (R,E). The base case t = 1 is the statement of Proposition 13.
Let the strongly connected components of G = (R,E) be C1, C2, . . . , Ct, we may
assume without loss of generality, that they are in a topological sort order, that is
if (Ai, Aj) ∈ E and Ai ∈ Ci and Aj ∈ Cj , then i ≤ j. There exists an SQL table
Ti for each Ci such that {A,B} ∈ E(Ci) ⇐⇒ Ti |= A →sp B. Furthermore, by
Proposition 13 we have that entries in Ti are 1, 2,⊥, if A →sp B, 1’s in column A
match 1’s or ⊥ in B, and 2’s are not in the same row with a 1 in these 2 columns.
If A 6→sp B, then there exist two rows as following:

A B

1 1

1 2

Assume by induction, we have a table T t−1 for the subgraph induced by C1 ∪
C2 ∪ ...∪Ct−1. Construct T t as follows. First position T t−1 and Tt on disjoint row
and column sets so that T t−1 is extended by 1’s in the columns of Ct. In the rows
of Tt put matrix M(r1, r2, . . . , rk), which has entry ri in its ith row for each column
of C1 ∪ C2 ∪ ... ∪ Ct−1, where r1, r2, . . . rk are pairwise distinct numbers, different
from anything appearing in T t−1:

Strongly Possible Functional Dependencies for SQL 671

T t−1 1

M(r1, r2, . . . , rk) Tt

Then we add two rows, tA1 and tA2 for each A ∈ C1 ∪ C2 ∪ ... ∪ Ct−1 as follows,
∀B ∈ C1 ∪ C2 ∪ ... ∪ Ct−1 and for all X,Y ∈ Ct if A→sp X and A 6→sp Y .

A B X Y

tA1 rA ⊥ ⊥ 1

tA2 rA ⊥ ⊥ 2

where rA is a new value not appearing in T t−1, also rA 6= ri ∀i = 1, 2, . . . , k and if
A 6= B then rA 6= rB .

Let T t be the table obtained. We check pairs of attributes A,X that T t |=
A→sp X ⇐⇒ (A,X) ∈ E.
Case 1: Both A,X ∈ C1 ∪ C2 ∪ ... ∪ Ct−1. If (A,X) 6∈ E, then by the induction
hypothesis there exist two rows of T t−1 that are both not null in both A and X and
agree in A and differ in X, so T t 6|= A →sp X. On the other hand, if (A,X) ∈ E,
then the induction hypothesis provides an spWorld T ∗ of T t−1 that T ∗ |= A→ X.
Columns A and X can be extended identically below T t−1 so that values on those
rows in A and X differ from values in T ∗, thus imputing any values in place of nulls
in the other columns we get an spWord T ′ of T t such that T ′ |= A→ X.
Case 2: Both A,X ∈ Ct. If (A,X) 6∈ E, then by Proposition 13 there are two
rows of Tt that they are both 1 in A and take different values (1 and 2) in X, so
T t 6|= A →sp X. On the other hand, if (A,X) ∈ E, then there is an spWord of Tt
that has columns A and X identical. The rows above Tt are also identical in A and
X and these two columns can be extended identically below Tt, as well so that 1’s
in A match 1’s in X and the same holds for entries 2. Then other null values of T t

can be arbitrarily substituted from visible domains of the given attributes and an
spWord is obtained where A→ X holds, that is T t |= A→sp X.
Case 3: A ∈ C1 ∪ C2 ∪ ... ∪ Ct−1 and X ∈ Ct. In this case (X,A) 6∈ E holds,
and there are two rows in T t−1 that have different not null values in A, but these
two rows take value 1 in X, so T t 6|= X →sp A. If If (A,X) 6∈ E, then rows tA1
and tA2 have identical values in A but different values in X, so T t 6|= A →sp X.
On the other hand, if (A,X) ∈ E, then the nulls of X in rows tA1 and tA2 can be
substituted by 1’s, similarly for any rows tB1 and tB2 that contain nulls in X. If
for some B ∈ C1 ∪ C2 ∪ ... ∪ Ct−1 the corresponding rows tB1 and tB2 contain 1
and 2 in column X (i.e. (B,X) 6∈ E), then in tB1 we substitute 1 in column A,

672 Munqath Alattar and Attila Sali

and in tB2 substitute ri in place of the null in column A, where ri is the value in
M(r1, r2, . . . , rk) that stands in the unique row of Tt which has a 2 in column X.
The rest of the nulls of T t can be imputed arbitrarily from the appropriate visible
domains, the spWord of Tt obtained satisfies functional dependency A→ X.

