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Abstract

In this work, we propose a novel solution to the problem of inferring the
state machine of an unknown protocol. We extend and improve prior results
on inferring Mealy machines, and present a new algorithm that accesses and
interacts with a networked system that runs the unknown protocol in order
to infer the Mealy machine representing the protocol’s state machine. To
demonstrate the viability of our approach, we provide an implementation
and illustrate the operation of our algorithm on a simple example protocol,
as well as on two real-world protocols, Modbus and MQTT.

Keywords: automated protocol reverse engineering, state machines, Mealy
machines

1 Introduction

In today’s world, IT systems are seldom standalone and monolithic. Each system is
comprised of up to several tens of parts or modules that somehow communicate with
each other, usually via a network. The rules of communication, i.e. the formats
of the messages and the possible valid sequences of messages are established by
protocols that are defined in specifications. Many systems use proprietary or closed
protocols whose specifications are not made publicly available. Examples typically
include industrial control systems (ICS) and in-vehicle embedded networks.
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However, it would often be largely beneficial to have at least an approximate idea
of how these closed protocols work. For instance, with this knowledge, it would be
possible to build network anomaly detection tools that detect potential cyberattacks
against industrial systems, design more specialized honeypots, detect malicious or
malfunctioning components in in-vehicle networks, or build new components that
can be more easily integrated into existing systems.

One may attempt to reconstruct the specification of an unknown protocol by
applying various protocol reverse engineering methods. The goal of such methods
is two-fold: first, the type and format of the messages used by the protocol need to
be understood, second, this information may be used to recover the state machine
of the protocol. The process of reverse engineering a protocol is often a tedious
task; therefore, some degree of automation is required to make it practical.

In a previous paper [14], we focused on the problem of determining the message
types and message formats of undocumented binary protocols. We developed a tool
that can process captured network traffic containing messages of a protocol, then
retrieve the identified message types as well as the semantics of the message fields
for the different message types. In this paper, we address the problem of inferring
the state machine of a previously unknown protocol.

Our method is based on prior work on inferring Mealy machines, in particular,
on the work of Shahbaz and Groz [20]. We take their Mealy machine inference
algorithm and extend it with elements that make it possible to use their conceptual
results in practice so as to reverse engineer the state machine of real-world protocols
in an automated fashion. This method requires access to and interaction with a
system that runs the unknown protocol. In addition, we assume that the message
types and formats have already been reverse engineered, e.g., by using our previ-
ously published method. We process and use previously recorded network traces as
well as data obtained from this system, efficiently and intelligently choosing input
for the above-mentioned Mealy machine inference algorithm.

2 Related work

The principles of protocol reverse engineering date back to the 1950s, where re-
verse engineering was typically used for fault analysis, and it involved analyzing
and understanding electrical circuits that implemented a finite state machine rep-
resenting a protocol [15]. With computers and computerized accessories becoming
more and more widespread around the turn of the century, the number of network
applications, thus the number of network protocols increased. Some of these were
proprietary with no available documentation, meaning that they had to be reverse
engineered in order to develop compatible applications.

The first well-known project that aimed at restoring the specifications of such
a protocol was the Samba Project (2003) [1] that has taken 12 years to finish. The
exact methods they used are not detailed, but it is known that they sniffed network
traffic and employed random probing to identify message types and semantics. The
Samba Project was soon followed by M. A. Beddoe’s Protocol Informatics Project
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[5] in 2004, which used bioinformatical algorithms on network traces to infer the
message types of the text-based protocol HTTP. RolePlayer (2006) [12], Discoverer
(2007) [11], Biprominer (2011) [22], ReverX (2011) [3], ProDecoder (2012) [21],
and AutoReEngine (2013) [17] soon followed, all of which relied solely on network
traffic.

The early works typically focused on message type and message format infer-
ence. They did not put much emphasis on field semantics inference, nor did they
attempt to recover the protocol state machine. Those that tried to infer field se-
mantics did not achieve significant results — Discoverer admits to achieving between
30-40% accuracy [11], and not even Netzob exceeds 50% [7]. FieldHunter (2015) [6]
was the first to achieve over 80% accuracy on semantics. In a previous paper [14],
we presented GrAMeFFSI (2020) that may achieve over 90% accuracy on binary
protocols if high-quality network captures are available.

