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Abstract

Active learning tries to reduce the labeling cost by allowing the learning
system to iteratively select the data from which it learns. In special case of
active learning, the process starts from zero initialized scenario, where the
labeled training dataset is empty, and therefore only unsupervised methods
can be performed. In this paper a novel query strategy framework is pre-
sented for this problem, called Clustering Based Balanced Sampling Frame-
work (CBBSF), which aims to uniformly select the initial labeled training
dataset. The proposed Spectral Clustering Based Sampling (SCBS) query
strategy realizes the CBBSF framework, and therefore it is applicable in the
special zero initialized situation. This selection approach uses ClusterGAN
(Clustering using Generative Adversarial Networks) integrated in the spectral
clustering algorithm and then it selects an unlabeled instance depending on
the class membership probabilities. In order to derive class membership prob-
ablities from the clustering information SCBS uses the Hungarian algorithm.
Experimental evaluation was conducted on balanced and imbalanced MNIST
datasets, and the results showed that SCBS outperforms the state-of-the-art
zero initialized active learning query strategies in terms of accuracy.

Keywords: active learning, zero initialization, query strategy, clustering,
spectral clustering, hungarian method

1 Introduction

The main goal of classification applications is to make predictions with high accu-
racy. A crucial part of this process is the model creation, which is based on the
labeled training data (where the labels are the ground truth categories); hence the
gathering of labeled data is also an important component of supervised machine
learning. One can collect large amount of inexpensive unlabeled data through
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real-world applications [16], however labels for this data can be expensive [23],
time-consuming or difficult to obtain. For example accurate labeling of speech ut-
terances requies trained linguists [31], pose labelling in videos is extremely time
consuming [24], annotating gene and disease mentions for biomedical information
extraction usually requires PhD-level biologists [4]. Consequently, in these cases
it is recommended to limit the number of labeled data that used for training, while
attempting to achieve high accuracy.

Let U = {ui}, i = 1...m denote the total amount of (unlabeled) data available
for training; the goal is to select only a subset of this data and assign labels to them,
thereby creating the L = {lj}, j = 1...n labeled dataset. The easiest technique is
to randomly select L, this method is called passive learning, or random sampling;
although the resulting labeled training dataset has a large variance due to the ran-
domness. A more sophisticated approach would be to consider the informativeness
of the unlabeled data and then select the most informative ones. This approach is
called active learning [20], where the learning system is allowed to iteratively select
unlabeled instances and ask for their label. The key idea is that carefully picked,
informative data allow the learning algorithm to perform better with less training.
A decisive part of an active learning system is how it estimates the informativeness
of unlabeled instances; the procedure employed for this purpose is called query
strategy.

Usually, active learning query strategies assume that the selection process al-
ready started and train a classification model based on L. In special zero initialized
situation, the procedure starts with empty L, and therefore only unsupervised tech-
niques (e.g. clustering) can be used. It is often observed, especially for imbalanced
or multi-class data sets, that the active learning process does not select the same
number of items from each category during the query iterations. This happens
because traditional query strategies do not take sample distribution into account
in the resulting labeled training dataset. However, the underrepresented classes
contain small number of samples, and therefore some attributes are available to the
learning system with only an incomplete set of values, thus they lead to sub-optimal
models. In zero initialized active learning this is a critical problem, since the pro-
cess starts with empty L, so in some cases, underrepresented categories contain no
samples at all, consequently, the affected attributes are entirely missing. In other
words, it is important to query several training items into each category at the start
of a zero initialized active learning process.

The subject of this paper is the so-called pool-based unsupervised active learning
(UAL) [21], where an instance can be selected from a pool of unlabeled instances
(U), while there is not enough labeled data (L) to learn. The learning setup is
a multiclass classification problem with k classes, although, the selection and the
predictions are based on an unsupervised solution instead of a supervised machine
learning method. This paper is concerned with the beginning of the unsupervised
active learning, where the number of the labeled data not only a few but zero; i.e.
zero initialized unsupervised active learning. Active learner starting from the initial
training set selected by appropriate methods can reach higher accuracy faster than
that starting from randomly generated initial training set [10]; and therefore, the
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primary objective was to select a balanced initial training set (so the goal was to
get almost the same number of instances of each class).

