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Abstract

Scientific workflows have been an increasingly important research area of
distributed systems (such as cloud computing). Researchers have shown an
increased interest in the automated processing scientific applications such as
workflows. Recently, Function as a Service (FaaS) has emerged as a novel dis-
tributed systems platform for processing non-interactive applications. FaaS
has limitations in resource use (e.g., CPU and RAM) as well as state manage-
ment. In spite of these, initial studies have already demonstrated using FaaS
for processing scientific workflows. DEWE v3 executes workflows in this fash-
ion, but it often suffers from duplicate data transfers while using FaaS. This
behaviour is due to the handling of intermediate data dependency files after
and before each function invocation. These data files could fill the temporary
storage of the function environment. Our approach alters the job dispatch
algorithm of DEWE v3 to reduce data transfers. The proposed algorithm
schedules jobs with precedence requirements to primarily run in the same
function invocation. We evaluate our proposed algorithm and the original
algorithm with small- and large-scale Montage workflows. Our results show
that the improved system can reduce the total workflow execution time of
scientific workflows over DEWE v3 by about 10% when using AWS Lambda.

Keywords: scientific workflows, cloud functions, serverless architectures,
makespan

1 Introduction

Over the recent years scientific workflows have been a major area of interest within
the field of complex scientific applications. Large-scale scientific workflows consist
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of a significant number of dependent jobs that rely on the output of other jobs
(i.e., precedence constraints). Each job can be executed independently when its
precedence constraints are met. Montage [11], CyberShake [10], and LIGO [1]
are examples of scientific workflow applications. Workflow Management Systems
(WMSs - such as Pegasus [8] and Kepler [2]) are used to ensure the precedence
execution order and data constraints of every job in a scientific workflow are met
during their runtime.

Cloud computing is fast becoming a key instrument in executing workflows.
FaaS is a recent development in the field of cloud computing, and it has already
incited significant interest in processing workflows. It promises a simple function-
oriented execution environment for non-interactive tasks of web applications. Just
like with other cloud computing technologies, there are commercial platforms (such
as AWS Lambda and Google Cloud Functions) that were developed to provide FaaS
functionalities. These allow functions to be executed in environments with a few
limitations. First, there are resource limits on CPU, RAM, and temporary storage
use. Second, the implemented functions are expected to have stateless behaviour:
the execution environment will newly instantiate and terminate for each function
invocation (i.e., will not remember state from previous invocations unless some
persistence technology is applied). In addition, Amazon Kinesis shard acts as an
independent queue that can send workflow tasks to its own function instance.

A number of studies [12, 18, 15] have proved the ability of cloud functions
to execute small- and large-scale workflows. In spite of the previously discussed
limitations, DEWE v3 have executed workflows even using functions. To avoid
the temporary storage use limitation, it uses Amazon S3 to store intermediate
workflow data. Therefore, the workflow data needs to be downloaded/uploaded for
each function invocation when dependent jobs rely on the output data of other jobs.
A large amount of transfer of dependent data can occur during workflow execution
between S3 and the FaaS execution environment. Consequently, this could lead to
an increased communication costs and a longer makespan.

In this paper, we propose to reduce the dependency transfers in workflows using
FaaSs by improving the scheduling algorithm of DEWE v3. Our proposed algorithm
exploits the internal queueing mechanisms of Amazon Kinesis shards that feed into
AWS Lambda function instances. We choose to move some simple WMS behaviours
inside the FaaS. Our approach schedules some dependent jobs on the same shard
where their preceding jobs were scheduled. As a result, these dependent jobs can
utilise the output files that generated from their precedence constrains in the same
invocation. As there is no need for transfers, this step reduces the total workflow
execution time as well. Due to Lambda’s limitations in terms of temporary storage,
the larger files cannot be processed in functions, these we scheduled in a sufficiently
sized VM.

We evaluated the proposed and original algorithms with small- and large-scale
Montage workflows. The large one is a 6-degree Montage workflow with over eight
thousand jobs requiring the transfer of 38 GBs of inputs and outputs. This workflow
size was chosen because the original DEWE v3 exhibits a significant amount of
re-transfer data behaviour with this workflow. To show the limitations of our
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approach, we also used a smaller workflow (0.1-degree Montage) that does not
have significant amounts of re-transfers even with the original approach.

