
Acta Cybernetica 25 (2021) 469–484.

A Parallel Event System for Large-Scale Cloud

Simulations in DISSECT-CF∗

Dilshad Hassan Salloab and Gabor Kecskemetiacd

Abstract

Discrete Event Simulation (DES) frameworks gained significant popular-
ity to support and evaluate cloud computing environments. They support
decision-making for complex scenarios, saving time and effort. The major-
ity of these frameworks lack parallel execution. In spite being a sequential
framework, DISSECT-CF introduced significant performance improvements
when simulating Infrastructure as a Service (IaaS) clouds. Even with these
improvements over the state of the art sequential simulators, there are sev-
eral scenarios (e.g., large scale Internet of Things or serverless computing
systems), which DISSECT-CF would not simulate in a timely fashion. To
remedy such scenarios this paper introduces parallel execution to its most
abstract subsystem: the event system. The new event subsystem detects
when multiple events occur at a specific time instance of the simulation and
decides to execute them either on a parallel or a sequential fashion. This de-
cision is mainly based on the number of independent events and the expected
workload of a particular event. In our evaluation, we focused exclusively on
time management scenarios. While we did so, we ensured that the behaviour
of the events should be equivalent to realistic, larger-scale simulation scenar-
ios. This allowed us to understand the effects of parallelism on the whole
framework, while we also shown the gains of the new system compared to the
old sequential one. With regards to scaling, we observed it to be proportional
to the number of cores in the utilised SMP host.

Keywords: cloud computing, parallel simulation, DISSECT-CF

1 Introduction

There are several obstacles that stop increasing the performance of DES frame-
works. First of all, most are designed to execute sequentially. The need of simulat-

∗This research was supported by the Hungarian Scientific Research Fund under the grant
number OTKA FK 131793.

aInstitute of Information Technology, University of Miskolc, Miskolc, Hungary
bE-mail: sallo@iit.uni-miskolc.hu, ORCID: 0000-0003-3672-4601
cDepartment of Computer Science, Liverpool John Moores University, Liverpool, UK
dE-mail: kecskemeti@iit.uni-miskolc.hu, E-mail: g.kecskemeti@ljmu.ac.uk, ORCID:

0000-0001-5716-8857

DOI: 10.14232/actacyb.287937

470 Dilshad Hassan Sallo and Gabor Kecskemeti

ing multiple events in parallel, is now essential for several scenarios. For example,
simulating Internet of Things (IoT) involving millions or more devices worldwide;
or simulating billions of service invocations and their interactions in serverless com-
puting situations. Introducing a parallel approach to the core event handling in
DESs aimed at distributed systems simulations would be the first step towards the
support of the aforementioned scenarios.

Always applying parallel execution to the simultaneously occurring events in
the simulation does not necessarily lead to a well scaling DES though. When only
a few events occur simultaneously, sequential execution is often times beneficial as
we can avoid the overheads of parallel constructs; otherwise, the parallel execution
can lead to better performance. The necessity of determining at a specific simulated
time instance, whether the events will execute sequentially or parallel manner is
crucial to increase the performance and to avoid unnecessary overhead.

Despite several DESs support simulating parallel and distributed computing,
the majority lack of parallel execution. For instance, Cloudsim [3] and Ground-
Sim [14] execute computing tasks sequentially. This raises challenges when trying
to simulate novel technologies (e.g., serverless) that require large scale simulation
to be used as a support tool. DISSECT-CF [10] is one of the frameworks capable to
simulate internal components and processes of distributed systems (ranging from
cloud and fog infrastructures to even IoT systems). Although the execution time
of DISSECT-CF is significantly faster than the most prominent simulator in the
field CloudSim [13], this performance advantage is still not sufficient for the most
demanding current research use cases (e.g., simulating millions of IoT devices and
their continuum with clouds). Its sequential execution is a significant bottleneck,
thus parallelisation is needed for scaling its performance efficiently to meet the
newest challenges in the field.

This paper introduces a parallel execution mode for the event subsystem of
DISSECT-CF. Our approach automatically switches between this new mode and
the old one based on the number of simultaneous events that occur at a given time
instance of the simulation. To avoid the overhead of applied parallel constructs
under low workloads, our approach keeps using the original sequential mode for
situations when only a few simultaneous events are detected. Otherwise, a parallel
event executor will be selected. This executor divides and distributes the simulta-
neous events equally over the available processors and balances the load across the
system. These two operations avoid idle CPUs (or cores) behind the simulator. To
avoid issues with the initial event distribution, our parallel approach also uses work
stealing to further reduce the contention among threads.