While most algorithms aimed at reversing both text-based and binary protocols,
some specialized in one or the other, usually achieving better performance metrics
compared to the more general solutions of their time. Biprominer, as its name
suggests, targeted binary protocols, as did GrAMeFFSI, while ReverX targeted
text-based protocols. The methods employed vary — RolePlayer and Discoverer
rely on sequence alignment, Biprominer and AutoReEngine leverage data mining
approaches, ProDecoder makes use of natural language processing algorithms, while
GrAMeFFSI employs graph analysis.

An alternative to network traffic analysis based protocol inference is binary anal-
ysis based inference. Such methods often rely on dynamic taint analysis, marking
sections of code in the memory of the binary being executed that are hit when
processing or responding to a given message, then making assumptions about the
message formats and semantics based on what and how was marked. It has been
proven [19] that binary analysis based approaches can achieve better results; how-
ever, purely traffic analysis based approaches are also important as binaries may
not always be at our disposal, and legal agreements may prevent us from analyzing
or reverse engineering these.

In order to reverse engineer the protocol state machine, at least a partial under-
standing, a classification of the message types is needed. State machine inference
methods must either produce the message classes themselves, or rely on existing
message format inference methods, perhaps in a slightly modified manner. So far,
there have been fewer attempts to reconstruct protocol state machines than to de-
termine message types and semantics [13]. The majority of the network trace based
solutions are passive, meaning that only recorded traffic is used as input, and no
live systems (running original protocol implementations) are contacted.

ScriptGen (2005) [16] was the first notable method for state machine infer-
ence. It uses the Needleman-Wunsch sequence alignment algorithm (similarly to
Beddoe’s previously mentioned project) along with micro- and macroclustering to
build a protocol state machine from captured network traffic. The state machine
is then used to formulate responses for a honeypot. It was later followed by Cho
et al.’s work on reverse engineering the protocol of the MegaD botnet (2010) [8]
that leveraged and optimized Angluin’s L* algorithm [2] to infer a Mealy machine
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based on network traces and live queries. They reached between 96% and 99%
accuracy on various protocols. Another important result was Veritas (2011) [23]
that employs statistical analysis on captured network traffic to build probabilistic
protocol state machines that are claimed to be 92% accurate on average. There
also exist approaches that rely on program execution instead of network traces, the
most significant ones being Prospex (2009) [10] and MACE (2011) [9].

3 The L,/ algorithm and its application for infer-
ring protocol state machines

We use Mealy machines to represent the state machine of a protocol as they can
be used to model the behaviour of protocols using requests and responses (which
are quite typical in practice) in a simpler way than finite state machines or Moore
machines. Mealy machines differ from simple finite state machines in that for every
state transition that is triggered by an input, an output is defined. The set I of
possible inputs is called the input alphabet and the set O of possible outputs is
called the output alphabet.

Angluin described an algorithm in [2] that can be used to infer minimal finite
state machines, and this algorithm can be adapted for inferring Mealy machines as
well. In this work, we adopt the techniques of Shahbaz and Groz described in [20],
and from this point forward, we refer to the Mealy machine inferring algorithm
described in [20] as L.

Since we use the Lj;" algorithm as a black box, a high-level overview of its
operation is sufficient for our purposes here. The Lj; " algorithm is executed by a
learner, and it requires a teacher. The teacher knows the Mealy machine to be in-
ferred, and the task of the learner is to infer that machine. The teacher can answer
two types of queries for the learner: first, for a certain sequence of input characters,
the teacher returns the output of the machine to be inferred (input query); second,
the teacher can determine whether a certain Mealy machine conjectured by the
learner is the same as the one to be inferred (equivalence query). If the conjectured
machine differs from the real one, then the teacher returns a counterexample: a se-
quence of input characters for which the real and the conjectured machines produce
a different output.

A Mealy machine can be used to model the state machine of a client-server
protocol in a fairly straightforward manner: the input alphabet of the machine
contains the possible messages that the client may send to the server (i.e., the
requests) and the output alphabet contains the possible messages that the server
may send to the client (i.e., responses, acknowledgements, errors, etc.).

Clearly, including all possible individual messages in the input and output al-
phabets can easily lead to problems: a huge resulting Mealy machine and a very
long running time of the Ly, algorithm. For instance, if a message contains a 4-
byte timestamp, then the alphabet would contain at least 232 elements to represent
all possible messages containing different timestamp values. To bring the size of
the alphabets to a manageable range, we represent message types by the elements
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of the input and output alphabets instead of individual messages. A message type
models a group of messages that have the same format but may differ in the specific
values in the fields of the given message type.