The proposed algorithm outperforms the original in most cases. Our results
show that the proposed approach can reduce the total workflow execution time over
the original DEWE v3 approach by about 10%. Our improved scheduling algorithm
schedules jobs with precedence constraints on the same shard to be executed in
the same Lambda invocation. As a result, it can improve the execution time of
scientific workflows on the Lambda platform. In contrast, our approach does not
show significant differences in the performance when testing with smaller workflows.

The rest of this paper is organized as follows: the next section presents the
background knowledge and related works. Section 3 includes the explanation of
DEWE v3 and the proposed algorithm. Section 4 involves the evaluation of our
approach with the original algorithm of DEWE v3. Section 5 concludes the paper
and suggests some future works.

2 Background Knowledge and Related Works

This section first reviews scientific workflows for scheduling and challenging of real-
world experiments as well as simulation frameworks. Then an overview is presented
on the most popular FaaS platforms. Finally, the section concludes with a problem
statement for the current related works.

2.1 Background Knowledge

A workflow can be formulated as a Directed Acyclic Graph (DAG) that contains
a collection of atomic tasks. The nodes are a set of tasks {T1, T2, ..., Tn} while the
edges represent data dependencies among these tasks.

Workflow scheduling is an increasingly important area regarding WMSs. It
plays a critical role to achieve an optimal resource allocation for all tasks. The
problem of scheduling in distributed environments is known to be NP-hard [20].
Therefore, no algorithms can achieve an optimal solution within polynomial time
while some algorithms can provide approximate results in polynomial time.

Running real-world experiments for workflows is a challenge and especially
for execution of large-scale. Therefore, WMS simulation has been studied by
many researchers using different simulator extensions such as WorkflowSim [7] and
WRENCH [6]. WorkflowSim extends the CloudSim [3] simulator, while WRENCH
extends the SimGrid [5] framework. However, to date, FaaSs are not simulated in
these simulator extensions for running scientific workflows. As a result, we need
to restrict our experiments to smaller-scale and larger-scale with considering data
transfers, but real-world executions of workflows on commercial FaaSs like Lambda.

Lambda1 has been presented by AWS in 2014 while cloud functions (GCF2) have
introduced by Google in 2016. In [12] they stated that Google Cloud Functions, in

1https://aws.amazon.com/lambda/
2https://cloud.google.com/functions/
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its current form, is not suitable for executing scientific workflow applications due to
its limited inbound and outbound socket data quota. There are two benefits when
workflows are executed on FaaS systems. First, resource management is provided by
the platform in a scalable way. It means the number of concurrent invocations into
the infrastructure can more closely follow the actual workflow’s demands without
the burden on the WMS to deal with the infrastructure’s management. Second,
due to the nature of the lightweight functions used, the user pays for the much
less overheads on computing resource consumption in contrast to more traditional
Infrastructure as a Service systems. Lambda functions are stateless, thus their
execution environment is initialized and ended for each function invocation. In
addition, other commercial solutions also appeared on the FaaS landscape, like
Microsoft Azure Functions3 and IBM OpenWhisk Functions4.

The above mentioned four FaaS providers were evaluated in [16, 9]. The authors
proposed multiple hypotheses concerning the expected performance of cloud func-
tions and designed several benchmarks to confirm them. Their function platforms
have tested by invoking CPU, memory, and disk-intensive functions. In addition,
data transfer times were also measured for these function providers. They observed
different resource allocation policies at the providers. The execution performance
of Lambda and GCF is based on the size of memory that is allocated for the invo-
cation. They identified that at the time of writing, Amazon’s was more flexible and
performant. Moreover, they also reported that computing with cloud functions is
more cost-effective than virtual machines due to practically zero delay in booting
up new resources. They also indicated that due to the more fine grained invocation
patterns to functions virtual machines would have to sit idle in between invocations.
This behaviour results in more costs incurred by virtual machine based function
oriented solutions. Consequently, we expect more users would prefer Lambda based
workflows due to its efficiency and effectiveness comparing with other platforms.

