
Acta Cybernetica 25 (2021) 271–284.

Toolset for Supporting the Research of

Lattice Based Number Expansions

Péter Hudobaab and Attila Kovácsac

Abstract

The world of generalized number systems contains many challenging areas.
Computer experiments often support the theoretical research. In this paper
we introduce a toolset that helps to analyze some properties of lattice based
number expansions. The toolset is able to (1) analyze the expansions, (2)
decide the number system property, (3) classify and visualize the periodic
points.

The toolset is implemented in Python, published alongside with a database
that stores plenty of special expansions, and is able to store the custom prop-
erties like signature, operator eigenvalues, etc. Researchers can connect to
the server and request/upload data, or perform experiments on them.

We present an introductory usage of the toolset and detail some results
that has been observed by the toolset. The toolset can be downloaded from
http://numsys.info domain.

1 Introduction

The generalization of positional number representations to a wide range of digit
sets or to higher dimensions is a fascinating story. Grünwald (1885) investigated
negative-based, Kempner (1936), Knuth (1960), Khmelnik (1964), Penney (1965)
complex-based systems. From the 70’s Kátai, B. Kovács, Környei, Pethő (the
“Hungarian school”) and Gilbert examined systematically the radix extensions in
algebraic number fields. In the 90’s the topological aspects of radix representa-
tions were studied by Bandt, Indlekofer, Járai, Kátai, Lagarias, Wang, Vince, and
later by Akiyama, Thuswaldner and others. The canonical number representation
was generalized to arbitrary polynomial systems by Pethő (1989), and investigated
later extensively by many authors (incl. Akiyama, Brunotte, Kovács, Pethő, Rao,
Scheicher, Thuswaldner). The number system concept in general lattices was in-
vestigated first by Vince (1993). The algorithmic aspects of canonical (polynomial)
systems was initiated by Brunotte (2001) and for general lattices by the second

aEötvös Loránd University, Budapest, Hungary
bE-mail: peter.hudoba@inf.elte.hu, ORCID: 0000-0001-5810-4193
cE-mail: attila@inf.elte.hu, ORCID: 0000-0002-1858-7618

DOI: 10.14232/actacyb.289524

272 Péter Hudoba and Attila Kovács

author (2000). Recently, a special type of radix systems (SRS) studied in length
by Thuswaldner and his co-workers (the “Austrian school”).

2 Preliminaries

Let Λ be a lattice in Rn and let M : Λ → Λ be a linear operator such that
det(M) 6= 0. Let furthermore 0 ∈ D ⊆ Λ be a finite subset. Lattices can be seen
as finitely generated free Abelian groups and have many significant applications
in pure mathematics (Lie algebras, number theory and group theory), in applied
mathematics (coding theory, cryptography) because of conjectured computational
hardness of several lattice problems, and are used in various ways in the physical
sciences. We note that the number system research in general lattices comprises
also the orders.

Definition 1. The triple (Λ,M,D) is called a number system (GNS) if every
element x of Λ has a unique, finite representation of the form

x =

L∑
i=0

M idi ,

where di ∈ D and L ∈ Z (L+ 1 is the length of the expansion).

Here M is called the base and D is the digit set. It is easy to see that similarity
preserves the number system property, i.e., if M1 and M2 are similar via the matrix
Q then (Λ,M1, D) is a number system if and only if (QΛ,M2, QD) is a number
system at the same time. If we change the basis in Λ a similar integer matrix can
be obtained, hence, there is no loss of generality in assuming that M is integral
acting on the lattice Zn. If two elements of Λ are in the same coset of the factor
group Λ/MΛ then they are said to be congruent modulo M . The following theorem
gives a necessary condition for the number system property.

Theorem 1. If (Λ,M,D) is a number system, then (1) D must be a full residue
system modulo M , (2) M must be expansive, and (3) det(In −M) 6= ±1. (unit
condition). If a system fulfils the first two conditions then it is called a radix system.

We note that the theorem in this form was stated first in [9] but it was well-
known and used much earlier by Kátai and Vince. The full residue system property
can be decided easily using Smith normal form [8]. Algorithms, that calculate the
eigenvalues of M exactly in a finite number of steps exist only for a few special
classes of matrices. For general matrices, iterative algorithms produce approximate
solutions. In polynomial systems, where M is the companion of a monic inte-
ger polynomial f , deciding the Schur or Hurwitz stability of f is computationally
equivalent with the expansivity check. Verification of the unit condition is trivial.