The main contributions of this paper are (i) the Clustering Based Balanced Sam-
pling Framework (CBBSF) for zero initialized active learning, and (ii) the Spectral
Clustering Based Sampling (SCBS) query strategy that realizes CBBSF. SCBS
utilizes ClusterGAN (Clustering using Generative Adversarial Networks, [15]) in-
tegrated in spectral clustering [26] process to form the clusters in zero initialized
environment. After that Hungarian method [12] is employed to connect class mem-
bership probabilites to cluster membership probabilities. The rest of this paper is
structured in the following way: the next section contains the relevant related work
in the literature, Section 3 delineates the proposed CBBSF framework, then Section
4 presents the SCBS selection strategy, and after that the experimental evaluation
is presented, finally the conclusions are summarized in the last section.

2 Related work

There are some traditional query strategy frameworks in the literature, e.g. uncer-
tainty sampling [6], query-by-committee (QBC) [25], expected model change [2],
expected error reduction [14], or density-weighted method [1]. On the other hand,
there are recently proposed query strategies, like uncertainty sampling with diver-
sity maximization [29], Balanced Active Learning (BAL) method [17], extended
margin and soft balanced strategy [18], Prototype Based Active Learning (PBAC)
algorithm [3] and the hybrid, Expected Difference Change (EDC) [19]. However,
these approaches expect the L to be not empty, because all of them applies some
kind of supervised machine learning algorithm (e.g. decision tree, random forest
[22]), where L is used as training data. Hence, they are not suitable for the spe-
cial zero initialized active learning (where L is empty), moreover, in this situation
most of them are even unable to be executed. The field of active zero-shot learning
[28] [27] [7] is partially related to this subject, where the goal is to find a small
number of informative seen classes to facilitate unseen class predictions. The set-
ting of active zero-shot learning task contains seen and unseen categories, however
in this paper a different (zero initialized) starting environment is examined, where
only unseen classes are available.

Unsupervised learning techniques have been successfully used to select the intial
training set for active learning. One method is called centroid based selection
[11] [9], where unlabeled instances closest to the cluster centroids are selected as
starting dataset. In the work [11] the selection happened in one step, while the
proposed approach in this paper introduces information gain between the selection
of two consequtive items, and therefore it is mandatory to select the items step-
by-step. Another selection type is the border based selection [9] which selects the
samples with small difference between their highest and the second-highest degrees
of cluster membership confidence, i.e. the ones that are around the border between
clusters. The combination of center-based selection and border-based selection is
called by hybrid selection. Authors of [30] selected half of the instances with
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center-based, another half with border-based selection, and they achieved this by
alternating between the two methods. The centroid, border and hybrid selections
were implemented and compared to SCBS during the experiments. The aim of
CBBSF is not only to select the initial labeled training dataset, but to uniformly
select the instances among the categories to get a balanced labeled training dataset.

3 Clustering Based Balanced Sampling Framework

In this section the Clustering Based Balanced Sampling Framework (CBBSF) active
learning query strategy framework is presented. The aim of CBBSF is to select the
initial labeled dataset in the special zero initialized situation, where the initial
labeled training dataset L is empty. This condition designates a few guidlines: (i)
only an unsupervised machine learning algorithm can be used, (ii) the balance of
labeled items between the classes is important, (iii) the query strategy should select
an item whose class label the learning system is assured of. Satisfying these criteria,
CBBSF can be used as a selection strategy for both balanced and imbalanced
datasets (see Section 5). After CBBSF selects the initial L set, the active learning
could proceed by using another query strategy that is more focused on optimizing
the accuracy, but CBBSF could also be used as an end-to-end strategy.

A CBBSF query strategy first performs a clustering algorithm on the unlabeled
dataset U , then selects an unlabeled instance to be labeled by an oracle, as can be
seen in Figure 1. The selected item should maintain the balance in L; however, in
order to achieve this, the class membership probabilities are required so that an
item that presumably belongs to the most underrepresented class could be selected.
On the other hand, class membership probabilities can not be calculated explicitly
because L is empty, and thus supervised machine learning techniques can not be
performed.

The clustering algorithm used in CBBSF must return a cluster membership
matrix Q, see Equation 1, where qij is the probability for the ith item to belong to
the jth cluster.