6 Conclusions

Entering incomplete tuples are allowed into many recent systems’ databases. Sev-
eral research work studied the keys and functional dependencies constraints over
incomplete data, such as p/c-keys [22], spKeys [3], c-FDs [23], p-FDs[26], and s/w-
FDs [25].
This paper continued the research work started in [3] of strongly possible worlds of
SQL tables with NULL’s. We introduced a polynomial-time algorithm that checks
whether a given set K of attributes is a spKey or not. We also proved that it is NP-
complete to do the same for an arbitrary system of Σ = {sp〈Ki〉 : i = 1, 2, . . . n}
of spKey constraints. On the other hand, we showed that Σ can be verified in
polynomial time if the sets Ki are pairwise disjoint. Further, we studied strongly
possible functional dependencies that were introduced in [4] earlier, as a functional
dependency constraint in an SQL table containing NULL’s, using the visible do-
main concept. A graph-theoretical characterization using list coloring is given that
can be employed to check when a given spFD holds. This characterization allowed
us to prove that verifying whether a single spFD X →sp Y holds is NP-complete.
This is in sharp contrast with spKey problem, where a single key can be checked
in polynomial time.

In another paper [5] spFD properties and axioms analogous to those of weak and
strong FD’s given by Levene et.al. are introduced and suitable weakenings were
given for those axioms that are non sound for spFD’s. Here we summarize those
in a table for completeness and extend the investigation on sp-Keys and sp/c-FDs
together to obtain weakening and transitivity interaction rules.

Our study shows that the spFD’s between singular attributes have special prop-
erties, because the visible domain represents all the possible extensions for any NULL

occurrence. There is a natural correspondence between directed graphs and single
attribute spFD’s, a characterization of those directed graphs that may occur in this
context was given.

The properties of spFD’s listed form a step toward a possible axiomatization
of spFD’s. The main challenge of applying the visible domain is that different
spFD’s in the premises of rules may hold in different and incompatible strongly
possible worlds. More investigation is needed to find how to incorporate this into
the axiom system. A first step would be to resolve the following open problem.

Question 1. Let us assume that RS = ∅. Do Reflexivity, Augmentation, Decompo-
sition, Disjoint composition, and Digraph rule form a complete system of inference
rules for strongly possible functional dependencies in this case?

A further simplification that could be attacked using Theorem 3 is when we

Strongly Possible Functional Dependencies for SQL 673

assume that there exist no spFD’s between singleton attributes. Our experience
shows that in that case spFD’s are mostly independent of each other, so the first
four rules of the previous question could be a complete set for inferences. Another
future research direction is defining the closures concerning spFD’s. Where the
usual definition of X+ = {A : T |= X →sp A} may result in T 6|= X →sp X

+ for
spFD’s, as the union rule is not sound.
Finally, for database tables, lossless decomposition is an important application of
FD’s to eliminate redundancy and the possibilities of inconsistent updates. Köhler
and Link[23] and Wei and Link [28] show how to use c-FD’s or embedded FD’s for
that. Our future work will include a similar investigation for spFD’s.

References

[1] Achs, Ágnes and Kiss, Attila. Fuzzy extension of datalog. Acta Cybernetica,
12(2):153–166, 1995. URL: https://cyber.bibl.u-szeged.hu/index.php/
actcybern/article/view/3454.

[2] Acuna, Edgar and Rodriguez, Caroline. The treatment of missing val-
ues and its effect on classifier accuracy. In Classification, clustering, and
data mining applications, pages 639–647. Springer, 2004. DOI: 10.1007/

978-3-642-17103-1_60.

[3] Alattar, Munqath and Sali, Attila. Keys in relational databases with nulls
and bounded domains. In European Conference on Advances in Databases
and Information Systems, pages 33–50. Springer, 2019. DOI: 10.1007/

978-3-030-28730-6_3.

[4] Alattar, Munqath and Sali, Attila. Functional dependencies in incomplete
databases with limited domains. In International Symposium on Foundations
of Information and Knowledge Systems, pages 1–21. Springer, 2020. DOI:
10.1007/978-3-030-39951-1_1.

[5] Alattar, Munqath and Sali, Attila. Towards an axiomatization of strongly
possiblefunctional dependencies. The Vietnam Journal of Computer Science,
8(1):133–151, 2021. DOI: 10.1142/S2196888821500056.

[6] Atzeni, Paolo and Morfuni, Nicola M. Functional dependencies and constraints
on null values in database relations. Information and Control, 70(1):1–31, 1986.
DOI: 10.1016/S0019-9958(86)80022-5.

[7] Chang, Gang and Ge, Tongmin. Comparison of missing data imputation meth-
ods for traffic flow. In Proceedings 2011 International Conference on Trans-
portation, Mechanical, and Electrical Engineering (TMEE), pages 639–642.
IEEE, 2011. DOI: 10.1109/TMEE.2011.6199284.

[8] Cheng, Ching-Hsue, Wei, Liang-Ying, and Lin, Tzu-Cheng. Improving re-
lational database quality based on adaptive learning method for estimating

674 Munqath Alattar and Attila Sali

null value. In Second International Conference on Innovative Computing,
Informatio and Control (ICICIC 2007), pages 81–81. IEEE, 2007. DOI:
10.1109/ICICIC.2007.350.