In order to work with message types, we use two helper functions: a message
classifier and a message generator. The message classifier function takes a particular
message as input and returns its message type. The message generator function
takes a message type as input and generates a valid message that has the specified
message type. While the message classifier function should be deterministic, the
message generator can be non-deterministic: the values of the message fields can
be randomly generated as long as the message remains well-formed (i.e., consistent
with its type). An additional function, a message updater is also useful, which takes
as input the set M of all previously sent messages and a particular message m of
this set, and returns a new message m’ of the same type as m, such that the values
of certain fields in m’ are the mutations of the corresponding values in m, and M
does not include m’ yet. The updater function takes the semantics of certain fields
into account: for instance, constant fields and identifiers are not mutated, a counter
is mutated by incrementing it, etc. Such an awareness of semantics improves the
efficiency and accuracy of our algorithm.

Recall that we aim at reverse engineering the protocol state machine of a system
under test (SUT). To achieve this goal, we use the Ly, algorithm as the learner
that infers the unknown Mealy machine representing the protocol, and we need
to provide the teacher that answers the queries of the learner. We construct the
teacher by using the helper functions defined above, and by sending messages to
and observing the responses of the actual implementation of the protocol provided
by the SUT.

This works in the following way: we start by using the message generator helper
function to produce messages for every message type. We use these pre-generated
messages to avoid a deterministic protocol appearing to be non-deterministic due
to freshly generated random values used in the same message at different stages of
our algorithm. Then, we run the Lj; " learner and we respond to its queries. Input
queries are answered by first resetting the SUT, then sending the pre-generated mes-
sages (after running the message updater helper function on them) corresponding
to the learner’s input query to the SUT, and finally running the message classifier
helper function on the SUT’s responses to get the message types that the learner
can understand. KEquivalence queries are answered by generating random input
queries, running them against both the SUT and the conjectured machine, and
comparing their outputs. The number of queries needed to decide about equiv-
alence with a given confidence level has been studied in [2], and we follow those
guidelines. Once the Ly, " learner conjectures a Mealy machine that is deemed
correct, our algorithm terminates with that machine as the output.
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4 Extending the L;;" algorithm

The above-described version of our algorithm may return an incomplete protocol
state machine because only a single message of each type is generated, which always
triggers the same type of response, while it may be possible that other variants of
the same message would result in a different response. Consider, for example, a
request for reading the content of some memory address; the response can be the
data found at the specified address or an error if the address was invalid. The
extended version of our algorithm attempts to find these differing behaviours by
finding messages of the same type that trigger different responses from the SUT.
This further divides the set of messages that belong to a particular message type.
We will call these new sets message subtypes. Our goal is to find as many subtypes
as possible, ideally all of them. This is done by generating multiple messages of
each type for the input alphabet I, then running the simple version of our algorithm
with them. The resulting Mealy machine is analyzed, and messages that have the
same type but do not produce different behaviour are removed (we call this step
deduplication). More precisely, we say that two messages do not produce different
behaviour, if, for all states of the Mealy machine, the two inputs result in the same
output and the same new state. This means that deduplication only leaves a single
message instance from every message subtype. After deduplication, new messages
are generated and added to the set of possible inputs, and the simple algorithm is
executed again. This is repeated again and again to reach more and more complete
representations of the protocol as more subtypes are discovered (see Algorithm 1).
A straightforward criterion for stopping could be requiring a number of runs where
no new subtypes are found.

Initialization: I :=10
Do
I := I U generateNewMessages();
Mour = Ly, (I);
I, Myt = deduplicate(I, Moyt );
While stopping criterion is not met;
Result: M,,;