Write ϕ : Λ → Λ, x
ϕ7→ M−1(x − d) for the unique d ∈ D satisfying x ≡ d

(mod M). Since M−1 is contractive and D is finite, there exists a norm ‖.‖ on Λ
and a constant C such that the orbit of every x ∈ Λ eventually enters the finite

Toolset for Supporting the Research of Lattice Based Number Expansions 273

set S = {x ∈ Λ | ‖x‖ < C} after repeated application of ϕ. This means that the
sequence x, ϕ(x), ϕ2(x), . . . is eventually periodic for all x ∈ Λ. Clearly, (Λ,M,D)
is a number system iff for every x ∈ Λ the orbit of x eventually reaches 0. A point
p is called periodic if ϕk(p) = p for some k > 0. The orbit of a periodic point p is a
cycle. The set of all periodic points is denoted by P. The signature [l1, l2, . . . , lω]
of a radix system is a finite sequence of non-negative integers in which the periodic
structure P consists of #li cycles with period length i (1 ≤ i ≤ ω). Clearly, the
signature of a number system is Sig = [1].

The following problem classes are in the mainstream of the research.

• For a given (Λ,M,D) the decision problem asks if the triple forms a number
system or not.

• For a given (Λ,M,D) the classification problem means finding all cycles (wit-
nesses).

• The parametrization problem means finding parametrized families of number
systems.

• The construction problem aims at constructing a digit set D to M for which
(Λ,M,D) is a number system. In general, construct a digit set D to M such
that (Λ,M,D) satisfies a given signature.

We note that the algorithmic complexity of the decision and classification problems
are still unknown.

The fundamental domain or set of “fractions” in (Λ,M,D) can be defined as

H =

{ ∞∑
i=1

M−idi : di ∈ D

}
⊆ Rn .

Theorem 2. (a) H is compact. (b) x ∈ P ⇔ x ∈ −H.

The compactness was proved by many authors (see e.g. Vince [15]). The ⇒
part of (b) was proved in [9]. The other direction is obvious as well, otherwise 0
would have at least two different representations.

The theorem means that in order to determine the periodic points it is enough
to localize the lattice points in −H. There are two different approaches to overcome
this problem: the IFS-method (see [8, 10]), and the covering method (see [8, 4]),
which was optimized by the authors [6]. The idea of the latter is that we can put the
compact set −H into a box B in which the integer elements are easily enumerable.
Then, we can compute the pairs (x, ϕ(x)) for all x ∈ B, and finally, we determine
the cycles applying one of the cycle finding methods.

There are other algorithms for solving the decision/classification problems.
Based on the method of Vince [15], Brunotte [2] described a digit-propagation
algorithm for polynomial systems with canonical digits. Later, his method was gen-
eralized for arbitrary operators and digit sets [4]. The shortcoming of this method

274 Péter Hudoba and Attila Kovács

is the sequential nature of the digit propagation, however, there is an algorithmic
attempt to overcome this disadvantage [14].

Let f(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + xn be an integer (monic)
polynomial. Let us denote the factor ring Z[x]/(f) by Λf . Then Λf is a lattice
and all the problems regarding number expansions in Λf can be formulated in Zn,
where M is the companion of f . If f is irreducible then Λf is isomorphic to Z[θ]
where f(θ) = 0 in an appropriate extension of Q. Hence, if the digit set D is
restricted to be a set of non-negative numbers D = {0, 1, . . . | a0 | −1}, we get a
straightforward generalization of the traditional number systems in Z. In this case
the digit set is called canonical. If the radix system (Λf , θ,D) satisfies the unique
representation property of Definition 1 with some canonical digit set D then it is
called a canonical number system (CNS). The notion of canonical digit sets can
be extended to form a j-canonical set Dj = {0, ej , . . . , (| a0 | −1)ej} ⊂ Zn (ej
is the jth unit vector) [8]. There exists a canonical number system in OK – the
ring of integers of the algebraic number field K – if and only if there is a power
integral basis in OK [12]. We note that canonical digit sets may or may not exist in
different lattices and canonicity depends on the chosen basis. The symmetric digit
set is formed by those integer multiples of ej which are closest to the origin, and
was introduced by Kátai [7]. The adjoint digit set consists of those lattice points
which are in det(M)

[
− 1

2, ,
1
2

)
. The dense digit set — in which each digit has the

smallest norm in its residue class — were introduced and used extensively by the
second author. We note that the adjoint set is a dense one in a special basis.

