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Abstract

The rapid development of machine learning and the decreasing costs of
computational resources has led to a widespread usage of face recognition.
While this technology offers numerous benefits, it also poses new risks. We
consider risks related to the processing of face embeddings, which are float-
ing point vectors representing the human face. Previously, we showed that
even simple machine learning models are capable of inferring demographic
attributes from embeddings, leading to the possibility of re-identification at-
tacks. This paper proposes a new data protection evaluation framework for
face recognition, and examines three popular Python libraries for face recog-
nition (OpenCV, Dlib, InsightFace), comparing their face detection perfor-
mance and inspecting how much risk each library’s embeddings pose regarding
the aforementioned data leakage. Our experiments were conducted on a bal-
anced face image dataset of different sexes and races, allowing us to discover
biases. Based on our results, Dlib has a significant FNR of 4.2% on the total
dataset, and an eccentric 5.9% FNR on black people. Finally, our findings
indicate that all three libraries could enable sex or race based discrimination
in re-identification attacks.
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1 Introduction

With the trend of technology getting cheaper and the advance of smart technologies,
security and surveillance cameras are getting more and more widespread recently.
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According to recent news, Chongqing, a single Chinese city alone has more than
2.5 million surveillance cameras installed [19]. This problem set is not constrained
to countries similar to China, as for example London also has more than 600,000 of
such cameras [19]. These devices enable emerging artificial intelligence based face
recognition technologies in the physical world at scale. This will certainly have a
significant impact on the society as a whole, and on the personal level as well, as
these advances enable surveillance at large extent as never seen before.

In this paper, we look at the case of the large-scale storing and processing of
face imprints generated by face recognition technologies. This technology uses the
photo or a video frame containing a person’s face to extract an imprint from it. The
imprint, or the embedding, describes the face based on its unique characteristics,
thus it can be used for identification. When generated by deep learning techniques,
the embedding is usually hard for a human to interpret, as usually it is a vector of
real values. The length of this vector may vary depending on the used technique.

Identification (i.e. the recognition) works by comparing multiple embedding vec-
tors to each other by calculating similarity between them (e.g. via the Euclidean or
Manhattan distance). At the end, pairwise similarities of the embeddings indicate
whether the two faces should be considered to be of the same person. It is presumed
that the lower the distance, the higher the similarity, and the similarity of embed-
dings is proportional to the similarity of the faces. Usually if the distance is below
a certain threshold, the embeddings are considered to belong to the same person.
Or in other words, identification is effectively done by clustering embeddings.

In our research, we are concerned with the possible privacy risks related to
utilizing face recognition embeddings. This paper extends our previous work, ”On
the Privacy Risks of Large-Scale Processing of Face Imprints” [11].

In our previous work we have evaluated a re-identification attack scheme through
where we simulated the attacker precision in predicting demographics from embed-
dings (without executing any machine learning tasks). In our current work, we look
in deeper details into these attacks.

We provide a thorough comparison of three popular face recognition Python
libraries: OpenCV, Dlib, and InsightFace. We compare these libraries from two
different perspectives on people of both sexes, four different races and multiple age
groups. First, we consider the face detection performance of these libraries. Then,
we consider embedding inference, where we examine how accurately we can train a
machine learning model to infer demographic data from the embeddings generated
by the libraries.

We also build on results from our previous work in ”De-anonymizing Facial
Recognition Embeddings”[12] where we showed that re-identification attacks by
inferring demographic data from face embeddings are a valid threat (see Figure 1),
which justifies the relevance of our current research.

We consider the following setup: cameras observe some areas (for example at a
company, or in a public space) and extract facial embeddings of people passing by.
Either the cameras themselves are capable of doing the extraction, or they transfer
their footage to a capable server device that would do so. Depending on the use
case (tracking, authentication, identification, etc.), either embeddings are stored in
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Face embedding vectors Demographics data inference
< 0.34,-1.21,..., 0.98> <sex: male, age: 60-80, ...>
<-1.04,-1.31,..., 0.77> —> ﬂ —> <sex: female, age: 20-40, ...>
< 0.38, 1.32,...,-1.01> p— <sex: female, age: 0-20, ...>

Trained ML models

Figure 1: A possible privacy concern regarding face recognition is the inference
of sensitive demographic data from face embeddings through inference of specific
machine learning models.

a database to be used later on, or are compared in real-time to other embeddings
that are already stored in the database.