2.2 Related Works

Nowadays, most scientific workflows have been processed in clouds, especially on
IaaSs. Only a few related works have studied the use of FaaS platforms to execute
workflows. In [17], Malawski et al. proposed five architectural alternatives to run
scientific workflows on clouds. One of them introduced a system for serverless
computing that integrated the HyperFlow engine with GCFs and AWS Lambda.
They examined the viability of running large-scale scientific workflows on cloud
functions by evaluating their implementation with a 0.25-degree and a 0.4-degree
Montage workflow. They found the approach highly promising. In addition, in [18],
they further tested the prototype a 0.6-degree Montage workflow as well. They
stopped their experiment at a 0.6-degree workflow as they had faced problems
with the temporary storage’s 500 MB limitation. However, their approach already
exhibits the deficiency of increased transfer of dependent data on these workflows.

3https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
4https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-getting-started
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In [12], Jiang et al. designed a WMS called DEWE v3 that can process scien-
tific workflows on three various modes: (i) traditional clusters, (ii) cloud functions,
and (iii) a hybrid mode that combines the two. It was tested with large-scale
Montage workflows. They have proven that cloud functions can be used in large-
scale scientific workflows with complex precedence constrains. However, their job
dispatch algorithm schedules jobs to Lambda without considering on their prece-
dence constraints to be executed in the same Lambda invocation. Consequently,
more transfer of dependent data can occur during the execution between the stor-
age service and the Lambda invocation’s execution environment. This can lead to
increased communication costs.

Next, Kijak et al. [15] summarized the challenges for running scientific work-
flows on a serverless computing platform. They presented a serverless Deadline-
Budget Workflow Scheduling (SDBWS) algorithm that was transformed to support
function platforms. It was tested with a small-scale 0.25-degree Montage workflow
on AWS Lambda. The algorithm used different memory sizes for Lambda based on
the deadline and budget constraints assigned by the user. In addition, the function
resource is selected depending on the combination of cost and time. This approach
was only tested on small scale and likely exhibits transfer of dependent data issues.

In contrast to the above works, [19] proposed an approach which utilised three
different cloud function platforms which were Lambda, GCF, and OpenWhisk.
They evaluated the platforms with a large-scale (over 5000 jobs in parallel) bag-of-
tasks style workflow. The experimental results showed that Lambda and GCF can
provide more computing power if one requests more memory, while OpenWhisk’s
performance is indifferent from this factor. Consequently, they have shown that
cloud functions can provide a high level of parallelism for workflows with a large
number of parallel tasks at the same time. However, they experimented with a
bag-of-tasks approach where they did not consider transfer of dependent data.

In [4], they built Wukong, a new serverless parallel computing framework. It’s
a cost-effective, serverless, decentralized, locality-aware parallel computing frame-
work. Its key insight is that partitioning the work of a centralized scheduler (i.e.,
tracking task completions, identifying and dispatching ready tasks, etc.) across a
large number of Lambda executors, can greatly improve performance by permitting
tasks to be scheduled in parallel, reducing resource contention during scheduling,
and making task scheduling data locality-aware, with automatic resource elasticity
and improved cost effectiveness. However, their approach already exhibits the de-
ficiency for the data transfers of the precedence constraints between the different
jobs of workflow.

3 Our DEWE v3 extension

To uncover the possibilities in dependency transfer optimisation, we have chosen
DEWE v3 as a base WMS for our work. Our choice was due to three factors:
(i) its scheduling technique was closest to our envisioned approach, (ii) it is an
open source WMS, and (iii) it already has the implementation of Lambda as our
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target execution environment. To understand our extension, we first give a general
overview of DEWE v3’s behaviour in the following few paragraphs.

DEWE v3 can execute scientific workflows on three different approaches ( tra-
ditional clusters, cloud functions, and a hybrid mode that combines the two). The
FaaS platform supports AWS Lambda and Google Cloud Functions. It has executed
large-scale workflows on a hybrid approach that combines traditional clusters with
the FaaS platform. DEWE v3 runs a workflow engine on virtual machine. When
using AWS Lambda, DEWE v3 reads the workflow definition from an XML file and
based on the information found in them loads the job binaries and input files to
the object storage Amazon S3. Given that Lambda has a temporary storage limit
of 500MBs in the execution environment, some jobs cannot be sent to Lambda
due to their large size. Jobs that are ready for execution (i.e., according to their
precedence constraints) are scheduled to Amazon Kinesis shards.