3 The toolset

In order to be able to support the theoretical research we built a Python based
toolset that aid at the investigations and experiments. The toolset implements some
basic functionalities for number expansion research. It offers multiple ways to solve
the decision or classification problems from a simple brute force to probabilistic
solutions. In this section we give a short outline of the functionality of the toolset.

3.1 Construction

The toolset contains multiple classes with different purposes. The main class,
named RadixSystem, implements a Radix System that we can create with a base
and a digit set. The base matrix can be set directly, but there is a function to con-
vert a polynomial to a matrix (creating its companion) as well. The digit set can
be passed directly with a list, exactly determining the digits, or with a generator,
that generates specific types of digit sets (RadixSystemSymmetricDigits, RadixSys-
temCanonicalDigits, RadixSystemShiftedCanonicalDigits, RadixSystemAdjointDig-
its, RadixSystemDenseDigits).

An example for creating the following radix systems can be seen in the Listing 1:(
Z2,

[
0 −7
1 −7

]
,

{[
0
0

]
, · · · ,

[
6
0

]})
and

(
Z2,

[
0 −7
1 −7

]
,

{[
−3
0

]
, · · · ,

[
3
0

]})

Toolset for Supporting the Research of Lattice Based Number Expansions 275

Listing 1: Example of construction with the toolset

rs = RadixSystem([[0,-7],[1,-7]],

[[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [5, 0], [6, 0]])

#Using digit set generator

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

#Creates the same system with symmetric digit set

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemSymmetricDigits())

3.1.1 Necessary conditions

A radix system object can be created by the toolset, but if the necessary condi-
tions for the computations do not hold then the toolset will throw the appropriate
exception. The necessary conditions (see Section 2) mean that the base operator
has to be regular (det(M) 6= 0) (otherwise the system throws a RadixSystemRegu-
larityException exception), the digit set must be a full residue system modulo the
base (otherwise the system throws the RadixSystemFullResidueSystemException)
and the base operator has to be expansive.

The RadixSytem class does not check the unit condition (third necessary con-
dition of Theorem 1) — because it is not a condition for a Radix System, only for
a Number Nystem — the class has a function, named checkUnitCondition, that
returns true if the radix system fulfils that condition.

3.2 Expansions

If the user wants to find the expansion of a lattice point in a specific system she
can apply the ϕ function which is implemented in phiFunction. Applying the
Smith Normal Form, the system performs the computation efficiently. Applying
the phiFunction iteratively the system computes the orbit of a point containing the
periodic parts (getOrbitFrom). Recall that if the orbit of a lattice point ends at
zero then it has a finite expansion (hasFiniteExpansion).

Listing 2: Example of using ϕ based functions

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemSymmetricDigits())

print(rs.phiFunction([2,3]))

print(rs.getOrbitFrom([6,3]))

Result:

[3, 0]

[[6, 3], [-4, -1], [6, 1], [-6, -1], [6, 1]]

276 Péter Hudoba and Attila Kovács

3.3 Covers

Based on Theorem 2 (x ∈ P ⇔ x ∈ −H) the system determines a Box that
contains all the periodic points (getCoverBox). The volume of this Box can also
be calculated (getCoverBoxVolume) and a Python generator can be obtained to
iterate through all of the points within the Box (getPointsInBox). It is a simple
brute force algorithm for GNS decision (detailed further in Subsection 3.5).

There is a heavyweight algorithm getCycles that calculates all of the orbits from
all of the points of the Box and returns all of the cycles. Clearly, if the getCycles
returns only the zero point then the radix system is a number system.

3.4 Drawing tools

The toolset has a class for drawing different aspects of number expansions. The
user can analyze the expansions by the expansion graph. By default, it shows the
trajectory from all of the points inside the Box. In Figure 1 we can see a radix
system that does not fulfil the number system property (since it has a non-trivial
cycle [−1, 1]). In Figure 2 we can see a plot of some fraction sets.

Figure 1: An expansion graph.

Toolset for Supporting the Research of Lattice Based Number Expansions 277

Figure 2: A fraction set of [[0,−3], [1, 2]] and [[0,−5], [1,−4]] with canonical digit
sets.