We have designed several experiments to evaluate the scalability and perfor-
mance of the new approach. These experiments focus on core functionality and time
management mechanisms of the event subsystem in DISSECT-CF. The evaluation
had independent control on the following four properties: (i) event independence
(no influence on future events); (ii) pattern of events throughout a simulation (i.e.,
how many events do we have in total and when should they happen); (iii) number of
simultaneous events (degree of parallelism) happening at an average time-simulated
instance; (iv) the single event workload (i.e., how compute heavy is a particular

A Parallel Event System for Large-Scale Cloud Simulations in DISSECT-CF 471

event). We instrumented and measured the behaviour of realistic simulations in
terms of these properties. Then, we implemented simple synthetic event patterns
(that are only exercising the event subsystem of DISSECT-CF) for the simulator
which we calibrated to imitate the properties of the previously measured realistic
simulations. To ensure the quality of our experiments, we collected the synthetic
event pattern’s properties with the same measurement approach that we applied for
the realistic setting to compare and analyse them. We also evaluated with random
event patterns to test the behaviour of parallel version under unforeseen conditions.

We have executed our experiments on 12 core SMP hosts. Our experiments
have been conducted with different degrees of parallelism and single event workload
size. With respect to the number of cores, evaluation results show that two factors
have affected the performance of the parallel version. First, if we have at least
two simultaneous events for more than 50% of the simulated time instances, then
the parallel version already runs two times faster than the sequential. Second,
increasing the single event workload leads to 2.4 times faster simulation execution
than sequential.

The remainder of this paper is structured as follows. In Section 2, we discuss
work related to our approach. Section 3 discusses our methodology of employing
parallelism in DISSECT-CF. Section 4 covers the evaluation of the parallel version.
Finally, Section 5 concludes the paper and identifies future work.

2 Related work

Over the last decade, several DES frameworks have been designed to offer re-
searchers an opportunity to evaluate and predict the behaviour of cloud computing
applications. Each framework was designed with a specific purpose and having
unique features that able solve some challenges.

CloudSim [3] is mostly used as general purpose cloud simulation environment.
Due to the extensible nature of CloudSim, several extensions have been developed
to integrate new features to it. DISSECT-CF [10] is a simulation framework that
improved the modelling of resource-, network utilisation, power consumption and
data centre configurations, by providing the capability of simulating IaaS internal
behaviour. GroudSim [14] is a platform mainly focused on scientific application
modelling (e.g., workflows) in cloud and grid computing. GreenCloud [11] is a
simulator specifically built for estimating the energy consumption of cloud data
centres. In addition to the above, the authors [1, 2] have conducted the detailed
survey of over 33 simulators. Each of these is built for a specific purpose and is
having unique features around cloud simulation. Although these simulators offer
several features for cloud computing, the majority were built in a sequential fashion.
Thus, they are all struggling to address recent challenges such as simulating millions
of IoT devices.

Parallel discrete event simulation (PDES) approach has been applied in various
fields such as simulation of networks, with the primary goal of performance. For ex-
ample ROSS [4] and GWT [6] are parallel discrete event simulators that execute on

472 Dilshad Hassan Sallo and Gabor Kecskemeti

shared-memory multiprocessor systems. They mostly used in large-scale network-
ing simulation models and telecommunication networks. DaSSF [12] is also parallel
simulator targeting network simulation and it achieves high performance through
parallel processing. Unfortunately, these frameworks have limited applicability in
the research areas surrounding cloud computing. Parallelising existing systems re-
mains a challenge [7]. Moreover, the prominent language for cloud simulators [1, 2]
is Java, while current PDESs are not easily adoptable to this language. However,
one of the frameworks called Cloud2Sim [9] supports concurrent and distributed
simulations of clouds, based on the following libraries: Hazelcast, Infinispan and
Hibernate.