The reason why the processing may be concerning is that embeddings are con-
sidered biometric data and unlike other biometric data such as fingerprints, facial
images can be easily captured without a person’s knowledge and consent, and also at
a large scale [2]. Therefore, in this paper, we look at risks related to the processing
of embeddings, more specifically we analyze the privacy risk of demographic-based
person re-identification by using face imprints.

This paper is structured as follows. Section 2 summarizes relevant research
related to this topic, including how face recognition works and what its privacy
concerns are. Section 3 introduces a proposed new data protection evaluation
framework for face recognition. Section 4 demonstrates a theoretical attack and
evaluates its results. Section 5 compares three popular face recognition libraries
and introduces the dataset on which they were tested. Finally, Section 6 concludes
the paper with a summary of its main takeaways.

2 Related work

In this section we review facial recognition: its history, how it started, major break-
throughs, and how deep learning based state of the art face recognition systems
work. Then, we introduce and discuss the most important features of the three
Python libraries we used in our work. At the end of the section we also discuss
ethical and privacy concerns related to the application of facial recognition.

2.1 About face recognition

Historically, the dawn of facial recognition began in the 1960s, when researchers
began to use computers to recognize human faces [30]. The first trial was a man-
machine approach, where human personnel had to manually mark facial landmarks
on photographs (e.g. eyes, eyebrows, ears, nose, lips), and the coordinates of these
landmarks were then transformed by a computer to undo the effects of variations
in head rotation and tilt. Then for each person a list of these coordinates were
stored, and in the recognition phase, the distances were calculated between the
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photograph and all the stored records, and the lowest distance was supposed to
reveal the recognized person.

The next major milestone was reached in the 1980s and 1990s, when researchers
came up with the eigenfaces approach [31]. The goal of this approach was to be
able to represent faces as 1 dimensional vectors (instead of 3 dimensional RGB
images), as a combination of predetermined "base” faces, called eigenfaces. The
basic idea was to take a facial image dataset, align and center all faces, and create
a data matrix by turning the images into vectors. This was followed by calcu-
lating the mean face (u) by averaging the data matrix. The eigenfaces (e) were
then constructed by determining the matrix’s eigenvectors and reshaping them into
images. Afterwards, each new face X could be represented as the mean face plus
a linear combination of the eigenfaces: X = p+ wy €1 +wq -2 + ... + wy, - €y,
where w; represents the coefficients of the eigenfaces. In the recognition phase, the
similarities between different faces could be determined by calculating a distance
(e.g. Euclidean distance) between the coefficients of the eigenfaces belonging to
different individuals (where a lower distance meant closer similarity). The biggest
advantage of this approach was that it no longer required human manual input,
and it was completely automated so it worked even in real-time settings. However,
a significant drawback was that it was very sensitive to lightning, scale and facial
expression variations, so it could only work in highly controlled environments.

The next breakthrough, which is the current state of the art in face recognition,
was made possible by the utilization of deep learning algorithms. These algorithms
take the pixels of a photo (or frame) of a person as an input and firstly detect
the face in the image. Various techniques can be used for face detection, such
as Histogram of Oriented Gradients (HOG) [4][25], Haar-Cascades [32] or even a
neural network. Once the face is detected, certain transformations are performed to
make it frontal facing and centered, and finally a vector of floating point numbers
is generated as an output. These vectors are supposed to describe the human face’s
unique features.

To create such vectors, a special training setup is needed. Most often, a Siamese
network architecture [33] and a special loss function, such as triplet loss [26] is used,
where during each iteration of the training three identical networks (hence the name
”Siamese” networks) are fed three different face images, two of the same person (the
7anchor” and the ”positive” image) and one of a different person (the "negative
image”). The goal of the training is to modify the weights of the network such that
the output embeddings of the anchor and positive images will be close in vector
space, while the negative image’s embedding will be farther. The advantage of this
training setup is that the network can learn to generalize and cluster the same faces
together without having to see each possible human face during training.