Each shard acts as an independent queue that can send tasks to its own function
instance. The number of tasks that a function can process in a single invocation
is determined by the batch size of Kinesis. This can be configured before the
workflow’s execution. Next, the Lambda function will pull a batch of tasks from its
own shard to execute them sequentially in a single function invocation. The number
of running function instances and accompanying kinesis shards are also configurable
before the workflow’s runtime and this directly influences the maximum level of
parallelism the workflow’s execution can exhibit.

When a function instance starts to process a job, DEWE v3 needs to download
its input data from Amazon S3. Similarly, when the job’s processing has finished
this must be also uploaded to S3 to make sure other jobs in the workflow can be
scheduled due to their input data being ready. This could result in a large amount
of transfer dependent data during the execution of the workflow. The transfers take
place between S3 and the FaaS environment and directly increase the workflow’s
communication costs.

To avoid these transfers, we have focused our improvement on the scheduling
algorithm of DEWE v3 which targets the Lambda platform as its execution en-
vironment. In order to reduce data transfers, during the scheduling, we not only
considered the currently ready jobs, but also their successors allowing their se-
quential execution in a single function instance given that they would not violate
Lambda’s temporary storage limitation. The next subsection discloses our changes
in details.

3.1 The Proposed Scheduling Algorithm

To enhance DEWE v3’s data transfers, we moved some workflow management sys-
tem behaviours inside Amazon’s FaaS platform. We exploited the sequencing be-
haviour of shards and Lambdas. First, some jobs and their successors are scheduled
to the same shard and function instance. The ordering of the schedule in the shard
is kept in line with the job order in the workflow as prescribed by job precedence
constraints. Additionally, we used the SequenceNumberForOrdering parameter that
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guarantees the order of jobs on a shard5. This will allow the consecutive jobs to be
executed in the same Lambda invocation avoiding the need to transfer outputs and
inputs if they are only used in between the given jobs. This behaviour is due to
Lambda pulling a batch of jobs based on the batch size of Kinesis to execute them
sequentially in an invocation. When the first job in the batch starts its processing,
it will read its input data from Amazon S3. We used Amazon S3 because it makes
data available through an Internet API that can be accessed anywhere. The in-
termediate data will be uploaded to S3 that might be needed by other jobs out of
batch jobs. Finally, the Lambda will finish processing the batch by uploading the
final datafiles to S3 as well.

We have extended the LambdaWorkflowScheduler class of DEWE v3 6. Our
proposed algorithm mainly focuses its changes to the setJobAsComplete method,
and our changes are depicted in algorithm 1. This algorithm changes the decision
on which jobs to schedule at a particular time, while it also alters the shard selection
for the jobs that have predecessors. First, we discuss these new choices through the
algorithm, then we will disclose two illustrative examples which help to clarify the
behaviours even further.

Algorithm 1 shows the pseudo-code of the proposed scheduling algorithm for
scientific workflows. We assume that before the application of this algorithm, all
jobs without predecessors were scheduled to shards already. Then, this function
is invoked by each completed job (T ) to release its successor jobs. In step 5, we
initialise jobsNum to make sure our allocations of any given shard are balanced in
step 10. In step 6, we initialise alertMax which will be used to determine if the
current shard received sufficient jobs to fill a complete Lambda invocation batch.
Next, in step 7 we initialise the array (loadBalancing) that will maintain the job
counts on each shard. This will allow us to see if a particular shard is less used and
prioritize it for future occasions to equalise the load on all of our lambda instances.
Step 9 is the basic behaviour of DEWE v3, where it forgets about jobs that have
been completed (called T in our case). This step allows us to determine what job
is available to schedule at the moment as jobs without predecessors will become
eligible to schedule. In step 10, we choose a shard that has received the minimal
number of jobs so far. In step 12, the algorithm checks if the successor job Ti has
no more predecessor jobs, then in step 13, the algorithm will schedule Ti to the
Kinesis shard determined in the previously discussed step 10. Next, we process
all successor jobs (Tj) of our just scheduled Ti. Step 16 checks if Tj has no other
predecessor job but Ti. If so, then in Step 17 the algorithm will remove Ti as a
predecessor job from Tj (to allow its premature schedule to the same shard that
we used for Ti - this is disclosed in Step 18). To ensure the balanced use of all our
function instances, step 21-24 checks if we have scheduled sufficient jobs for the
next lambda invocation (i.e., the currently selected shard is allocated a complete
batch worth of jobs). If so, we don’t pursue scheduling any further successors to Ti.
We will also remember that we exceeded the batch size of the shard, so the next