Algorithm 1: Pseudocode of the extended algorithm

This method keeps the advantage of reducing the size of the input alphabet while
still allowing us to discover inputs that are not considered different by message
type categorization but reveal different behaviour of the protocol. In addition,
not having an absolutely perfect message format becomes less of a problem, since
message types that are not correctly separated by the used message formats will
be automatically separated into message subtypes. However, it has two possible
major pitfalls. The first problem arises if specific message subtypes only reveal
their different properties if they are used in combination. As an example, let us
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look at a message type that changes some kind of operating mode. Let there be
three modes: A, B and C, where there is a subtype for changing into each of these
modes (a, b and c respectively). All other message instances that belong to the
mode changing message type do not have any effect. Starting out, the protocol is
always in mode A, and each mode can only be changed into from a neighbouring
mode (A is only accessible from B, B is accessible from both A and C, while C is
only accessible if already in mode B). Now, suppose that only a and ¢ is in the
input alphabet along with some other messages from the same message type (but
not b). In that case, ¢ might be falsely discarded since it does not do anything
unless the protocol is in mode B, but there is no way to make that happen with
this collection of messages. This might be countered by increasing the number of
message instances that are added each time, but this increases the queries needed
to run the algorithm.

The second shortcoming is related to the generator function. As long as the
generator produces message instances at a uniform distribution from each subtype,
there is no problem; however, it is not trivial to write such a generator. For example,
if a generator is generating read messages that read from a specific memory address,
and fills the target address at random, the rate at which it will produce ”valid”
messages that result in a response with the read value and ”invalid” messages that
return an error because of an out of bound read depends on the memory layout
of the device that is being tested. This could lead to never discovering one of the
subtypes, or extending the runtime of the algorithm by selecting from only one
subtype for many rounds and only later finding the other.

To deal with these problems, we need to have access to previously recorded
traffic of the protocol that is being reversed — with information regarding resets. It
is not unrealistic to have access to such traffic since network captures are usually
used to reproduce the message types and semantics that are direct inputs to our
algorithm. Of course, the quality and diversity of this capture will directly affect the
results of the algorithm. We use the capture to find message instances that do not
belong to any subtypes we have previously found. To do so, after each round, we
compare the recorded communication with the predictions that the Mealy machine
of the last round would make from the inputs. We classify the messages in the
recorded traffic with the classifier, creating a sequence of message types, keeping
track of which were queries (from client to server) and which were responses (from
server to client). We feed the queries into a Mealy machine produced from the
output of the last round and compare the outputs with the responses. If there is a
difference, we know that a message in the communication up to that point is not
covered in the Mealy machine, so all the queries in the flow are added to the input
alphabet, and a new round is started. The modification is necessary because the
Mealy machines produced by the Lj;" algorithm in this setting expect message
subtypes as inputs, but the message classifier can only produce message types.

To be precise, we actually convert the output Mealy machine into a simple
Deterministic Finite Automaton (DFA) that takes inputs that are pairs of query
and response messages. The DFA accepts a sequence if it could be produced by
the Mealy machine. As a first step, we take the original machine and construct a
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machine that is the exact copy of the Mealy machine, except each transition in the
new Finite State Machine (FSM) is the pair of input and output message types in
the original Mealy machine (the subtype is stripped here and duplicate transitions
are discarded). Every state of this new machine is an accept state since every
transition that is present here is represented in the original Mealy machine. We
analyze the resulting machine to collect its alphabet. If the machine is incomplete
(i.e., there are states where there is no transition with all letters of the alphabet,
meaning there are some cases where the behaviour of the machine is not specified),
we fully specify it by inserting the missing letters as transitions to the FAIL state.
This is a new state that only has loop transitions, and is not an accept state. At
each state, a missing input-output pair means that the original Mealy machine
could not produce the given output for the given input in that state, so if this is
encountered, the sequence is not covered. While analyzing a message sequence the
first time the machine enters the FAIL state, the sequence up to that message pair
can be used as new message instances for the next round. The same is true if we
encounter a query/response pair that is not in the alphabet of the machine.

Now we have a machine that can handle the input we have, however, since we
stripped away the subtypes, it may be non-deterministic (there may be multiple
transitions from the same state with the same letter). This is not a problem,
as there are known algorithms to transform non-deterministic state machines into
deterministic ones. However, the resulting DFA may be exponentially large, which
may be a problem for big inputs. It may be useful to run a minimization algorithm
after determinization to get a minimal DFA.

One more improvement can be made by not completely stripping away the
subtype information in the first step, but rather adding a transition with only the
message type and also keeping the one with the subtype specified. The rest of the
steps of creating the DFA remain the same. This is useful because for some of the
messages, we can determine their subtype: these are the message instances that
were used in the last round of learning. If there is an exact match with one of these,
we can leverage this additional information.