Then, during recognition phase, these output vectors, also known as face em-
bedding vectors, are compared according to a certain distance metric (e.g. the
Euclidean or Manhattan distance) to determine whether two embeddings belong
to the same face or not. The length of this vector may differ from implementation
to implementation, for example some libraries might generate a 128 dimensional
vector [26][21], whereas other libraries generate a 512 dimensional vector [8].
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2.2 Face recognition libraries

The three libraries we used in our work are as follows.

The OpenCV library [1] implements a deep convolutional neural network based
on the FaceNet [26] structure. Previous networks were trained on a set of known
identities and used an intermediate bottleneck-layer to learn a generalized represen-
tation of faces for recognition. This setting was inefficient and problematic, because
the bottleneck layer couldn’t always generalize to new faces, and the representation
size of faces were usually thousands of dimensions large. In contrast, FaceNet is an
end-to-end solution that directly maps images of faces into the 128-dimensional em-
bedding metric space without requiring a representational bottleneck-layer, using
the triplet-based loss function described above. FaceNet was built on two different
architectures, the Zeiler Fergus and the GoogLeNet style Inception models. While
the Zeiler Fergus model has 140 million parameters, the Inception model has only
7.5 million, making its usage possible on lower computation capacity devices, such
as mobile phones.

The Dlib library [21] is based on a ResNet-34 [15] structure deep convolutional
neural network. In theory, by increasing the network depth, performance should
improve as the model should be able to learn more features. In practice there
are, however, obstacles to increasing the depth indefinitely. One obstacle is the
problem of the vanishing/exploding gradients, which can be solved by normalized
initialization and batch normalization. Another obstacle is that researchers found
that adding more layers to a network could actually result in higher training error.
The key idea of residual networks such as ResNet-34 is the addition of residual
layers to deep convolutional nets. In these models, shortcut connections are added
that skip certain layers, performing identity mapping between two non-neighboring
layers, thereby not only solving the problem of higher training errors, but actually
producing accuracy gains in very deep networks.

The InsightFace [8] library also utilizes a deep convolutional neural network
which was based on multiple other networks (ResNet, MobilefaceNet[3], Inception-
ResNet_v2 [29], DenseNet [17], etc.) and besides triplet (Euclidean/Angular) loss it
also uses multiple loss functions including Additive Angular Margin Loss (ArcFace),
which was created with the specific aim to obtain highly discriminative features for
face recognition [7]. By maximizing face class separability (i.e. clustering faces
belonging to the same person much more closely than other loss functions), this
approach enables the network to be less sensitive towards pose and age variations.

The performance of FR libraries is usually tested by benchmarking them on
various face image datasets, including the Labeled Faces in the Wild dataset [18],
which is the most common benchmarking dataset. From this perspective, Dlib
achieves 99.38%, OpenCV achieves 99.63% and InsightFace achieves the highest
99.83% accuracy on this dataset.
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2.3 Ethical concerns and privacy risks

While FR technology offers a lot of benefits to humanity and it already has a lot of
uses in our everyday lives (e.g. smartphones unlocking by recognizing their owner’s
face, automatic tagging of people on social networking sites, automated border
control gates, finding a lost person, tracking someone etc.) this technology could
also pose numerous threats to society.

One of the biggest concerns is that of discrimination. It could be caused not
only by face recognition itself, but also by the underlying face detection technology.
Some face detection algorithms (like the previously mentioned Haar-Cascades) work
by detecting edges, lines and shapes in images. Under certain circumstances (e.g.
poor lightning conditions), these techniques work better on light skinned individu-
als, and perform worse on darker skinned people. A good example of this was when
Hewlett-Packard’s motion-tracking webcams failed to detect a black person’s face
[27], but Google Photos also struggled with detecting black persons, mislabeling
them for gorillas instead [34]

To analyze the level of discrimination, the Face Recognition Vendor Test con-
ducted by the National Institute of Standards and Technology (NIST) examined
the accuracy variations and potential biases across different demographic groups
based on sex, age and race [14]. In their study, they examined the performance of
189 face recognition algorithms made by 99 different developers, on over 18 mil-
lion photographs taken of more than 8 million people. Their report examined the
variation between false positives and false negatives for the different demographics
analyzed. Overall they found that false positives were much more common than
false negatives, and the ratio of false positives was higher among West- and East-
African, East-Asian, American-Indian and African-American groups. They also
found the false positive ratio to be higher among women, and the youngest and
oldest individuals. Considering some of the use cases (e.g. law enforcement usage
to identify suspects) these high false positive rates could have a lot of negative
consequences on people’s lives, like in the case of 3 black men who were mistakenly
identified and falsely arrested [16]. Knowing about the existence of these sex and
race dependent face recognition performance variations, in our work we examined
whether similar demographic biases are also present in the inference of sensitive
details from the embeddings. Our results are discussed in Section 5.