Q = (qij) ∈ Rn×k,

0 ≤ qij ≤ 1,

k∑
j=1

qij = 1.
(1)

Let P be the class membership probability matrix, see Equation 2, where pij
is the probability for the ith item to belong to the jth class. It is important to
note that P 6= Q, since cluster identifiers are not related to class identifiers. As
it was mentioned above, determining P is essential to sustain balance in L, and
the elements of P can be derived from matrix Q with an appropriate assignment
solution between clusters and classes. During the active learning process, there is
no true information about the connection scheme, but this can be estimated based
on only the labeled items.
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Figure 1: Process of the Clustering Based Balanced Sampling Framework

P = (pij) ∈ Rn×k,

0 ≤ pij ≤ 1,

k∑
j=1

pij = 1.
(2)

After P becomes available, the most informative unlabeled instance (denote it
by u∗) can be selected, and then query its label y∗ from an oracle (e.g. a human
expert or an all knowing entity). Note that, in this case, most informative means
that most likely to preserve the balance in the labeled dataset. The last step is
to refresh L by adding the {u∗, y∗} pair to it, and based on the new L refresh
the assignment pattern as well. The process of CBBSF can be seen in Figure 1,
where the datasets, sub-processes and matrices are represented by green, yellow
and blue shapes, respectively. It is worth mentioning that U is excluded from the
iterative part of this process, since the clustering algorithm is only performed at
the beginning to get Q. The reason for this is that the more data is available for
the clustering method to work with, the more accurately it can form the clusters.
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Nevertheless, a fully iterative variant of this framework could also be used (where
L influences the clustering of the remaining items in U), but in this paper such
configuration is not examined.

4 Spectral Clustering Based Sampling

In this section, the Spectral Clustering Based Sampling (SCBS) active learning
query strategy is presented, which belongs to CBBSF, and thus suitable to be
performed in the special zero initialized environment. First, the spectral clustering
[26] algorithm is briefly reviewed, and then the realization of CBBSF modules is
discussed. Furthermore, Algorithm 1 shows a concise pseudocode for the CBBSF
and SCBS based zero initialized active learning algorithm.

4.1 Clustering Module

Given a set of data points x1, ..., xm, pairwise similarities are calculated based on
Euclidean distances, and then a similarity graph G is built to model local neigh-
borhood relationship between the data points. Based on the constructed G graph,
a similarity matrix S = {sij}(i, j = 1...m) is derived, where sij corresponds to the
weight of the edge between xi and xj in G (if those points are not connected by an
edge in G, then sij = 0). Let D be a diagonal degree matrix with Dii =

∑
j sij .

The fundamental step of spectral clustering is calculating the graph Laplacian
matrix from the matrices S and D [8] For example, the unnormalized graph Lapla-
cian matrix can be computed as expressed in Eq. 3, and this is the variant used in
the SCBS algorithm. Another two popular Laplacians are the symmetric normal-
ized and left normalized [5].

Λ = D − S (3)

Let matrix V be defined as the matrix containing the first k eigenvectors
v1, ..., vk of Λ as columns. At this point, SCBS applies ClusterGAN [15] to form
clusters C1, ..., Ck. The input of ClusterGAN are the rows of V , so the spectral
representation of the m datapoints. ClusterGAN is a relatively new clustering
approach that performs clustering using generative adversarial networks (GAN).
ClusterGAN uses a mixture of distributions (combination of discrete and continu-
ous) to generate latent vectors and to identify different groups in the latent space
(the space of latent variables). Besides, it uses a specific clustering error function
to train the generator model. Once the data is transformed into latent space, they
are clustered using the k-means algorithm. One advantage of using ClusterGAN is
that it provides a probabilistic interpretation of the clustering. It outputs so-called
cluster decision vectors q1, ..., qm from which the cluster membership probability
matrix Q can be built (i.e., q1, ..., qm vectors are the rows of Q). This algorithm is
performed on the initial unlabeled dataset U , and after that, items can be selected
by the query strategy.
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Algorithm 1 Zero initialized active learning with CBBSF using SCBS

input:
U : unlabeled image set
k: number of categories / number of clusters
iter: number of active learning iterations

initialize:
C1, ..., Ck ← Spectral ClusterGAN on U with k clusters
vN : k-long zero vector
L = Ø

output: L initial labeled training dataset (|L| = iter)