5https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
6https://github.com/Ali-Alhaboby/DEWE.v3
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Algorithm 1 The proposed scheduling algorithm.

Function jobCompleted(T )

1: Ti = successor job, Tj = dependent job, KS = Kinesis shard
2: L = Lambda instance, batchSize = the batch size of jobs in Lambda
3: n = the number of Lambda instances equals the number of Kinesis shards
4: m = the shard number that has received the minimum number of jobs
5: jobsNum = the number of scheduled jobs to shard.
6: alertMax = alerting the number of scheduled jobs equals to batchSize
7: loadBalancing[n] := an array to count the number of sent jobs to each shard
8: for i = 1, 2, . . . , p do // p is the number of successors of T
9: Remove T as a predecessor job from Ti

10: m := find the shard number that has received the minimum number of jobs
11: jobsNum := 0
12: if Ti has no precedence constraints then
13: Schedule Ti to KSm to run in Lm

14: for j = 1, 2, . . . , q do // q represents the number of successor jobs of Ti

15: jobsNum := jobsNum+1
16: if Tj has only Ti as a precedence constraint then
17: Remove Ti as a predecessor job from Tj

18: Schedule Tj to KSm to run in Lm

19: jobsNum := jobsNum+1
20: end if
21: if jobsNum==batchSize then
22: alertMax := true
23: break
24: end if
25: if alertMax==true then
26: loadBalancing[m] := loadBalancing[m]+jobsNum
27: m := find the shard number that has received the minimum number

of jobs
28: alertMax := false
29: jobsNum := 0
30: end if
31: end for
32: end if
33: end for

shard’s schedule can be influenced according to our load balancing rules denoted
by steps 26-29. Step 26 maintains the loadBalancing array, while step 27 selects
a new shard that has received the minimum number of jobs to proceed with the
scheduling of further jobs.

To further clarify how the proposed algorithm works, we apply its steps on
two simple but carefully selected and crafted sample workflows. Although these
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Figure 1: A sample workflow

workflows are simplified, they capture well known DAG patterns that often occur
in more complex workflows. As a result, through them, we can demonstrate the
applicability of our algorithm to other more complex workflows.

3.2 First illustrative example

In this subsection, we will discuss the workflow fragment, shown in Figure 1. This
consists of seven tasks in the graph’s nodes: T1 − T7. The number inside each
task’s node represents its estimated execution time (in seconds). On the edges
between the nodes, we have also depicted the estimated data transfer time between
the storage service (Amazon S3) and the FaaS execution environment.

In the following paragraphs, we will discuss how the original and our new al-
gorithms would be applied to execute the workflow. Before we begin, we will
assume the following: (i) there are two Kinesis shards with two Lambda function
instances behind that can execute the workflow’s jobs; (ii) each invocation down-
loads/uploads data files sequentially from/to Amazon S3; (iii) Amazon S3 will be
used to store all workflow data.

First, the original algorithm would schedule T1. Once T1 completes, it will
enable the schedule of T2 and T3 using both available shards. Once they complete,
T4, T5, T6 and T7 will be scheduled on two shards as two invocations. Table 1
shows our analysis of the expected execution time with the original algorithm. The
colouring of the Table also shows concurrent invocations (i.e., steps coloured the
same execute in parallel). When we have parallel invocations, the largest execution
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Table 1: The Execution Time (ET) and Transfer Time (TT) of each Lambda
invocation of the original algorithm on the sample workflow of Figure 1.