Apart discrimination and bias issues, face recognition also poses privacy threats.
According to the General Data Protection Regulation (GDPR), face embeddings are
biometric data, as the GDPR defines biometric data as “personal data resulting from
specific technical processing relating to the physical, physiological or behavioural
characteristics of a natural person, which allow or confirm the unique identification
of that natural person, such as facial images or dactyloscopic data” [10]. As such,
processing face embeddings are forbidden by default, and their processing requires
special conditions to be met or to have all concerned subject to consent. However,
by the nature of video surveillance, consent can be very difficult to obtain; as in
public spaces data subjects may not even be aware of being surveilled. Another
problematic aspect of processing biometric data is that while it can be in fact used
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for identification, it should not be used for authentication. Unlike a password, a
person’s biometric traits are not replaceable and not revocable, which may lead
to severe security risks (e.g. biometric data leakage in database hacks). For these
reasons, face recognition should be used as a second factor authentication at most,
which is not always the case in real world applications.

Privacy threats arise in different shapes and colors in different sectors. By gov-
ernments in the public sector, there could be misguided use cases that could even
threaten democracy as we know it (e.g. mass surveillance using FR in totalitarian
regimes, law enforcement usages discriminating certain groups). Risks concerning
individuals relate to using FR services on cloud providers that may not respect
or protect their data carefully (e.g. Facebook automatic facial recognition on up-
loaded images posing interdependent privacy risks). In the private sector there
may be irresponsible use cases where the nature of biometric face embeddings is
not treated with enough caution (e.g. face image or face embedding database leaks,
face spoofing attacks, leaking sensitive information via face embeddings, etc).

Due to the numerous privacy harms that could result from the irresponsible
usage of facial recognition, in the following Section we introduce a novel data pro-
tection evaluation framework that can be used to examine the potential risks in a
systematic way.

3 Facial Recognition Data Protection Impact As-
sessment Framework

In this Section we propose a detailed data protection evaluation framework for
facial recognition. Such framework could be a helpful guide in conducting the Data
Protection Impact Assessment (DPIA) for applications that utilize face recognition.

Under the GDPR, it could be a mandatory requirement to conduct a DPIA
for any case where sensitive data might be published or leaked (e.g. biometric
data such as face imprints) [10]. It necessitates the data processor to examine the
privacy harms resulting from a potential attack, and to make certain technical and
organizational measures so as to minimize the impact of such an attack. As part of
the DPIA, the data handler has to evaluate all plausible settings and risk scenarios,
so conducting the DPIA is non-linear, cyclic task.

Our proposed framework enables a systematic approach to conduct the DPTA
according to GDPR guidelines. To the best of our knowledge, currently no such
framework exists specifically for face recognition related data processing. The
framework is seen in Figure 2.

The first stage represents the processed data by the data processor. In our
case, the data includes face embeddings along with some extra information. This
may include sensitive, directly or non-directly identifying personal information for
individuals, depending on the concrete use case. (One example could be a camera
system at an airport, that could record the embeddings of people entering a prayer
room, posing the risk of sensitive information leakage.)
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Figure 2: Our proposed framework for helping to carry out the Data Protection
Impact Assessment of facial recognition, as required by the GDPR.

The second stage illustrates the potential background knowledge of the attacker.
Depending on the nature of the attack, the attacker might have access to only public
or both public and private auxiliary information that she could use for an attack.
In case of an outside attack, the hacker could only use publicly available data to
carry out a privacy attack (e.g. social media posts and photos, voter registration
lists, etc.). However, in case of an inside attack, the malicious actor could have
access to protected data that has high overlap with the published or leaked original
dataset, thus presents higher risk (e.g. if the attacker is a system administrator).