In [7] the author raises many challenges that researchers could face in a PDES.
One of these challenges is the complexity of using a parallel implementation cor-
rectly and simplifying code to understand it easily. Agreeing with this, our approach
aims to keep the original sequential APIs while making a parallel solution in the
background. In [8] the authors suggested the initial steps towards cloud supporting
PDESs, unfortunately these steps were not yet adopted by current simulators. In-
troducing parallel execution to simulators needs easy simulation control as well as
repeatable tests. In [5] the authors explained that sequential execution can be in-
sufficient for modelling real complex systems, and parallel execution could manage
resources efficiently. Sequential approaches are unable to fulfil many requirements,
and lead to trade-off between the cost and performance. However, there is opportu-
nity for applying parallelism to DISSECT-CF simulator to gain better performance.
Introducing parallel executions of its event system can benefit all subsystems built
on top of it. Finally, in [15] the authors showed a possibility to execute simulations
over multiple virtual machines.

The previous works show the minimal advances towards parallel execution in
cloud computing frameworks, which are needed to address the present challenges
that accompanied modern technologies in this field. Therefore, our proposed solu-
tion provides parallel execution to the event system of DISSECT-CF simulator to
speed up the simulation to foster simulating larger scale systems and technologies
(e.g., IoT). Although the techniques proposed here are likely to be applicable to
other frameworks as well, this paper is solely focused on DISSECT-CF to show our
approach’s applicability.

3 Methodology

DISSECT-CF simulator introduced substantial features to foster the rapid evalu-
ation of IaaS clouds and its extensibility lead to support for other concepts such
as IoT and fog computing. Although, DISSECT-CF reduces the execution time of
equal quality/detail simulations done compared to several other frameworks in the
field, it still does so in a sequential fashion. In the past, DISSECT-CF was shown
simulating hundreds of thousands of computing entities within a few hours. But
it has little chance to sequentially simulate recent systems within an acceptable
time frame. With this research, we aim to set the foundations to support simula-

A Parallel Event System for Large-Scale Cloud Simulations in DISSECT-CF 473

tions where the number of simulated computing components can easily reach over
a billion of devices (like the IoT cloud continuum, or serverless computing).

3.1 Overview of DISSECT-CF simulator

DISSECT-CF is a simulation framework that offers insight into advanced cloud con-
cepts supporting modern technologies. DISSECT-CF provides an amalgamation of
several features that hardly exist in any previous simulators such as capturing low-
level resource sharing behaviour and introducing an adequate energy consumption
model. This aims to support previously problematic IaaS simulation scenarios that
require all these advanced features to be available in the same framework.

The extensible core of the DISSECT-CF simulator consists of five major sub-
systems that mostly implement different concepts around clouds and distributed
systems in a layered fashion [10]. Generally, each layer attempts to provide a
comprehensive implementation for a particular concept without being dependent
on the rest of the framework. The lowest subsystem, event system provides an
appropriate mechanism to manage the behaviour of regular and irregular events
as well as controlling the basic state of the simulation in a given time instance
(so called tick in DISSECT-CF terminology). This subsystem is the foundation
of all layers and introducing substantial features here such as parallelism has the
highest potential impact on higher level subsystems. Next, Unified resource
sharing subsystem introduces a holistic approach to establish a central resource
provider able to share behaviour among low-level computing concepts. Then, the
Energy modelling subsystem provides a unique approach that allows monitor-
ing and analysing energy usage of all simulation resources by decoupling energy
modelling from resource simulation (i.e., allows performance gains by only offering
selective energy monitoring). On a layer above, the Infrastructure simulation
subsystem deals with modelling the behaviour of typical distributed system com-
ponents like virtual machines, physical machines, storage and networking. Finally,
the highest layer of abstraction is provided in the Infrastructure management
subsystem which contains major IaaS components such VM scheduler and PM
scheduler that simulate the management of users requests and fosters the creation
of custom internal IaaS behaviours. It also provides components such as Repository
and the IaaS service to interact with users of the simulator.

Although the subsystems of DISSECT-CF have originally been written to exe-
cute sequentially, most of them can be executed in a parallel fashion as well. As all
subsystems depend on the event subsystem, it comes as a natural point to adopt
parallelism. As most of the operations in the higher level components are driven by
events delivered from the event subsystem, these operations will be automatically
parallelised with the parallelisation of the event subsystem itself.

3.2 Prominence of recurrent events

The lowest (event) subsystem of DISSECT-CF has two main classes: (i) the Timed

class, used for recurring events; and (ii) DeferredEvent class used for irregular

474 Dilshad Hassan Sallo and Gabor Kecskemeti

events. Recurring events are events that the simulator invoked them regularly
based on a specified frequency. Thus, recurring events can subscribe notifications,
when subscribing, an event frequency must be specified to determine how many
ticks must pass to get repeated notifications. As the other subsystems are built
on the top of mostly recurring events, our target is enhancing the performance of
this subsystem, which will reflect the outcome over the rest of the framework and
its extensions. The event sub-system had a sequential execution design. Based
on the existing API of DISSECT-CF, parallelisation could happen for executing of
simultaneously happening events (i.e., events that should happen in the same time
instance or tick of a simulation).