5 Implementation and evaluation

We implemented the Ly, algorithm and our algorithm in Python using the Net-
workX! package to represent Mealy machines. We designed the implementation
to be modular, such that the different components are well separated and easy to
replace. This is important for future improvements and to be able to easily plug in
the functions that are different for each protocol (e.g., the message generator, the
message classifier, and the part of the teacher that handles communication with
the SUT).

Thttps://networkx.github.io/
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5.1 Evaluation on a simple test protocol

For test and illustration purposes, we constructed and used a simple protocol which
is illustrated in Figure 1. The protocol has 3 states: the starting state DISCON-
NECTED, the state BASE, where only get is a valid input, and the state WRITE,
where both get and write are valid inputs. The difference between get and bad_get
is that the parameter (target address) of the get message is valid, while it is invalid
in a bad_get, and likewise with write and bad_write. Messages get and bad_get are
of the same type, and similarly, messages write and bad_write have the same type.
These two message types are used by the message generator to generate messages
with random addresses; no recorded traffic analysis was used in this test.

bad_get/error
bad_write/error
disconnect/ok
get/error
mode/error
write/error

ping/ok / disconnect/ok

bad_get/error

bad_write/error
get/data
ping/ok

write/error

disconnect/ok

mode/ok \ mode/ok

bad_get/error
bad_write/error
get/ok
ping/ok
write/ok

Figure 1: The Mealy machine of the simple test protocol

Figures 2, 3, and 4 show the inferred Mealy machine in different rounds after
deduplication. The request messages are postfixed with a number; this is a counter
showing how many times the message generator was called when the given message
was generated. The starting state is *, and every other state is labelled by the
messages that can be used in sequence to reach that state. In the first round, the
algorithm generated two instances of each message type; however, each instance
of the same message type produced the same behaviour, therefore, only one of
them was kept (see Figure 2). In the second run, a new instance was generated
from each message type, but these did not show new behaviour either, so they were
discarded too. In the third round, a variant of the write message type was generated
that resulted in an ok response, as opposed to the error response triggered by the
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disconnect-0/ok
get-0/error

mode-0/error

ite-O/error

get-0/data
ping-0/ok
write-0/error

get-0/ok
ping-0lmode-0 ) > ping-0/ok
write-0/error

Figure 2: Output of the first round

disconnect-0/ok

other variant of the write message, so this was kept (see Figure 3). Finally, in the
fourth round, the algorithm also finds a get message variant that results in different
response observed so far, hence it is retained (see Figure 4). After five rounds with
no new behaviour found, the algorithm stopped. As we can see in Figure 4, in
our example, the Mealy machine inferred is identical to the state machine of the
example protocol (except for the names of the states and message variants, of
course).

disconnect-0/ok
get-O/error

mode-0/error

rite-0/error
ite-3/error

write-3/ok

Figure 3: Output of the third round
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disconnect-0/ok
get-0/error
get-4/error
mode-0ferror
yrite-0/error
write-3/error

ping-0/ok/disconnect-0/ok

get-0/data
get-4/error
ping-0/ok
write-0/error
write-3/error

disconnect-0/ok

get-0/ok

get-4/error

ping-0|mode-0 ) Qing(—)?}ok
write-0/error

write-3/ok

Figure 4: Output of the fourth round

5.2 Evaluation on Modbus

Modbus is a widely used industrial protocol that allows a client to read data from
and write data to the server, usually a Programmable Logic Controller (PLC). For
our tests, we used a custom implementation for both the client and the server.

Modbus messages begin with a fixed 8-byte header that is followed by a data
part of variable length. For the classifier, we only used the last byte of the header
as this byte determines the packet type. We constructed the generation function by
classifying messages in the recorded network traffic and selecting from them when
necessary, using the strategy described in Section 4.

In order to bridge the gap between real TCP communication and the abstract
message instances described until now, some additional artificial message types
were defined in the proxy that translates between the two. The first one is necessary
because, to some queries, the server might simply not reply. When a certain timeout
is reached without any response from the server, we conclude that it will not respond
at all and return a noresp message as the response. The other possibility is the
server terminating the connection because of some protocol violation, or because
of a DISCONNECT packet. To model the communication properly, the proxy
starts out with no open socket, and as long as there is no socket, it returns noresp
to all queries. We define the sockconn query message, which results in the proxy
opening a new TCP connection to the server and storing the socket — replacing the
previously stored socket, if there was one —, and returning sockconn.