The third stage details the technical measures that could be taken by the data
processor to minimize the privacy harms resulting from attacks. The data processor
could apply privacy preserving transformations (e.g. mapping, hashing, data per-
turbations), pseudonymization (e.g. cryptographic or hashing techniques) and/or
anonymization (e.g. k-anonymity) in this step. The point of these measures is to
narrow down the possibilities of a malicious party to minimize the impacts of the
attack.

The fourth stage discusses the potential privacy attacks by the malicious party
as per the GDPR. The Article 29 Working Party determined three different attack
types [13]: singling out (the malicious actor successfully identifies an individual
in the dataset), linkability (connecting two records of the same individual from
different databases) and inference (finding out new information about individuals
with high probability).

The fifth stage distinguishes two approaches for evaluating the impact of an
attack: quantitative and qualitative approaches. Quantitative approaches take
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into account the success rate of an attacker, such as the percentage of individuals
re-identified, true positive rate, false positive rate, recall and other similar metrics.
On the other hand, qualitative approaches deal with the nature of the suffered
privacy harm, such as the leakage of sensitive information like sexual, political,
religious orientation, behavioral preferences or the revelation of someone’s location.
These could have moral or material impact on the degree of personal freedom of
individuals.

Finally, the sixth stage emphasises the cyclic nature of the DPIA. Namely, the
quantitative and qualitative evaluation of the attack must be completed for multi-
ple different scenarios for the assumed background knowledge, technical measures
taken, and privacy harm considered.

We believe that the above introduced general framework is a helpful starting
point for preparing the DPIA and to analyze numerous different privacy threats. In
our work, we considered inference based linkability as the privacy harm, where the
attacker uses her background knowledge combined with demographic information
inferred from the embeddings to carry out a re-identification attack. The following
Section details our work regarding the attack and the estimated risk.

4 Attack and risk level estimation

Previously, we have shown that sex, race and age can be predicted with high ac-
curacy from face embedding vectors [12], but researchers showed that even the
original face image can be reconstructed from the embeddings [22], which means
that certain types of data that can be determined by looking at a person’s face,
such as hair color, glasses, etc., are also stored in embeddings. Such traits can
be referred to as soft biometric traits [5], which define some information about an
individual, but are not distinctive enough to make them uniquely identifiable.

The problem is that personal attributes that are not personally identifiable in-
formation yet can be combined together or indirectly merged with external data
sources in order to put back the names over de-identified data (i.e. where all directly
identifying attributes are removed) [28]. We call such procedures re-identification
attacks. Consider an example where a company publishes a database with infor-
mation about its employees, de-identified by removing explicitly identifying fields
(names, email, etc.) and replacing them with unique random IDs. While this
database alone might be considered de-identified, but an attacker may link records
from this company-related dataset to a medical dataset’s corresponding records by
using demographic data.

There are several ways how an attacker can be successful at re-identification by
using face embeddings:

e By matching embeddings: e.g. the attacker has a photo, extracts an em-
bedding and looks for a match in a database containing embeddings. As
mentioned in Section 1, if the distance between the two embeddings is be-
low a threshold then the embeddings belong to the same person with some
probability.
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e If direct search of embeddings is not possible, the attacker could reconstruct
the face from the embeddings in the database [22], and run a visual search in
a face database (e.g. photos on a social network).

e Knowing that embeddings contain demographic data about the data subject,
the attacker can try reconstructing such data from the stored embedding itself
(e.g. using a machine learning model trained for this task) and using that to
do cross matching in another database.

As we know that demographic data predictions are feasible, we consider the third
class of attacks, which is an inference based linkability attack as per our proposed
framework. This is also motivated with the fact that the zip code, sexuality and date
of birth combined together provide a unique identifier for 87% of the population
based on US census data. [28] Referring back to our framework, if an attacker
combines her background knowledge with accurately predicted demographic data
from embeddings, and knows further pieces of background information such as place
of work or residence, she will be able to look up the identity of the data subject by
looking her or him up on social network sites (e.g. on LinkedIn).

Let us explain this concrete attack as follows (see Figure 3). Let us assume a
company where the employees are monitored by FR-capable smart CCTVs that
store the extracted face embeddings in a central database. If the attacker manages
to get the database, she can perform the following attack. In the 1st step the
attacker downloads a publicly available face images dataset. In the 2nd step, the
attacker labels the downloaded face images with demographic attributes such as
sex, race and age (if they are not already labeled by default) and runs FR on them
to extract the face embeddings. Afterwards, she trains a machine learning model to
classify embeddings into demographic categories according to the training labels.
In the 3rd step the attacker deploys the machine learning model, and then in the
4th step she successfully infers the demographic attributes of the people whose
embeddings are stored in the stolen database. In the final 5th step the attacker
uses this extracted demographic data to re-identify the people on a social network
site.