3.5 Decision techniques

In this subsection we discuss some decision methods that can be used by the toolset.

3.5.1 Naive decision

The naive decision method checks the orbits from all points of the cover Box and
if there is only one periodic point (should be the zero) then returns true.

Listing 3: Example of how to call a naive decide method of the toolset

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

print(rs.decideGNS())

3.5.2 Volume optimization

The naive method iterates through all of the points within the bounding Box. How-
ever, since integer similarity transformations preserve the number system property,
we can try to change the basis where the bounding box is smaller. In [4] the authors
suggested a simulated annealing genetic algorithm that finds a similarity transfor-
mation minimizing the size of the cover box. In Figure 3, we can see an example
how the algorithm decreases the volume of the possible space of periodic points.
For higher dimensions, the speedup is much higher.

Listing 4: Example of how to call start a cover box volume optimization

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

volumeOptimized = rs.optimize()

print(volumeOptimized.decideGNS())

278 Péter Hudoba and Attila Kovács

(a) Before optimization (b) After optimization

Figure 3: A fraction set of the operator [[0, -5], [1, -4]] applying the symmetric digit
set.

3.5.3 Two-step optimization

In [6] a method was suggested as an extension of the volume optimization. Besides
optimizing the volume the authors showed a method of minimizing the number of
multiplications in the function ϕ as well. The amount of multiplications is affected
by the Smith Normal Form computation and the inverse computation of the base.
If we have the two transformations we can iterate through all of the points of the
volume optimized space, transform into the ϕ optimized space and find there the
orbit.

Listing 5: Example of how to use the two-step optimization

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

optimizedVol, optimizeVolT = rs.optimize(returnTransformationAlso=True)

optimizedPhi, optimizePhiT = rs.optimize(

targetFunction = lambda actVal, T:

phiOptimizeTargetFunction(actVal, T,optimizeVolT.inverse()),

returnTransformationAlso=True)

transformMatrix = optimizePhiT * optimizeVolT.inverse()

print(optimizedPhi.decideGNS(startPointSource=optimizedVol,

pointTransform=transformMatrix))

Toolset for Supporting the Research of Lattice Based Number Expansions 279

3.5.4 Length-n cycle

Based on our experiments, we observed that there are significantly larger number
of cases when the cycles are short. Therefore we try to find cycles directly based
on some digit combinations.

Considering the periodic points with length one, there is a d ∈ D for x ∈ P
where M−1(x−d) = x holds. We can reformulate this statement as x−d = Mx⇒
x −Mx = d ⇒ x = (I −M)−1d. In the algorithm we just simply iterate through
all of the digits and check whether the result is a lattice point. If so, we have found
a loop. If the digit set is small, this algorithm is really fast.

We can find length two cycles with the same technique. If there is an x ∈ P
length-two periodic point, then there are d1, d2 ∈ D, where M−1(M−1(x − d1) −
d2) = x ⇒ M−1(x − d1) = Mx + d2 ⇒ x = M2x + Md2 + d1 ⇒ x = (I −
M2)−1(Md2 + d1). If is there are d1 and d2 digits where x is a lattice point then
we have found a cycle.

In general, for an length-n periodic point ϕn(x) = x, hence there are d1, ..., dn ∈
D digits, where x = (I −Mn)−1(

∑n
i=1M

i−1di) is a lattice point.
The weakness of this algorithm is its exponential complexity, i.e., if the digit

set is big or there is not any short cycle in the system, then the algorithm finds no
cycles (even if it exists).

Listing 6: Example of how to find the directly with fixed lengths cycles

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

print(rs.findNLengthCycle(1))

print(rs.findNLengthCycle(2))

Result:

[[0, 0], [0, 0]]

[[[12, 2], [-12, -2], [12, 2]], [[6, 1], [-6, -1], [6, 1]], [[-18, -3],

[18, 3], [-18, -3]]]

3.5.5 Randomized method

For a given cycle we call all of the lattice points that lead to that cycle by iteration
of ϕ as the basin of the cycle. Our experiments showed that at general radix
systems most of the orbits lead to a non-zero periodic point. Hence, we can choose
random lattice points uniformly and check the orbit to find witnesses (disproving
the GNS property).