The output of our algorithm for Modbus can be seen in Figure 5. The input
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0x1-178/noresp
0x10-104/noresp
0x2-140/noresp
0x2a-75/noresp

" 0x3-10/noresp
0x4-110/noresp
0x4-120/noresp

0x5-37/noresp
0x6-77/moresp
0xf-46/noresp

sockconn/sockconn

0x1-178/0x1
0x10-104/0x10
0x2-140/0x2
0x2a-75/0xaa
0x3-10/0x3
sockconn 0x4-110/0x84
0x4-120/0x4
0x5-37/0x5
0x6-77/0x6
0xf-46/0xf
sockconn/sockconn

Figure 5: Resulting Mealy machine for Modbus

letters on the Mealy machine are the various function codes of Modbus, postfixed
with a unique identifier to separate message subtypes. The output letters are the
function codes that the server replied with. The figure shows that from a protocol
state machine point of view, the Modbus protocol is very simple as it has two states:
in the starting state only the sockconn message results in any response, as there
is no connection to send or receive the other messages, and in the other state, the
server always responds to queries. For each request (function code), the response
has the same code as the query, except if an error is detected, in which case the
response code is the query code plus 0x80.

In our case, for request code 0x2a, we always get sent back an error because
it is an invalid function code, but for 0z4 there is a subtype for a correct version
of the query and one for the incorrect version. The network capture we used did
not contain invalid uses of the other function codes, so those are not present in the
produced Mealy machine.

Based on the open specification of the protocol [18], these results are 100%
accurate.
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5.3 Evaluation on MQTT

MQTT is a messaging protocol implementing a publish-subscribe model. Clients
can subscribe to channels and will receive all messages posted to these channels.
This protocol is ideal for evaluation because its simplicity and open specification
allow easy verification. There are also plenty of free implementations for servers
and client libraries, making it convenient to set up a test environment. For the
client-side, we used the Eclipse Paho™ MQTT Python Client? library, and for the
server-side we used Eclipse Mosquitto®.

MQTT messages are comprised of a fixed header, a variable header and a pay-
load. We only used the first four bits of the fixed header for the classifier as these
bits determine the packet type according to the documentation. The second byte
was used as well, to determine the length of the message, in case more than one mes-
sage was sent in a single IP packet. For the classifier and the generation functions,
we have taken the same approach as in the case of Modbus, with the exception
that a third artificial message that is specific to MQTT was also defined. This
message, called pubtrigger, simulates other clients connected to the MQTT server,
and triggers a publish to one of the channels.

The MQTT protocol has three different Quality of Service (QoS) levels that
govern how messages are published. As the level of QoS increases, so do the num-
ber of roundtrips and the confidence of the message reaching its destination. We
used only messages with QoS 0, and in separate tests, we generated traffic that used
one, two and three channels for posting messages. We configured the MQTT server
with two different username and password combinations and forbade anonymous
connections. Then we performed randomized actions through the client library by
selecting from connecting, publishing, subscribing, unsubscribing, and disconnect-
ing from the server. The channel and the message, where applicable, were also
randomly selected. The generated network traffic was captured and used for the
construction of the generation function and to prioritize the selection of message
instances. As it can be seen on final results of the algorithm (Figures 6 and 7), at
this level of QoS, the protocol is relatively simple: one can subscribe and publish
to any channel after connecting with the correct credentials.

The outputs produced by the algorithm are correct based on the MQTT protocol
specifications [4], taking into account that we only used a subset of the possible
functions of the protocol.

We can see that membership in the various channels is entirely independent.
As the number of potential channels increases, so do the number of states needed
to keep track of how many of them the client is currently subscribed to. One state
is necessary for each combination of channels that are joined, meaning two states
when only one channel is used (the client is either subscribed or not), four with two
channels (subscribed to none, either one, or both channels), and eight if there are
three channels. Generally, the formula is 2", where n is the number of channels that
are used. After reaching a high enough n, this is not very useful as it makes the

2https://github.com/eclipse/paho.mqtt.python
Shttps://github.com/eclipse/mosquitto