In this Section, we demonstrate this attack in multiple scenarios, based on
the number of people in the database and the accuracy of the demographic data
prediction algorithms. In Subsection 4.1 we explain how we generated the data for
our experiments, and in Subsection 4.2 we describe the results of our experiment.

4.1 Data generation

To determine the feasibility and threat level of the attack, we ran simulations on
the UCI Machine Learning Repository’s Adult Dataset [9]. This dataset contains
demographic information (including age, sex and race) for more than 30,000 records.
These records are not of individual people, but of types of individuals, where the
‘fnlwgt‘ column describes the number of individuals represented by the given record.

As per our attacker model, our aim with the simulations was to examine what
level of re-identification is theoretically possible in a database containing people’s



A Comparative Study on the Privacy Risks of Face Recognition Libraries 243

Public face datasets Attacker Training a ML model
for inference

S8 o

©

Person Smart CCTV Database Social network

@ \\? C(‘P/D) ° [age, sex, race] L@
re? <emb,/> &=~ <emb,/> jyg
L WS

Figure 3: The considered attack when a malicious third party reconstructs de-
mographic data from embeddings and re-identifies the embedding by looking up
potential data subjects on social networking sites.

face embeddings. The database sizes were chosen to be reasonable assumptions
for the number of employees of a small or medium sized company. To construct
the smaller databases of size 10, 50, 100 and 300 for the simulation, we randomly
sampled the required number of entries from [9] using the values in the ‘fnlwgt’
column as weights, which indicate the number of people represented by a given
entry.

4.2 Evaluation

We ran the experiments by assuming the accuracy for predicting age, race and sex
to vary between 60%, 75% and 90% and we assumed a machine learning model that
can predict age in 10 year intervals. After creating the smaller databases, some of
their rows were left untouched based on the prediction accuracy percentages (60%,
75% and 90%), while the remaining rows’ age attributes were randomly permuted
to simulate inaccurate predictions. This random permutation was then repeated
with the same prediction accuracy percentage for the other two attributes, too (sex
and ethnicity). This way we ended up with three derived databases for each smaller
database, where all three attributes were simulated to be predicted with either 60%,
75% or 90% accuracy. As the last step, for each predicted database we counted
what percentage of data subjects were correctly predicted to fall in an equivalence
class of size 1, 2-5, 6-10, 11-20 and 20+ (where the smaller the equivalence class,
the higher the risk of re-identification is). We then repeated this procedure 100
times and averaged out the results.

Figures 4(a)-4(d) show our findings. We can observe that there are many
records in unique or small equivalence classes both in smaller (|D| = 10, |D| = 50)
and larger (|D| = 100, |D| = 300) predicted databases, which poses privacy risks.
The attacker is the most successful at re-identification in the case of the smallest
database of 10 people, with the highest 90% prediction accuracy, when 50.1% of
people fall in a unique equivalence class, and all the others fall in an equivalence
class of size 2-5. If the accuracy is decreased to 60%, still 27.7% falls in a unique
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Figure 4: The ratio of equivalence classes (EC) in the predicted database (D) for
various database sizes and prediction accuracies.

equivalence class, and 33.9% falls in an equivalence class of size 2-5 (see Figure
4(a)). Regarding the largest database of 300 people, 3.75% of individuals are in a
unique equivalence class, and 11.79% are in an equivalence class of size 2-5. Even
in the worst case scenario for the attacker, which is 60% accuracy for a database of
300, the rate of people in unique equivalence classes does not fall below 1.38%, nor
does the rate of people in an equivalence class of size 2-5 fall below 4.64% (see Figure
4(d)). Also, it is worth noting that while the percentage of people re-identified may
be lower in the case of large databases, the expected number of people re-identified
may still be higher in these cases. So while an increase in database size and a
decrease in prediction accuracy results in a decrease in re-identification probability,
the risks are not diminished drastically.