for N = 1...iter do
if L 6= Ø then

Build the occurrence matrix Ao (Eq. 4)
A← Hungarian algorithm based on Ao

P̂ = Q×A (Eq. 5)
h = argmax(A[:, argmin(vN )])

else
P̂ = Q
h = random(1...k)

end if
bestV alue =∞
bestIdx = 0
for ∀ui ∈ U do

Calculate the informativeness value of ui → val(ui) (Eq. 7 or Eq. 8)

if (val(ui) < bestV alue) AND (ui ∈ Ch)
†
then

bestV alue = val(ui)
bestIdx = i

end if
end for
u∗ = ubestIdx

y∗ = query(u∗)
vN [y∗] += 1
L = L ∪ {u∗, y∗}
U = U \ {u∗}

end for

Note that L-SCBS uses the condition marked with † symbol, while G-SCBS considers only the
condition before the AND operator.

4.2 Assignment Module

SCBS uses single-assignment procedure to implicitly calculate P , so that an appro-
priate unlabeled item can be selected that maintains even distribution in L.
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The class identity and the cluster identity of the labeled items are known. This
information can be structured in a table, based on which an occurrence matrix Ao

is introduced, as can be seen in Equation 4, where aij is the number of the items
that belong to class j while they are part of cluster i.

Ao = (aij) ∈ Nk×k (4)

To find the best assignment in the matrix Ao, the Hungarian algorithm [12] is
used, although in this case the sum of the entries in the assignment was maximized,
instead of the minimization (as it originally happens in the Hungarian algorithm).
The connection between Q and P̂ is characterized by this best assignment A, which
is actually a permutation matrix, thus Q is multiplied by A to get P̂ , where P̂ is
an approxiamtion of P ; see Equation 5.

P̂ = Q×A (5)

4.3 Selection Module

Let C1, ..., Ck denote the k different clusters, and Y1, ..., Yk denote the k different
classes. Furthermore, introduce the vector vN = (N1, ..., Nk) to contain the number
of labeled items in the different categories, after N active learning iterations, where
Nh is the number of items in Yh (h = 1, ..., k). The assignment module creates the
bijection between Cg and Yh (g, h = 1, ..., k); hence the number of labeled items in
the clusters are also known, at each step. Two variants of SCBS were developed:
the Global SCBS (G-SCBS) and Local SCBS (L-SCBS); both of them essentially
operates the same way. However, the former minimizes the informativeness metric
over every element of U , while the latter examines only a reduced unlabeled set
UCg , which contains the elements of a single cluster. Thus the local version of
the algorithm aims to balance L directly by investigating only UCg

, where Cg

corresponds to the most underrepresented category in L, denoted by Yh, as can be
seen in Equation 6.

Yh : h = argmin(vN ) (6)

In situations when vN has multiple minimum values, one of them was randomly
selected to designate Yh.

In order to find the most informativeness unlabeled instance (u∗), two differ-
ent techniques were used: (i) the first one maximizes the probability of the most
probable class, and (ii) the second one minimizes the information entropy over all
categories; as can be seen in Equation 7 and Equation 8, respectively.

u∗ = argmin
i

(1− p̂∗) , (7)

u∗ = argmin
i

− k∑
j=1

p̂ij × log p̂ij

 , (8)
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where p̂ij is an element of P̂ and p̂∗ represents the probability of the most prob-
able category. Despite that traditional active learning query strategies objective
is usually to pick instances with maximum variance, the purpose of CBBSF is to
evenly choose the instances from the classes. Consequently, SCBS must be confi-
dent that y∗ (∈ {Y1, ..., Yk}) is the true label of u∗ (∈ U), so that the assignment
and the balancing could be feasible. This implies that the most representative un-
labeled instance is the most informative for SCBS, i.e. the one which has minimal
uncertainty about its true class label.