To understand such simultaneous events, we have provided a simple example
scenario with three event objects with various frequencies (this demonstrates events
derived from the Timed class of DISSECT-CF which allows defining events that
can happen repeatedly). Table 1 shows the basic details of our simple example
scenarios. The first three rows show the event objects and their behaviour. The
last line shows the time instances in our simple simulation. In the table, we can see
for every time instance when the events will be processed. E.g., the second event
(e2) is processed in time instances 3,6 etc. Figure 1 shows how the event queue
will look like at any particular time instance in case we execute the events defined
in the previous table.

The degree of parallelism denotes the number of events that happens at a specific
time instance (tick). Which mainly depends on the frequencies of subscribed objects

Table 1: Three events with different frequencies.

Events Freq Next events of e1, e2 and e3 based on their frequencies(Freq)
e1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e2 3 3 3 3 6 6 6 9 9 9 12 12 12 15 15 15
e3 5 5 5 5 5 5 10 10 10 10 10 15 15 15 15 15
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Degree(%) 33 33 66 33 66 66 33 33 66 66 33 66 33 33 100

e1

e2e3

e1 e1 e1

e2 e2

e1 e1 e1 e1 e1e1 e1 e1 e1 e1 e1

e2 e2e3

e3

Time(tick)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1: Representing multiple events in Table 1 occur at a specific time

A Parallel Event System for Large-Scale Cloud Simulations in DISSECT-CF 475

that determine how frequently these events occur. When all subscribed events
happen at a specific time, the degree of parallelism is 100%. When half of them
occurs at one time, the degree is 50% and so on. Thus, the degree of parallelism
varies according to the occurrence of events at each tick. Therefore, the average
degree of parallelism in a single simulation run is deduced from all ticks for the
whole system. In Figure 1, there are 15 simulated time instances, out of these 7 are
having parallel events, making the example’s average degree of parallelism 50.66%.
If we execute simultaneously occurring events (e.g., e1 and e2 in time instance 3
in the Figure) in a sequential fashion, then we pay a penalty of using a sequential
simulator. This observation will guide the next the sub-section where we discuss
how we identify these kinds of events and how we execute them in parallel.

3.3 The parallelisation of simultaneous events

Figure 2 shows the basis of our extension. The diagram shows only the relevant
parts of the original Timed class, and the new Parallel class. The Parallel is
created as an inner class within Timed class, to ensure easy access to the original
data structures within the event subsystem’s main class. The user of the system
is still expected to interface with the existing methods of the Timed class (thus
all previous extensions to the simulator would benefit from our parallelisation ap-
proach). Note that inside the simulator, all higher level subsystems (e.g., those
which simulate virtual machines) are considered as users of the Timed class. As
parallelisation is automatically executed depending on the state of the event queue,
the higher level subsystems benefit from the improvement on Timed.

Figure 2: Diagram of Timed class and Parallel class

In DISSECT-CF, time is measured in ticks [10] and users of the simulator are
free to interpret ticks the way they want. The events taking place in a particular
tick are handled with the fire() method (see Figure 2). Our approach changes
the behaviour of this method by introducing Algorithm 1. Here we first collect the
list of simultaneously occurring events at each particular tick (see line 2) – note
that this list was not needed for the sequential sub-system as that would only work
with one event at a time. As a result, the collection of this list is an overhead of
the new parallel algorithm. The discussed approach below aims at minimising this
overhead.

Our new fire() method now checks the size of the list to determine if we need
to execute in sequential or parallel fashion. The old, sequential execution is shown
in the loop of line 4, this is still kept and used if we have too few simultaneous events

476 Dilshad Hassan Sallo and Gabor Kecskemeti

Algorithm 1 Determining the need for parallelism

1: threshold = specified size
2: list = all simultaneous events
3: if list.size <= threshold then
4: while list.notEmpty do
5: event = get single event from list
6: Execute event
7: end while
8: else
9: invoke Parallel(list.lowIndex, list.upperIndex)

10: end if

in the queue. The parallel execution utilises our new Parallel class to distribute
the work over threads, that will be created implicitly according to the number of
available cores. This is done by passing the lowerIndex and upperIndex that
specify the indices of first and last elements of the list (see line 9). The threshold

(minimal size of the list which leads to parallel execution) is configurable by the
user of the simulator. To aid the user determining the threshold, an auto-tuning
approach is also going to be offered for the threshold which determines its value
when suitably long running simulations are executed. The auto-tuning approach
bases its decision on the threshold on the typical single event workload. As the
auto tuning approach also needs some compute time it is possible to disable it for
simulations where the threshold is known to the user.