Listing 7: Example of how to run random test to find non-zero cycle

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemSymmetricDigits())

print(rs.probGNSTest(numberOfTrials=100))

Result:

[-6, -1]

280 Péter Hudoba and Attila Kovács

3.5.6 Smart decide

The smart decide algorithm estimates the runtime of the different methods and
suggests the best algorithm to solve the decision problem. As we can see in Figure
4 the naive decision time increases faster than the smart decision function.

The algorithm has several steps:

1. If the cover Box is “small”, simply brute force the space with the naive
method; END.

2. Otherwise search length-n periodic points for small n directly; If it finds a
non-trivial witness, return, otherwise continue with the next step.

3. Calculate the orbit of the “close-to-zero” lattice points (maximum the ab-
solute value of det(M)); if it finds a non-trivial witness, return, otherwise
continue with the next step (the closeness is in the sense of the infinity norm)

4. Calculate orbits from uniformly chosen random lattice points; if it finds a
non-trivial witness, return, otherwise continue with the next step.

5. Volume and ϕ optimization.

Figure 4: Runtime comparison of the simple decide method and the smart one by
the size of the cover Box

Toolset for Supporting the Research of Lattice Based Number Expansions 281

3.6 Validation

In order to validate the correct functionality of the toolset we initiated multiple
levels of testing.

Let p(x) = c0+c1x+c2x
2+ . . .+cn−1x

n−1+xn be the characteristic polynomial
of the operator M . The following theorems were applied for validation:

• If the strictly dominant condition

k∑
i=1

|ci| < |c0|

holds then thenM is expansive. This is an immediate consequence of Rouché’s
theorem.

• If there is a norm for which ‖M−1‖ < 1/2 then M can serve as a basis for a
number system with dense digits [5].

• If 1 ≤ cn−1 ≤ · · · ≤ c1 ≤ c0 then the companion of p(x) serve a basis for a
number system with canonical digits [11].

• If the strictly strong dominant condition

2

k∑
i=1

|ci| < |c0|

holds then the companion of p(x) can serve as a basis for a number system
with symmetric digits [5].

We tested the toolset with known special cases of number systems, e.g. in [1]
the 2nd theorem states that if

c2, .., cn−1,

n∑
i=1

ci ≥ 0

and the strictly strong dominant condition holds then the companion of p(x) is a
number system with canonical digits. We used listing of GNS examples in multiple
articles [13, 3], and we sampled polynomials and operators randomly for validation
as well.

4 Database

The research area has plenty of unsolved problems. Most of the problems have
solutions for a specific forms of radix systems. To state and validate various con-
jectures it is necessary to collect and filter the partial results and sample candidates.
Therefore we implemented a server-side application which is able to store various
data on number expansions. At present the database contains more than 10 000

282 Péter Hudoba and Attila Kovács

items. The uploaded data are about companions of expansive polynomials with
constant terms ±2,±3,±5, ±7 together with their number system status and wit-
nesses, etc. We used canonical and symmetric digit sets as well, and we calculated
many combinations of product systems.

The data server allows to read data from the server publicly via a JSON API
and the registered users with own API token can send new items/properties to the
database. The items can be filtered by any custom property.

The server already stores plenty of properties, like eigenvalues, eigenvectors,
periodic points and orbits, classification details, etc.

Listing 8: Example of how to request candidates from the public database

result = callServer(’http://numsys.info/radix-system/list’,{

’.volume’:’<1000’,

’.dimension’:’3’,

’size’:5

})

for r in result:

rs = RadixSystem(r[’base’],r[’digits’])

print(r[’base’],r[’digits’],rs.smartDecide())

Result:

[[0, 0, -2], [1, 0, -2], [0, 1, -2]] [[0, 0, 0], [1, 0, 0]] True

[[0, 0, -2], [1, 0, 0], [0, 1, -1]] [[0, 0, 0], [1, 0, 0]] False

[[0, 0, -2], [1, 0, -1], [0, 1, -1]] [[0, 0, 0], [1, 0, 0]] True

[[0, 0, -2], [1, 0, 1], [0, 1, 0]] [[0, 0, 0], [1, 0, 0]] True

[[0, 0, -2], [1, 0, 0], [0, 1, 0]] [[0, 0, 0], [1, 0, 0]] True

5 Experimental observations

The database helps the researchers filtering out some special data. Analysing the
uploaded data we have some observations.

• In general, the non-zero basins are significantly large on average. Based on
this observation the randomized method is a viable alternative for checking
the GNS property (more detail in Section 3.5.5).