In summary, as expected, the smaller the database size, the higher the re-
identification risk is, because smaller sized databases have a higher chance of being
reconstructed in such a way that people are correctly mapped to an equivalence
class of size 1 or 2-5. Indeed, the higher the prediction accuracy, the higher the
re-identification risk is, because the higher percentage of people are predicted to
be in the correct equivalence class. As a result, due to the privacy risk presented,
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the actual achievable prediction accuracy must be examined, which is detailed in
Subsection 5.3.

5 Comparison of the state-of-the-art face recogni-
tion libraries

5.1 Data generation

We compare three of the most popular open access FR libraries (OpenCV, Dlib and
InsightFace) from a face detection, face recognition and face embedding inference
point of view, i.e. how accurately can a machine learning model learn to predict
demographic data from the embeddings generated by each library. First, we had
to generate a dataset of face images. While there are many publicly available face
image datasets, for our purposes we needed a dataset that contained photos of a
wide diversity of people: people from both sexes, from four different races and from
multiple age groups.

To generate our own dataset, we used the publicly available UTKFace dataset
[35], which is a large-scale face dataset that met our requirements, because it con-
tains over 20,000 face images with annotations of age, sex and race. Moreover, the
images are labeled with file names formatted like [age/_[gender]_[race]_[dateéStime],
where age is an integer from 0 to 116, sex is 0 for males or 1 for females, and race
is 0 for whites, 1 for blacks, 2 for asians, 3 for indians or 4 for other races.

While this dataset was a great starting point for our research, it was not perfect,
because we needed a more balanced dataset. As a result, we only used 12192 photos
from UTKFace, since there were only 1524 photos per each of the eight race-sex
pairs that we worked with (males and females paired with whites, blacks, asians and
indians). Of course, some classes (e.g.: white males) had more than 1524 photos,
but due to our need for a balanced dataset, we had to choose the number of photos
per class based on the least represented class. Even though this subset of UTKFace
was balanced regarding sex and race, it still was not balanced regarding age. For
example people aged between 20 and 40 were overrepresented, while people aged
over 50 were underrepresented, etc. (see Figure 5 for more details regarding the
age distribution of our dataset).

5.2 Face detection and recognition

To compare the three libraries, we ran their face recognition algorithms on our
dataset. We then examined how many faces each library found out of the 12192,
along with the number of false negatives (where a library mistakenly did not find
a face in an image) and false positives (where a library mistakenly found multiple
faces instead of just one). To gain a better understanding of the accuracy of each
library on different races and sexes, we also examined the races and sexes where
these false negatives or false positives occurred. Table 1 shows our findings.
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Figure 5: The age distribution of our dataset regarding both sexes and all four
examined races

In conclusion, OpenCV and InsightFace performed mostly the same on both
sexes and all four races examined, as both libraries had a negligible number of false
negatives and false positives. The only difference is the runtime, where OpenCV
was about 6 times faster. While Dlib produced zero false positives, it produced
a significant false negative rate of 4.2%, which means it is a bit less reliable at
detecting people, especially, but not exclusively, black males and females who had
a false negative rate of 7.2% and 4.6%. Also, Dlib had the longest runtime, with
4110 seconds, it was about 12 times slower than OpenCV, and 2 times slower than
InsightFace.

It is important to note that our tests were conducted on a dataset of cropped
face images as opposed to regular face datasets (e.g. ”faces in the wild” [18]). So
while these results might indicate that there is almost no difference in the false
positive rate of the libraries, but due to the nature of our dataset even a very small
false positive rate is significant (e.g. in real world conditions OpenCV produces
far more false alarms than Dlib [20]). Therefore it is future work to run these
experiments on a dataset of non-cropped images ”in the wild”, too.