530 Gabor Székely, Gergé Ladi, Tamds Holczer, and Levente Buttyan

CONNECT-0/noresp
CONNECT-141/noresp
DISCONNECT-6/noresp
PUBLISH-19/noresp
SUBSCRIBE-117/noresp
UBSCRIBE-11/noresp
pubyrigger/noresp

CONNECT-0/CONNACK
DISCONNECT-6/noresp
PUBLISH-19/noresp
SUBSCRIBE-117/noresp
UNSUBSCRIBE-11/noresp

sockconn/sockconn

Coteom 32

ONNECT-141/CONNACK

PUBLISH-19/noresp
sockconn| CONNECT-141 DNSUBSCRIBE-11/UNSUBACK
pubtrigger/noresp

SUBSCRIBE-117/SUBAQK

CONNECT-0/noresp
CONNECT-141/noresp
DISCONNECT-6/noresp

pubtrigger/noresp
sackconn/sockconn

CONNECT-0/noresp
CONNECT-141/noresp
DISCONNECT-6/noresp

sockconn/sockconn

sockconn/sockconn

SUBSCRIBE-11/UNSUBACK
PUBLISH-19/PUBLISH
sockconn| CONNECT-141|SUBSCRIBE-117 > “SUBSCRIBE-117/SUBACK
pubtrigger/PUBLISH

Figure 6: Resulting Mealy machine for MQTT with a single channel and QoS 0

analysis of the Mealy machine difficult because of its size, and it does not provide
any new information. This is a limitation of using Mealy machines to represent the
protocol. To counteract this problem, the number of such possible combinations
should be kept to a low number. In our case, this means keeping the number of
possible channels low.

We came up with a method that may help find such independent message sub-
types. First, we define a projection of a Mealy machine on a set S of input letters.
For all input letters in the input alphabet that are not in .S, we ignore the output
letter. In the practical implementation, we modify the output on the transitions
that contain these letters, we change the output letter to a fixed value, in our case
noout. After this, we run a minimization algorithm on the new Mealy machine, and
the result will be the projected machine. During the minimization, all input letters
that are not in .S and do not influence the outputs of the transitions that contain
letters that are in .S completely disappear. At first, we project to single letters of
the input alphabet, and then for each of these projections, we try to add another
input letter to S in addition to the original one. If the resulting Mealy machine
has the same number of states as the previous projection, we keep the letter in S;
otherwise we remove it. After repeating with all input letters, we can take all the
projections with a different set S and analyze them. These Mealy machines can
be used together to replace the original Mealy machine, giving the inputs to all of
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Figure 7: Resulting Mealy machine for MQTT with two channels and QoS 0
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“ockconniCONNECT-2

“ockeomn|CONNECT-2/SUBSCRIDE- 123

— et

sockconn/sockconn

sockconnisockeonn

Figure 8: Results of the projection generation algorithm on the Mealy machine of
MQTT with three channels with various sets of S. Each of the last three machines
corresponds to a single channel. The figure is intended to illustrate the complexity
of the resulting state machines only, the reader is not expected to be able to read
the labels of the states or transitions.
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them, and taking the output from either one which can produce it (if either Mealy
machine does not have a transition with the particular letter at its current state,
it should just do nothing). For the projections produced in this manner for QoS
level 0 and three channels, the Mealy machine can be seen in Figure 8. The three
machines in the bottom row can be grouped as implementing the same logic, only
with different subtypes, and indeed, each corresponds to a single channel.

When testing with higher QoS, the same problems come up as with using multi-
ple channels, but this time around the state of publishing is the culprit behind the
state explosion. The above-described technique did not work so well in separating
any independent parts of the machine.

6 Conclusion

In this work, we build on Shahbaz and Groz's L}, algorithm (an adaptation of
Angluin’s L* algorithm) and make use of captured network traffic as well as live
queries to a known good protocol implementation in order to infer the state ma-
chine of an unknown protocol. We assume that message types and semantics have
already been reverse engineered, and we use this information to intelligently and
efficiently choose the possible inputs to use when querying the system under test.
We demonstrate our methods on an example protocol created for this purpose,
in addition to two real-world protocols, Modbus and MQTT. We show that our
approach works by comparing the resulting automata to the original specifications.

In the future, we plan to investigate more complicated Mealy machine decom-
position algorithms to produce hierarchical Mealy machines that can represent the
protocol state machine more concisely. In addition, we aim to measure and further
optimize input selection strategies.
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