• In general, the cycle lengths are relatively short. Therefore we suggest the
length-n cycle method for the decision, if possible (detailed in Section 3.5.4.)

• There is always at least one lattice point that leads to a non-zero periodic
point in the | det(M) | neighbourhood of the origin (in infinity norm).

• More than 700 samples in the database suggested the following theorem:

Toolset for Supporting the Research of Lattice Based Number Expansions 283

Theorem 3. Suppose that the system (Λ,M,D) is GNS. Then (Λ,Mn, Dn) is GNS
for all n ∈ N, where

Dn = {d0 +Md1 +M2d2 + . . .+Mn−1dn−1 : di ∈ D}

taking all possible combinations for the digits di above.

Proof. Let n > 1 be fixed. Since (Λ,M,D) is GNS therefore all x ∈ Λ can be
written uniquely in the form

x = d0 +Md1 + · · ·+Mkdk , (1)

where di ∈ D. Equation (1) can be rewritten as

x = (d0 + · · ·+Mn−1dn−1) +Mn(dn + · · ·+Mn−1d2n−1) + · · ·+Mkdk .

Since the coefficients of each Mnj are digits from Dn for all j ≥ 0 therefore the
system (Λ,Mn, Dn) is GNS as well.

6 Conclusion and further work

The paper introduced a toolset for supporting lattice-based number expansion com-
putations. The toolset was implemented in Python. Besides, the authors built a
database storing different radix system parameters and offers the researchers to
upload and search in this database. In the future we plan to improve, extend
and distribute the toolset and try to find a mathematical proof for some of our
observations.

References

[1] Akiyama, S. and Rao, H. New criteria for canonical number systems. Acta
Arithmetica, 111(1):5–25, 2004. DOI: 10.4064/aa111-1-2.

[2] Brunotte, H. On trinomial bases of radix representations of algebraic integers.
Acta Scientiarum Mathematicarum, 67(3–4):521–527, 2001.

[3] Burcsi, P. and Kovács, A. Exhaustive search methods for CNS polyno-
mials. Monatshefte für Mathematik, 155(3-4):421, 2008. DOI: 10.1007/

s00605-008-0005-y.

[4] Burcsi, P., Kovács, A., and Papp-Varga, Zs. Decision and classification al-
gorithms for generalized number systems. Ann. Univ. Sci. Budapest. Sect.
Comput, 28:141–156, 2008.

[5] Germán, L. and Kovács, A. On number system constructions. Acta Mathemat-
ica Hungarica, 115(1-2):155–167, 2007. DOI: 10.1007/s10474-007-5224-5.

284 Péter Hudoba and Attila Kovács

[6] Hudoba, P. and Kovács, A. Some improvements on number expansion com-
putations. Numeration 2016, page 65, 2017.

[7] Kátai, I. Generalized number systems and fractal geometry. Janus Pannonius
Tudományegyetem, Pécs, 1995.

[8] Kovács, A. On the computation of attractors for invertible expanding linear
operators in z (kappa). Publicationes Mathematicae Debrecen, 56(1-2):97–120,
2000.

[9] Kovács, A. Number Systems in Lattices. PhD thesis, Eötvös Loránd University,
Budapest, Hungary, 2001.

[10] Kovács, A. Number expansions in lattices. Mathematical and Computer Mod-
elling, 38(7-9):909–915, 2003. DOI: 10.1016/S0895-7177(03)90076-8.

[11] Kovács, B. Canonical number systems in algebraic number fields. Acta
Mathematica Academiae Scientiarum Hungarica, 37(4):405–407, 1981. DOI:
10.1007/BF01895142.

[12] Kovács, B. Integral domains with canonical number systems. Publ. Math.
Debrecen, 36:153–156, 1989.

[13] Pethő, A. On a polynomial transformation and its application to the con-
struction of a public key cryptosystem. Computational Number Theory, pages
31–43, 1991. DOI: 10.1515/9783110865950.31.

[14] Tátrai, A. Parallel implementations of brunotte’s algorithm. Journal of Paral-
lel and Distributed Computing, 71(4):565–572, 2011. DOI: 10.1016/j.jpdc.

2010.12.010.

[15] Vince, A. Replicating tessellations. SIAM Journal on Discrete Mathematics,
6(3):501–521, 1993. DOI: 10.1137/0406040.