Algorithm 2 Mechanism of Parallel class

1: Procedure Parallel(list.lowIndex, list.upperIndex)
2: lowerIndex = list.lowIndex
3: upperIndex = list.upperIndex
4: Funct compute ()
5: if upperIndex - lowerIndex <= threshold then
6: while list.notEmpty do
7: Execute events of list
8: end while
9: else

10: midIndex = (lowerIndex + upperIndex / 2)
11: invoke all (Parallel(lowIndex, midIndex), Parallel(midIndex, upperIndex))

12: end if

A Parallel Event System for Large-Scale Cloud Simulations in DISSECT-CF 477

After the decision to parallelise, the actual parallelisation is organised by the
Parallel class according to Algorithm 2. Instances of this class are executed in
their own threads. Thus, they will likely run on another CPU core compared to the
original fire() method. When a Parallel instance is instructed to compute, it
again uses our the previously discussed and determined threshold value to decide
if the workload assigned to the thread is sufficiently small or not.

If the sublist of simultaneous events is short enough (see line 5), the sublist
is executed in the current thread entirely. This sublist execution is done just like
the sequential one was discussed before (see Algorithm 1’s line 4). But instead of
going through the entire list of simultaneous events, now we have a shorter list
to process which was assigned only to the thread of this Parallel object in the
parallel invocations of Algorithms 1 and 2.

In contrast, when there are more simultaneous events than a single thread should
handle, we sub-divide the list of events based on its size in equal parts and pass
them on to further threads (see line 11). We repeat this process until the list of
events divided into sublists (sublists size become less than or equal threshold) and
all threads have sufficiently short lists, then the threads are scheduled according to
a fork-join model. This list division method ensures that we execute on all available
processors in the current machine and also offers an initial load balance. The fork-
join model uses work-stealing algorithm by allowing the thread to steal workloads
from others. Although each thread has an almost equal number of sublists, work-
stealing approach ensures that the threads workloads are almost equal to avoid
wasting time.

4 Evaluation

A private cloud at LJMU was used for the evaluation of our parallel DISSECT-CF.
For our experiments, we used a VM with the following specifications: Intel (R) Core
(TM) i7-8700 CPU @ 3.2GHz (6 cores + 6 hyper threaded cores), 64GB memory,
1T SSD, 1T HDD, Debian Linux Buster 10.4, OpenJDK 11.0.6. We have designed
several scenarios to test the performance of the parallel version by focusing on time
management while ensuring complete control over event occurrence. We also made
sure the evaluation was validating the parallel version: we used the complete API
of the Timed class to verify if the parallel version produces results matching output
from the unmodified sequential code.

4.1 Validation

To ensure that the behaviour of our evaluation is following real life simulation
patterns, we have instrumented the JobDispatchingDemo class of the dissect-cf-
examples project. This class was already validated before to produce realistic sim-
ulations e.g., comparable to CloudSim (see [10]). Our instrumentation focused on
how the realistic simulation utilises the lowest abstraction layer of DISSECT-CF.
We measured, the degree of parallelism, the typical event behaviour, the number

478 Dilshad Hassan Sallo and Gabor Kecskemeti

of events in total and the average execution time of a single tick method call in
nanoseconds (i.e., the single event workload). To enable the comparison, we have
also instrumented our parallel Timed class in the same way allowing us to acquire
the typical workload of our synthetic tick methods.

We have set up our realistic simulation with JobDispatchingDemo as follows:
(i) maximum number of jobs that exist in parallel was set to 2; (ii) the amount of
seconds the job startup times was set to 10; (iii) minimum execution time of a single
job was set to 10s; (iv) maximum execution time of a single job was set to 90s; (v)
minimum and maximum gaps between the last and the first job submission of two
consecutive parallel batches were set to 200s; (vi) minimum number of processors
for a single job was set to 1; (vii) maximum number of processors for a single job
was set to 2; (viii) total number of processors usable by all parallel jobs was set to
4; (ix) total number of jobs was 100000; (x) the number of nodes was 5000.