Step Tasks ET TT S3 to FaaS TT FaaS to S3 Total Time
1 T1 6 - 5 11
2 T2 4 3 24 31
2 T3 4 2 25 31
3 T4, T5 11 17 - 28
3 T6, T7 19 32 - 51

83

time of the parallel steps will be the component to be considered for the total
workflow execution time (i.e., 11s for the white-, 31s for the yellow- and 51s for
orange-steps). Finally, for DEWE v3’s original algorithm, the Table also discloses
our estimated total execution time of 83s in bold.

Now let’s compare this approach to our improved scheduling algorithm. We
first schedule all tasks that have no predecessor tasks such as T1 which is the
same behaviour as before. The commonalities stop here though. Next, when T1
completes, T2 and T3 will become ready. Then, to reduce data transfers, our
algorithm will schedule their successor tasks (T4, T5, and T7) as well. It will
schedule T2, T4, and T5 on the same shard to be executed in the same function
invocation. Also, it will schedule T3 and T7 on the same shard to run on the same
invocation. At this time T6 is still left out of schedule because it has two predecessor
tasks and we would need both of their outputs before we could start executing T6.
Finally, when T2 and T3 complete, they will release T6 to be ready. In Table 2, we
computed the Transfer Time (TT) FaaS to S3 in Step 2 because T2 and T3 have
a child task T6 which is not scheduled. Therefore, all the data dependency files
generated from T2 and T3 need to be uploaded to Amazon S3 in order to make
them available to T6. Due to our algorithm’s load balancing behaviour, T6 will
execute in the same shard T3 and T7 did (as that shard executed the fewest jobs
thus far). Similarly to the original algorithm’s analysis Table, we have presented
our analysis for the new algorithm as well in Table 2. We have concluded that
the total workflow execution time of our improved algorithm on this workflow is
expected to be significantly better at 68s.

3.3 Second illustrative example

In this subsection, we will discuss the workflow fragment, shown in Figure 1. This
fragment has taken from a 0.1-degree Montage workflow that we used in our ex-
periment.

In our second illustrative example, we explain how the proposed algorithm relies
on the structure of workflow. We used a workflow fragment that has taken from
a 0.1-degree Montage workflow that we used in our experiment. This workflow
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Table 2: The Execution Time (ET) and Transfer Time (TT) of each Lambda
invocation of the proposed algorithm on the sample workflow of Figure 1.

Step Tasks ET TT S3 to FaaS TT FaaS to S3 Total Time
1 T1 6 - 5 11
2 T2, T4, T5 15 3 24 42
2 T3, T7 15 2 25 42
3 T6 8 7 - 15

68
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Figure 2: A workflow fragment of a 0.1-degree Montage workflow

(shown in Figure 2) consists of eleven tasks (T22 − T32). We will use the same
assumptions of the previous example, while also having a batch size of ten. Now
we apply both algorithms as follows.

Again, the original algorithm schedules T22 then waits for its completion. Af-
terwards, it will schedule T23 on one of the two shards. Next, when this task
completes, T24-31 will be scheduled on one of the two shards because the batch
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Table 3: The Execution Time (ET) and Transfer Time (TT) of each Lambda
invocation of the original algorithm on the sample workflow of Figure 2.

Step Tasks ET TT S3 to FaaS TT FaaS to S3 Total Time
1 T22 6 - 3 9
2 T23 4 3 59 66
3 T24, T25, T26,

T27, T28, T29,
T30, T31

56 59 44 159

4 T32 11 44 - 55
289

Table 4: The Execution Time (ET) and Transfer Time (TT) of each Lambda
invocation of the proposed algorithm on the sample workflow of Figure 2.

Step Tasks ET TT S3 to FaaS TT FaaS to S3 Total Time
1 T22 6 - 3 9
2 T23, T24, T25,

T26, T27, T28,
T29, T30, T31

60 3 59 122

3 T32 11 44 - 55
186

size of each Lambda instance is 10. Finally, when they complete, they will release
T32 to be ready. The total workflow execution time of the original algorithm is
estimated to be 289s based on our analysis of Table 3.