Table 1: Numer of items in balanced and imbalanced MNIST datasets.

|Y1| |Y2| |Y3| |Y4| |Y5| |Y6| |Y7| |Y8| |Y9| |Y10| Sum

Balanced (B) 500 500 500 500 500 500 500 500 500 500 5000
Imbalanced1 (I1) 387 516 300 429 482 603 503 700 405 675 5000
Imbalanced2 (I2) 209 850 472 641 558 150 730 354 804 232 5000

5 Experimental evaluation

In this section the experiments are presented that were conducted on the MNIST
[13] database of handwritten digits, which consist of 60,000 train and 10,000 test
images. The train and test sets were combined into a 70K dataset, and then 5
Balanced (B), 5 Imbalanced1 (I1) and 5 Imbalanced2 (I2) subsets were randomly
selected from this dataset, each of them contained 5,000 images (see Table 1).
During the experiments, the following 4 SCBS method variants were tested:

• G-SCBS using minimal entropy (G-SCBS 1)

• G-SCBS using most confident (L-SCBS 1)

• L-SCBS using minimal entropy (G-SCBS 2)

• L-SCBS using most confident (L-SCBS 2)

Several additional methods proposed in the literature were also tested: the Cen-
troid [11], the Border [30] and the Hybrid [30] active learning query strategies;
furthermore, the Random sampling [9], which selects a random item at each iter-
ation. The results of these competitor methods are compared to the results of the
proposed SCBS based techniques.

The tests were performed in the special zero initialized situation, so at the
start of the active learning process U contained the total 5,000 images of the test
dataset and L was empty. At the testing of each dataset, the goal was to select
the initial labeled image collection with a fix size: |L| = 100; therefore, in ideal
situation each category should contain 10 labeled items. Consequently, only the
first 100 active learning iterations were investigated, and in each iteration only one
unlabeled instance was selected (i.e., the batch size was one).
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In order to evaluate the balancedness in L, two new measures are introduced in
this paper: the Average Cardinality Error (ACE, see Equation 9) and the Actual
Balancedness (AB, see Equation 10). The latter expresses the amount of balance
in L, at the actual active learning step. In case of perfect balance AB = 1, while in
the worst case (when every item belongs to the same class) AB = 0. On the other
hand, ACE can be calculated by taking the average of the deviation of actual state
from the optimal one.

ACE =

k∑
j=1

(
1

k
×
∣∣∣∣⌊Nk

⌋
−Nj

∣∣∣∣) (9)

AB =

(
1− 1

N
×
(

max
j
{Nj} −min

j
{Nj}

))
(10)

where Nj is the cardinality number of class Yj in L, and N is the number of
active learning steps. After the evaluation of AB for each individual results got
on MNIST datasets, the average of them were calculated, denoted by AAB, as can
be seen in Table 2. Furthermore, the accuracy (ACC) was also measured at each
iteration on the remaining items in U . ACC is the ratio of the correct decisions
and all decisions, where the different types of decisions come from the confusion
matrix: True Positive, False Positive, True Negative and False Negative. Note that
since at zero initialized active learning there is not enough labeled items to perform
supervised learning (i.e. classification), the predicted elements of the confusion
matrix are derived from the clustering results by the assignment solution.

In Figures 2-4 the cardinality numbers (Nj) of the classes in L are presented,
at iterations 20, 50 and 100, obtained on Balanced, Imbalanced1 and Imbalanced2
MNIST datasets, respectively. Figure 5 shows the average accuracy at each iter-
ations, where SCBS methods are represented with dark, competitor methods are
represented with gray lines; each strategy with different markers. The results show
that L-SCBS 1 and L-SCBS 2 strategies could achieve higher accuracy than every
other method, moreover, in case of balanced datasets both of them were able to
perfectly balance L after 100 active learning steps. Regarding imbalanced datasets,
L-SCBS 2 seems to perform slightly better, than L-SCBS 1. On the other hand, G-
SCBS 1 and G-SCBS 2 could not balance {Nj}, and therefore it can be concluded
that reducing U to only one cluster at a time by leveraging the assingment solution
is advantageous. Competitor methods were also unable to reach equilibrium, al-
though at balanced datasets Centroid seems to be promising, since it surpassed the
global variants of SCBS. Border technique resulted the highest deviation in {Nj},
while it gave the highest accuracy on average, after 100 iterations (see Figure 5).
This could be explained by analyzing the way it operates, Border method selects
instances on the border of clusters, and thus it eliminates uncertain choices, which
increases the accuracy. Other methods reached the same level of accuracy, L-SCBS
1 and L-SCBS 2 at around 10-11 steps, while for other approaches it took a longer
time.
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Figure 2: Distributions of the labeled instances among the categories got on one of
the Balanced MNIST dataset at iterations 20, 50 and 100.
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Figure 3: Distributions of the labeled instances among the categories got on one of
the Imbalanced1 MNIST dataset at iterations 20, 50 and 100.
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Figure 4: Distributions of the labeled instances among the categories got on one of
the Imbalanced2 MNIST dataset at iterations 20, 50 and 100.
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Figure 5: Average of accuracies got on the MNIST datasets at each active learning
iteration; different query strategies are denoted by different markers, additionally,
the darker lines correspond to the SCBS variants.