To allow our evaluation to focus at the lowest abstraction layer (and our par-
allelism evaluations not to be distracted by upper layer behaviour), we set out
to capture the event workload behaviour of the above complex simulation, but
with a synthetic workload. Our synthetic tick method (implemented in the class
TimeRandomGenerator), does a busy waiting loop by calculating the following for-
mula:

SyntheticEventWorkload(size) :=

size∑
i=0

(
2ei
√
i
)

mod

∣∣∣∣⌊ i + 5

i + 1

⌋∣∣∣∣ , (1)

where size can control the single event workload, while the denoted operations
ensure that the distribution of the single event execution time is closely matching
the above mentioned more realistic simulation.

To ensure that the workload produced by this busy waiting loop is equivalent
to the realistic simulation, we have executed the same number of events we have
recorded in the realistic simulation and repeated the measurement 100 times. The
repetition allowed us to collect several statistical properties of the single event work-
load in both the synthetic and the realistic simulations. We present our findings
for the realistic simulation in the box plot of Fig 3a. Our best approximation of
this realistic workload was captured by our synthetic workload parametrised with
size = 49.

Fig 3b shows the behaviour of our best approximate synthetic workload. Our
median duration is within 3% of the realistic. The distribution of our workload is
a bit narrower and more even, but the upper and lower whiskers of our synthetic
experiment are within the typical range of the realistic simulation’s values. As a
result, from this point onwards, we will refer to synthetic workloads set up with
this particular parameter as the original single event workload.

Note, that later we have evaluated the system with other single workloads. For
example, changing the size to 147, leads to a threefold increase in single event
workload compared to the realistic setting. In contrast, changing it to 16, leads
to a three fold reduction in single event workload again compared to the realistic
setting. These two values will be the extremes used in Figure 5.

A Parallel Event System for Large-Scale Cloud Simulations in DISSECT-CF 479

3000 3500 4000 4500 5000 5500

si
ng

le
 e

ve
nt

 w
or

kl
oa

d

. ● ● ● ● ●

(a) The execution time(ns) of single event workload using JobDispatchingDemo
class

3500 3600 3700 3800 3900 4000

si
ng

le
 e

ve
nt

 w
or

kl
oa

d

.

(b) The execution time(ns) of single event workload using our experiments classes

Figure 3: Boxplot diagrams for JobDispatchingDemo class and our classes

4.2 Performance

Our evaluation scenarios create 35,000 recurrent event objects. The object count
was set so the minimum execution time of the sequential version is at least 5
minutes, allowing sufficient time for the parallelisation to take effect. The recurring
events subscribe with different frequencies so we have control over the degree of
parallelism. We provided controls to these scenarios, so we can easily adjust the
degree of parallelism (through event subscription changes) and the single event
workload (through changing the size in Equation 1). The evaluation scenarios are
publicly available in the ParallelTimed package released in the dissect-cf-examples
project on GitHub1 using the GPL 3.0 license.

The invocation of Parallel class depends on the threshold value (see Algo-
rithm 1 for details) to determine the maximum length of the event list processed
by a single thread. To determine the ideal setting for the threshold, we evaluated
our solution with four different values: 8, 16, 32 and 64. We have also generated re-
curring events with four different degrees of parallelism as shown in table 2. Based
on our analysis of the execution times in the table. Even though the differences are
not big, it is recommended to use a threshold equal or exceed 32 to enhance the
performance.

With the respect to the number of cores, there are two factors that influence
the performance of the parallel version. First, the degree of parallelism plays a

1https://github.com/dilshadsallo/dissect-cf-examples

480 Dilshad Hassan Sallo and Gabor Kecskemeti

Table 2: The execution time(s) of parallel version using four different sizes of list

Degree of Parallelism
Threshold 25% 50% 75% 100%
8 235 412 549 657
16 234 411 548 657
32 231 408 545 654
64 229 406 541 652

significant role and it is shown in Fig 4 that the parallel version can significantly
improve performance. We evaluated both the parallel and sequential versions of
the simulator with four different degrees of parallelism (25%, 50%, 75%, 100%).
Even though the evaluation of this scenario has been done with the same number
of aforementioned objects, the number of events that occur, and the number of
events that occur at the same time significantly increase. This is because we sim-
ulated for the same amount of simulation time, but with increasing subscription
frequency each object receives more event notifications. E.g., to increase the degree
of parallelism on the scenario in table 1, we can change the subscription frequency
of event 2 to 1. In this example, the degree of parallelism increases to 73%, but we
see more event notifications delivered as we will have 15 notifications for event 2 as
well.