With the proposed algorithm a few steps change again. First, as T22 does not
have a predecessor, we proceed as the original algorithm. Once it completes, T23-31
will be notified of the completion of one of their predecessors. As our algorithm also
schedules successor tasks, T24-31 will also be scheduled to reduce data dependency
transfers. All the tasks will be allocated to one of the shards because the batch
size of each Lambda instance is 10. They will allocate to the same shard. Finally,
when they complete, they will release T32 to be ready. In Table 4, we estimate
the total workflow execution time of our algorithm to be 186s which is a significant
improvement over the original approach.

With these two illustrative examples we have demonstrated the potential of our
algorithm. In the following section, we will evaluate it on both smaller and larger
scale real-life workflow executions.
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4 Scheduling experiment

In our experiment, we have evaluated our proposed algorithm as well as the original
from DEWE v3 on three different approaches (with/without data dependencies on
smaller and larger scale). In all three cases, we choose to evaluate through the
well known Montage workflow as this makes our results comparable to the previous
studies in the related works. Montage is a compute-intensive astronomy workflow
for generating custom mosaics of the sky. Montage was also used for different
benchmarks and performance evaluation in the past [13]. To ensure good quality
data collection, we have repeated all experiments described in this section three
times and we reported the average measurement result for each experiment. Each
experiment was repeated three times because we obtained the relative consistency of
the results by three executions. In addition, we calculated the boxplot visualization
that displays the data distribution based on five-number summary (i.e., minimum,
first quartile, median, third quartile and maximum) on Figures 3, 4, 5 and 6.

4.1 Evaluation without processing data transfers

First, we have evaluated both algorithms with 2.0 and 4.0 degree Montage workflows
(these are medium and larger scale workflows). In this first experiment, we wanted
to demonstrate that our algorithmic changes have only negligible influences on the
execution time when data transfers play little or no role in a workflow’s makespan.
Without data transfers our approach should not be able to make its gains. As
a result, this experiment can only differ due to execution time circumstances or
due to algorithmic changes. This experiment will show the variance of the results
without any influence from data transfers. Consequently, we can use the observed
differences between the original and the new algorithm as the baseline (i.e., if we
see proportionally similar results for the later experiments then the later results
would not be significant). The configurations of the experiment are as follows:

1. The Lambda Memory sizes were 512, 1024, 1536, 2048 and 3008 MB

2. The Lambda execution duration limit was 900 seconds.

3. The batch size of the Lambda function was 30.

4. The number of Kinesis shards was set to 5.

5. The VM was t2.micro instance as a free tier with 1 vCPU 2.5 GHz, Intel
Xeon Family, and 1 GiB memory.

Figure 3 shows the total execution time of both systems with 2.0-degree work-
flow on five different memory sizes of Lambda. The differences between the original
and the new algorithms have a mean absolute percentage error (MAPE) of 9.96%.
While Figure 4 illustrates the total execution time of both systems with 4.0-degree
workflow on five different memory sizes of Lambda. In the second case, the MAPE
of the total execution time have been calculated as 2.19%. Thus we can conclude
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Figure 3: The boxplot visualization of total Execution Time (ET) of both systems
with a 2.0-degree Montage workflow without data transfers running on different
Lambda memory sizes.

that our changes could manifest in a ∼ 6% (average) MAPE. Therefore, in the
rest of our experiments results with higher average error values than 6% show that
our measurements can be considered as a significant difference. We repeated some
memory sizes on the X-axis of Figures 3 and 4 because the boxplot visualization
has similar results for both systems.

4.2 Small-scale evaluation

Next, we have evaluated both the original and the new algorithm with a 0.1-degree
Montage workflow that also processed its data transfers. We have selected the
0.1 degree one to validate that testing with smaller Montage workflows does not
show significant differences with regards to the total execution time (i.e., we show
that our approach does not introduce execution time penalties even on smaller
workflows where transfers are marginal). The 0.10-degree Montage workflow is
sufficiently small for this as it consists of 33 tasks only. The configurations of the
experiment are as follows:

1. The Lambda Memory sizes were: 512, 1024, 1536, 2048 and 3008 MB

2. The Lambda execution duration was 900 seconds.

3. The batch size of the Lambda function was 10.
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Figure 4: The boxplot visualization of total Execution Time (ET) of both systems
with a 4.0-degree Montage workflow without data transfers running on different
Lambda memory sizes.