[9] Codd, Edgar F. The relational model for database management: version 2.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[10] Date, CJ. Not is not ”not”! (notes on three-valued logic and related matters),
chapter 8. In Relational Database Writings. Addison-Wesley, Reading, MA,
1989.

[11] Dhevi, AT Sree. Imputing missing values using inverse distance weighted
interpolation for time series data. In 2014 Sixth International Conference on
Advanced Computing (ICoAC), pages 255–259. IEEE, 2014. DOI: 10.1109/

ICoAC.2014.7229721.

[12] Farhangfar, Alireza, Kurgan, Lukasz, and Dy, Jennifer. Impact of imputation
of missing values on classification error for discrete data. Pattern Recognition,
41(12):3692–3705, 2008. DOI: 10.1016/j.patcog.2008.05.019.

[13] Farhangfar, Alireza, Kurgan, Lukasz A, and Pedrycz, Witold. Experimental
analysis of methods for imputation of missing values in databases. In Intelligent
Computing: Theory and Applications II, volume 5421, pages 172–182. Inter-
national Society for Optics and Photonics, 2004. DOI: 10.1117/12.542509.

[14] Farhangfar, Alireza, Kurgan, Lukasz A, and Pedrycz, Witold. A novel frame-
work for imputation of missing values in databases. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(5):692–709,
2007. DOI: 10.1109/TSMCA.2007.902631.

[15] Grahne, Gösta. Dependency satisfaction in databases with incomplete infor-
mation. In Proceedings of the 10th International Conference on Very Large
Data Bases, pages 37–45, 1984.

[16] Grzymala-Busse, Jerzy W. and Hu, Ming. A comparison of several approaches
to missing attribute values in data mining. In International Conference on
Rough Sets and Current Trends in Computing, pages 378–385. Springer, 2000.

[17] Hartmann, Sven and Link, Sebastian. The implication problem of data
dependencies over SQL table definitions: Axiomatic, algorithmic and log-
ical characterizations. ACM Trans. Database Syst., 37(2), 2012. DOI:
10.1145/2188349.2188355.

[18] Imielinski, Tomasz. Incomplete information in logical databases. IEEE Data
Engineering Bulletin, 12(2):29–40, 1989.

[19] Imielinski, Tomasz and Lipski, Witold. Incomplete information in relational
databases. Journal of the ACM, 31(4):761–791, 1984. DOI: 10.1145/1634.

1886.

Strongly Possible Functional Dependencies for SQL 675

[20] Jansen, Klaus and Scheffler, Petra. Generalized coloring for tree-like
graphs. Discrete Applied Mathematics, 75(2):135–155, 1997. DOI: 10.1016/

S0166-218X(96)00085-6.

[21] Kiss, A. and Márkus, T. Functional and inclusion dependencies and their
implication problems. In Proceedings of the 10th International Seminar on
Database Management Systems, pages 31–38, 1987.

[22] Köhler, Henning, Leck, Uwe, Link, Sebastian, and Zhou, Xiaofang. Possible
and certain keys for SQL. The VLDB Journal, 25(4):571–596, 2016. DOI:
10.1007/s00778-016-0430-9.

[23] Köhler, Henning and Link, Sebastian. SQL schema design: Foundations, nor-
mal forms, and normalization. Information Systems, 76:88–113, 2018. DOI:
10.1016/j.is.2018.04.001.

[24] Kratochvil, Jan and Tuza, Zsolt. Algorithmic complexity of list color-
ings. Discrete Applied Mathematics, 50(3):297–302, 1994. DOI: 10.1016/

0166-218X(94)90150-3.

[25] Levene, Mark and Loizou, George. Axiomatisation of functional dependencies
in incomplete relations. Theoretical Computer Science, 206(1):283–300, 1998.
DOI: 10.1016/S0304-3975(98)80029-7.

[26] Lien, Y Edmund. On the equivalence of database models. Journal of the ACM,
29(2):333–362, 1982. DOI: 10.1145/322307.322311.

[27] Vassiliou, Yannis. Functional dependencies and incomplete information. In
Proceedings of the 6th VLDB Conference. Morgan Kaufmann Publishers, 1980.

[28] Wei, Ziheng and Link, Sebastian. Embedded functional dependencies and data-
completeness tailored database design. Proceedings of the VLDB Endowment,
12(11):1458–1470, 2019. DOI: 10.14778/3342263.3342626.

[29] Zhang, Shichao, Qin, Zhenxing, Ling, Charles X, and Sheng, Shengli. ”Missing
is useful”: Missing values in cost-sensitive decision trees. IEEE Transactions
on Knowledge and Data Engineering, 17(12):1689–1693, 2005. DOI: 10.1109/

TKDE.2005.188.

Received 16th August 2020