With regards to Fig 4, in 25% of parallelism, the parallel version runs 1.72 faster
than the sequential. When the degree reaches 50%, the ratio increased to 1.74. The
parallel version executes simulations 1.84 faster than the sequential version when
75% of all subscribed events occur recurrently during a simulation time. Finally, the
parallel version reaches 2 times faster than the sequential version when the degree
of parallelism is 100%. Even with a high degree of parallelism and using multi-core,
we cannot use all cores because there is still a performance cost such as coordinating
threads that introduced by multi-thread compared to a single-threaded approach.

Now let’s analyse the effect of the size of the single event workload (as per
Equation 1). We tested both of the parallel and sequential versions with various
single event workload sizes, commenced with threefold lower than the original one
to show the behaviour of simulating very low single event workload. Then reaching
to threefold higher than the original single event workload to demonstrate the
advantage of parallel version as shown in Fig 5. When the single event workload
is threefold lower than original one, the parallel version runs 1.2 faster than the
sequential version. This ratio increases to 1.6 when the single event workload is two
times lower than the original single event workload. The parallel version even runs
2.1 faster than the sequential version using original single event workload. When
the single event workload size doubled, the parallel version executes the simulation
2.3 times faster than the sequential version. The ratio increases to 2.4 when the
single event workload size becomes threefold higher than the original one.

A Parallel Event System for Large-Scale Cloud Simulations in DISSECT-CF 481

800

1000

1200

1400

Parallel Sequential

0

200

400

600

800

25% 50% 75% 100%

Degree of Parallelism

Time(s)

Clic
k t

o B
UY N

OW!PD

F-XChange Editor

w
w

w.tracker-software

.c
om Clic

k t
o B

UY N
OW!PD

F-XChange Editor

w
w

w.tracker-software

.c
om

Figure 4: The execution time(s) of parallel and sequential versions in four different
degrees of parallelism

300
400
500
600
700
800

Parallel Sequential

0
100
200
300

3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Low single event workload Original High single event workload

Workload Size

Time(s)

Clic
k t

o B
UY N

OW!PD

F-XChange Editor

w
w

w.tracker-software

.c
om Clic

k t
o B

UY N
OW!PD

F-XChange Editor

w
w

w.tracker-software

.c
om

Figure 5: The execution time (s) of different workload sizes simulated by parallel
and sequential versions

482 Dilshad Hassan Sallo and Gabor Kecskemeti

Thus, the parallel version speeds up the performance of simulation by using the
additional cores of the host. The biggest advantages of the parallel version can be
exploited when there are larger simultaneously occurring event queues and when the
single event workload is larger as well. In the realistic simulations, we have seen
that simultaneously occurring event queues are typically larger when advanced
features of the simulator are fully utilised (e.g., cloud wide energy metering or
virtual machine consolidation).

5 Conclusion and future work

Mostly DES frameworks are used to simulate and evaluate cloud computing environ-
ments. The majority executes sequentially. DISSECT-CF is one of the frameworks
that brought several features to improve the performance of IaaS simulation. It is
built to accompany the latest technology with easy extensibility. In terms of exe-
cution, DISSECT-CF was already fast and reliable but still targeted a single core.
We devised a parallel version to handle this issue focusing on the use of multi-core
when simultaneous events happen in the simulation. The parallel version scales
well and leads to significant speed up. The performance of the parallel version is
dependent on the number of simultaneous events at a particular time instance in
the simulation, as well as on the workload a single event’s processing causes. Our
introduced parallel execution mode is focused on the event subsystem, as this is the
lowest layer in DISSECT-CF all other components benefit from our improvements.

Future work will focus on the simulator’s second most heavily used component:
the unified resource sharing subsystem. As this subsystem is having high compute
complexity, its parallelisation will enable the rapid estimation of resource sharing
on even larger scale distributed systems. Applying these will lead to the seamless
transition of DISSECT-CF into simulating more communication intensive systems,
or evaluating fog computing & IoT device behaviour.

References

[1] Ahmed, Arif and Sabyasachi, Abadhan Saumya. Cloud computing simulators:
A detailed survey and future direction. In 2014 IEEE International Advance
Computing Conference (IACC), pages 866–872. IEEE, 2014. DOI: 10.1109/

IAdCC.2014.6779436.