As can be seen on the figures, different datasets resulted different label distribu-
tions in L, however, taking the average of the different MNIST datasets regarding
this aspect would be highly misleading and difficult to interpret. The reason for
this is that the outcome of taking the average of low and high cardinality numbers
could be around the perfect result, even though the difference between the individ-
ual results could be colossal. Consequently, each test were evaluated separately and
deviations from the optimal cardinality number were calculated as errors. Table 2
summarizes the results, where the maximum and minimum {Nj} are shown along
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Table 2: Maximum, minimum cardinality numbers, and Average Cardinality Errors
got on each MNIST dataset, additionally, last row of each block show the Average
Actual Balancedness.

Random Centroid Border Hybrid G-SCBS 1 L-SCBS 1 G-SCBS 2 L-SCBS 2

MNIST B 1
max 16 14 29 23 15 10 15 10
min 6 8 3 7 5 10 4 10
ACE 2.2 1.4 6.6 3 2 0 2.2 0

MNIST B 2
max 14 12 22 17 13 10 14 10
min 8 8 4 6 7 10 6 10
ACE 1.6 1 3.2 3.4 1.8 0 2.2 0

MNIST B 3
max 21 14 25 18 14 10 13 10
min 4 7 4 7 6 10 7 10
ACE 3.8 2 4.6 2.2 2.2 0 1.6 0

MNIST B 4
max 13 12 16 19 14 10 20 10
min 4 9 5 5 6 10 5 10
ACE 2.2 0.8 3.6 3.4 2 0 3 0

MNIST B 5
max 14 15 28 18 15 10 16 10
min 1 8 5 7 6 10 5 10
ACE 2.8 1.2 5 3 3 0 2.4 0

AAB 0.899 0.948 0.814 0.890 0.907 1.000 0.905 1.000

MNIST I1 1
max 17 25 38 30 15 11 13 10
min 3 4 3 4 5 9 5 10
ACE 4.6 5.8 7 7 3 0.4 2 0

MNIST I1 2
max 17 24 37 31 22 11 21 11
min 5 4 2 4 5 9 5 9
ACE 2.6 5 7.4 6.8 3.6 0.2 3.2 0.2

MNIST I1 3
max 16 27 24 31 21 11 20 10
min 1 3 6 5 3 9 4 10
ACE 3.6 6.2 3.4 5.6 4.2 0.4 3.8 0

MNIST I1 4
max 17 21 23 31 18 11 16 10
min 3 5 2 3 2 9 2 10
ACE 4 4.4 5.6 5.2 4 0.4 3.4 0

MNIST I1 5
max 15 24 21 30 15 11 14 11
min 5 5 5 5 5 9 3 9
ACE 2.6 4.8 3.6 4.8 3.2 0.4 2.4 0.4

AAB 0.870 0.800 0.750 0.736 0.858 0.980 0.870 0.992

MNIST I2 1
max 16 23 15 31 16 11 17 10
min 5 4 6 5 2 9 2 10
ACE 2.8 6.2 2.8 4.8 3.6 0.2 3.8 0

MNIST I2 2
max 21 27 40 32 15 11 16 11
min 5 4 0 2 2 9 2 9
ACE 3.8 5.2 7.2 7.6 3.4 0.4 3.2 0.2

MNIST I2 3
max 20 27 22 30 17 13 23 10
min 1 4 5 3 3 9 2 10
ACE 4.8 3.8 5 6.2 4 0.6 3.6 0

MNIST I2 4
max 23 23 43 31 18 11 18 10
min 3 4 2 2 2 9 2 10
ACE 5 5.4 8.6 7.6 5.2 0.4 5 0