4. The number of Kinesis shards was set to 2.

5. The VM was t2.micro instance as a free tier with 1 vCPU 2.5 GHz, Intel
Xeon Family, and 1 GiB memory.

Figure 5 shows the total execution time of both systems with five different
memory sizes of Lambda. The MAPE for this series of measurements was 13.95%.
This shows that our algorithm has some minimal positive effects already for small-
scale workflows as we have arrived to a MAPE value which is over 10% that we
have seen in our control experiment in the previous subsection. The results about
the lambda with the smallest memory configuration are inconclusive and needs
further experimentation to clarify the exact reasons, however it is likely to be
caused by the significantly weaker computing performance of those lambda memory
configurations.

4.3 Large-scale evaluation

Finally, we have concluded our experiments by evaluating both systems with a 6.0-
degree Montage workflow with processing data transfers. This workflow has over
eight thousand jobs requiring total data transfers with the size of 38GBs. We have
selected this workflow size because in our past analysis, DEWE v3 has already
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Figure 5: The boxplot visualization of total Execution Time (ET) of both sys-
tems with a 0.1-degree Montage workflow with data transfers running on different
Lambda memory sizes.

shown a large amount of re-transfer data behaviour. Ideally, our improved DEWE
v3 does not have this issue with such large-scale re-transfer-prone workflows. Due
to the large expected dependency files of some of the workflow’s jobs (namely
mAdd), this experiment also used a larger Virtual Machine (VM) alongside the
usual lambda functions (as such, all mAdd jobs were executed on the VM). The
configurations of the experiment are as follows:

1. The Lambda Memory size was 3008 MB

2. The Lambda execution duration was 900 seconds.

3. The batch size of the Lambda function was 20.

4. The number of Kinesis shards was set to 30.

5. The virtual machine was t2.xlarge that has the following features: 16 GiB of
memory and 4 vCPUs.

Figure 6 shows the total execution time of both systems. The proposed algo-
rithm has reduced the total execution time of the large-scale workflow over DEWE
v3 by approximately 10%. Thus, this experiment demonstrates that our algorithm
is beneficial to be applied for larger scale workflows where the typical data depen-
dency files are still within the 500 MB limit of the Lambda temporary storage limit
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Figure 6: The boxplot visualization of total Execution Time (ET) of both systems
with a 6.0-degree Montage workflow with data transfers running on Lambda.

(if this limit would be often breached, the virtual machine count would need to
be extended and the cost and elasticity benefits of FaaS systems would be mostly
lost). In conclusion both data transfer inducing measurements demonstrate a sig-
nificantly better result over the original algorithm when we consider the control
experiment in subsection 4.1.

5 Conclusion

In this paper, we have changed the job dispatch algorithm of DEWE v3 to reduce
its data transfers. The main issue was that DEWE v3 has duplicated data transfers
when it executes workflows on FaaSs. It was due to the uploading of intermediate
data dependency files after the completion of each function invocation to allow the
deletion of temporary files. Otherwise it would fill the Lambda temporary storage
space over time because it has an Amazon 500 MB limit. Our proposed algorithm
schedules jobs with precedence requirements on the same shard to run in the same
function invocation. As a result, the dependent jobs can use the intermediate files
that are produced from their predecessor jobs in the same function invocation. We
have evaluated our proposed- and the original algorithms with small- and large-
scale Montage workflows. Our results show that the improved system can reduce
the total workflow execution time of scientific workflows over the original DEWE
v3 approach by about 10% when targeting FaaS systems.



148 Ali Al-Haboobi and Gabor Kecskemeti

In our future work, we will extend the improved system to run on heterogeneous
memory sizes of cloud functions to reduce the execution time and cost. In addi-
tion, we will study the behaviour of other scientific workflows to make the results
more generally applicable. Moreover, we will introduce a Workflow Management
System (WMS) simulation for the DISSECT-CF [14] simulator in order to enable
the simulation and the execution of scientific workflows on different, reproducible
environments. This would foster the creation of more efficient, multi target (i.e.,
cloud, FaaS, fog etc) workflow scheduling. Finally, we will consider Amazon Elastic
File System (EFS) instead of Amazon S3 for storage workflows’ data to investigate
it in terms of performance, availability, and cost.
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