[2] Byrne, James, Svorobej, Sergej, Giannoutakis, Konstantinos M, Tzovaras,
Dimitrios, Byrne, Peter J, Östberg, Per-Olov, Gourinovitch, Anna, and
Lynn, Theo. A review of cloud computing simulation platforms and re-
lated environments. In International Conference on Cloud Computing and
Services Science, volume 2, pages 679–691. SCITEPRESS, 2017. DOI:
10.5220/0006373006790691.

[3] Calheiros, Rodrigo N, Ranjan, Rajiv, Beloglazov, Anton, De Rose, César AF,
and Buyya, Rajkumar. Cloudsim: a toolkit for modeling and simulation

A Parallel Event System for Large-Scale Cloud Simulations in DISSECT-CF 483

of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and experience, 41(1):23–50, 2011. DOI:
10.1002/spe.995.

[4] Carothers, Christopher D, Bauer, David, and Pearce, Shawn. Ross: A
high-performance, low-memory, modular time warp system. Journal of Par-
allel and Distributed Computing, 62(11):1648–1669, 2002. DOI: 10.1016/

S0743-7315(02)00004-7.

[5] D’Angelo, Gabriele and Marzolla, Moreno. New trends in parallel and dis-
tributed simulation: From many-cores to cloud computing. Simulation Mod-
elling Practice and Theory, 49:320–335, 2014. DOI: 10.1016/j.simpat.

2014.06.007.

[6] Das, Samir, Fujimoto, Richard, Panesar, Kiran, Allison, Don, and Hybinette,
Maria. Gtw: a time warp system for shared memory multiprocessors. In
Proceedings of Winter Simulation Conference, pages 1332–1339. IEEE, 1994.
DOI: 10.1109/WSC.1994.717527.

[7] Fujimoto, Richard M. Research challenges in parallel and distributed simula-
tion. ACM Transactions on Modeling and Computer Simulation (TOMACS),
26(4):1–29, 2016. DOI: 10.1145/2866577.

[8] Fujimoto, Richard M, Malik, Asad Waqar, Park, A, et al. Parallel and dis-
tributed simulation in the cloud. SCS M&S Magazine, 3:1–10, 2010.

[9] Kathiravelu, Pradeeban and Veiga, Luis. Concurrent and distributed cloudsim
simulations. In 2014 IEEE 22nd International Symposium on Modelling, Anal-
ysis & Simulation of Computer and Telecommunication Systems, pages 490–
493. IEEE, 2014. DOI: 10.1109/MASCOTS.2014.70.

[10] Kecskemeti, Gabor. Dissect-cf: a simulator to foster energy-aware scheduling
in infrastructure clouds. Simulation Modelling Practice and Theory, 58:188–
218, 2015. DOI: 10.1016/j.simpat.2015.05.009.

[11] Kliazovich, Dzmitry, Bouvry, Pascal, and Khan, Samee Ullah. Green-
cloud: a packet-level simulator of energy-aware cloud computing data cen-
ters. The Journal of Supercomputing, 62(3):1263–1283, 2012. DOI: 10.1007/

s11227-010-0504-1.

[12] Liu, Jason, Nicol, David, Premore, Brian, and Poplawski, Anna. Performance
prediction of a parallel simulator. In Proceedings Thirteenth Workshop on
Parallel and Distributed Simulation. PADS 99.(Cat. No. PR00155), pages 156–
164. IEEE, 1999. DOI: 10.1109/PADS.1999.766172.

[13] Mann, Zoltán Ádám. Cloud simulators in the implementation and evaluation
of virtual machine placement algorithms. Software: Practice and Experience,
48(7):1368–1389, 2018. DOI: 10.1002/spe.2579.

484 Dilshad Hassan Sallo and Gabor Kecskemeti

[14] Ostermann, Simon, Plankensteiner, Kassian, Prodan, Radu, and Fahringer,
Thomas. Groudsim: an event-based simulation framework for computational
grids and clouds. In European Conference on Parallel Processing, pages 305–
313. Springer, 2010. DOI: 10.1007/978-3-642-21878-1_38.

[15] Yoginath, Srikanth B and Perumalla, Kalyan S. Optimized hypervisor sched-
uler for parallel discrete event simulations on virtual machine platforms. In
SimuTools, pages 1–9, 2013. DOI: 10.4108/icst.simutools.2013.251736.