MNIST I2 5
max 33 21 34 29 18 12 17 10
min 3 4 3 4 4 9 3 10
ACE 5.6 5.2 6.4 6.6 3.2 0.6 3.6 0

AAB 0.808 0.798 0.724 0.726 0.858 0.974 0.840 0.996

with the ACE for each MNIST dataset (indicated in the left column, where B, I1
and I2 refers to the type of MNIST dataset). Furthermore, the AAB measure was
calculated for each query strategy, and presented in the last row of each block of
Table 2. As can be seen in the table, L-SCBS 1 and L-SCBS 2 had zero deviation
from the optimal distribution in all balanced cases, in addition, L-SCBS 2 could
achieve perfect balance, even in imbalanced situations, while L-SCBS 1 performed
marginally worse; as the values of the AAB metric shows. Therefore, L-SCBS 2 is
the best method (among the tested ones) to employ for the zero initialized active
learning task.
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6 Conclusion

A novel active learning query strategy framework and an acitve learning query strat-
egy that belongs to this framework were elaborated in this paper, the Clustering
Based Balanced Sampling Framework (CBBSF) and the Spectral Clustering Based
Sampling (SCBS), respectively. CBBSF focuses on the problem of zero initialized
active learning, hence it selects the initial labeled training dataset and balances the
items among the categories. The framework consists of three modules, (i) a cluster-
ing module, (ii) an assignment module and (iii) a selection module. SCBS realizes
this framework, it utilizes ClusterGAN integrated in spectral clustering process to
form the clusters and then Hungarian method is used during the assignment, after
that it selects unlabeled items based on the class membership probabilities. Global
and local variants of the SCBS method were developed, futhermore, two different
techniques were applied to calculate the informativeness of the unlabeled instances,
and thus four different SCBS approaches were examined. Average Cardinality Er-
ror (ACE) and Actual Balancedness (AB) new measures were introduced in the
paper. During the experimental evaluation on MNIST datasets, ACE, AB and ac-
curacy (ACC) were evaulated using each SCBS variant, moreover, state-of-the-art
zero initialized active learning query strategies were also tested and compared to
the results of SCBS, namely the Random, Centroid, Border and Hybrid approaches.
The results showed that local versions of SCBS achieve high accuracy faster than
every other method, and they are able to perfectly balance the labeled training
dataset. In future work, the proposed approach will be extended with a solution
that handles wrong clustering, i.e., when two categories are merged or one category
is splitted. With this addition, the usability of the algorithm in real world scenarios
could be improved significantly.
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[24] Szűcs, G. and Tamás, B. Body part extraction and pose estimation method in
rowing videos. Journal of computing and information technology, 26(1):29–43,
2018. DOI: 10.20532/cit.2018.1003802.

[25] Tsai, Y.L., Tsai, R.T.H., Chueh, C.H., and Chang, S.C. Cross-domain opinion
word identification with query-by-committee active learning. In: Cheng, S.M.,
Day, M.Y. (eds.) TAAI 2014. LNCS, 8916:334–343, 2014. DOI: 10.1007/

978-3-319-13987-6_31.

[26] Von Luxburg, U. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007. DOI: 10.1007/s11222-007-9033-z.

[27] Xie, S. and Philip, S. Y. Active zero-shot learning: a novel approach to
extreme multi-labeled classification. International Journal of Data Science
and Analytics, 3(3):151–160, 2017. DOI: 10.1007/s41060-017-0042-5.



Zero Initialized Active Learning 419

[28] Xie, S., Wang, S., and Yu, P. S. Active zero-shot learning. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge
Management, pages 1889–1892, 2016. DOI: 10.1145/2983323.2983866.

[29] Yang, Y., Ma, Z., Nie, F., Chang, X., and Hauptmann, A.G. Multi-class active
learning by uncertainty sampling with diversity maximization. Int. J. Comput.
Vis., 113(2):113–127, 2015. DOI: 10.1007/s11263-014-0781-x.

[30] Yuan, W., Han, Y., Guan, D., Lee, S., and Lee, Y. K. Initial training data
selection for active learning. In Proceedings of the 5th International Conference
on Ubiquitous Information Management and Communication, page 5, 2011.
DOI: 10.1145/1968613.1968619.

[31] Zhu, X. Semi-Supervised Learning with Graphs. PhD thesis, Carnegie Mellon
University, 2005.