In summary, the choice of the right algorithm depends on the use case where
facial recognition is applied. When having no false alerts is a significant issue,
Dlib is the right choice. When having no false negatives is important, it is better
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Table 1: The face detection performance of OpenCV, Dlib and InsightFace on
different sexes and races

Faces Fal Total Fal Total | Run
Lib de- Sex Race EL:e false nE:e se false | time
tected POS- 1 bos. & | neg. [s]
White 2 1
Black 1 3
Male Asian 0 3 0 4
Open Indian 0 0
CvV 12183 White 0 0 322
Black 0 0
Female Asian i 2 0 0
Indian 1 0
White 0 48
Black 0 110
Male Asian 0 0 70 282
. Indian 0 54
Dlib 11676 White 0 =) 4110
Black 0 70
Female Asian 0 0 2 234
Indian 0 51
White 0 1
Black 1 3
Male Asian 1 2 0 4
Insight Indian 0 0
Face 12185 White 1 0 1858
Black 0 0
Female Asian 0 1 0 0
Indian 0 0

to choose another library to avoid situations where some of the consumers could
be negatively impacted, such as the previously mentioned incident of Hewlett-
Packard’s motion-tracking webcams not working on black people [27]. In other
cases we may choose between the libraries by considering runtime or the accuracy
of additional features. For instance, InsightFace does a great job in detecting facial
landmark points, especial when the face is visible from the side profile [6].

5.3 Demographic attribute inference from embeddings

Lastly, we compared each library in terms of how accurately a machine learning
model can predict demographic data (sex, race and age) from the face embed-
dings they produce. The training data was generated by running each library’s FR
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algorithm on our dataset and collecting the face embedding vectors with their cor-
responding class labels into pandas [23] dataframes, where the labels were deduced
from the image file names. Since not all faces were detected in all images by all
libraries and since we wanted to train our models on balanced datasets, we had to
discard some images in order to always use only as many images per each class as
the least represented class permitted (i.e. the class with the lowest number of faces
detected).

In total, we built three predictive models per each library, one for sex classifica-
tion, one for race classification and one for age classification. We used Scikit-Learn’s
[24] train_test_split function to split our dataframes into a train and a test set, and
then used Scikit-Learn’s RandomForestClassifier module to train three random for-
est classifiers to predict the demographic attributes from the face embeddings. The
reason we used random forests was that we wanted to show that even easy to use
7off the shelf” ML models can work that do not require deep expertise in ML from
an attacker. Random forests satisfy the latter criteria by having a small number of
hyperparameters to tune. In the case of age prediction, expecting exact accuracy
is not realistic (as it is also difficult for a human to guess the age that precisely), so
instead we applied the predictions into ranges between 1-20, 21-40, 41-60 and 61-
80 years. Figures 6, 7, 8 show our findings. To evaluate our results, we calculated
the prediction F1 score, which is a descriptive metric that takes into consideration
the true positive (TP), false positive (FP) and false negative (FN) rates as well:
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Figure 6: Prediction accuracies for different demographic groups using face embed-
dings generated by OpenCV, Dlib and InsightFace: Sex prediction
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Figure 7: Prediction accuracies for different demographic groups using face embed-
dings generated by OpenCV, Dlib and InsightFace: Race prediction
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Figure 8: Prediction accuracies for different demographic groups using face embed-
dings generated by OpenCV, Dlib and InsightFace: Age prediction
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In conclusion, our random forest models performed the best on the embeddings
generated by Dlib, where the sex classifier achieved over 92%, the race classifier
over 89%, and the age classifier over 75% prediction F1 score. The second best per-
formance was achieved when the models were trained and tested on the embeddings
generated by OpenCV, where the sex classifier achieved over 83%, the race classifier
78%, and the age classifier over 73% prediction F1 score. The random forest models
performed the worst when trained and tested on the embeddings of InsightFace, in
which case the sex classifier achieved only over 77%, the race classifier only over
66%, and the age classifier only 60% prediction F1 score.

To test for potential biases, we examined the prediction performance not only for
the total population of our dataset, but also on the following smaller demographic
groups: males, females, whites, blacks, asian, indians. The performance of the
classifiers on these demographic subgroups were mostly uniform, with only a few
outliers. While some of the reported differences are very slim, even these could
have notable privacy implications as discussed later.

In the case of OpenCV embeddings, the sex classifier performed considerably
worse in case of asians than any other race. The race classifier, however, performed
the best for asians, and notably worse for indians. The age classifier’s performance
was significantly worse for white people, but significantly better for asian people.
The race prediction performed slightly better for females, whereas the age predic-
tion slightly better for males.

In the case of Dlib embeddings, the sex classifier also achieved a noticeably
worse score on asians compared to all other demographic groups. While there was
only a very slight difference, but the race classifier achieved the lowest score on the
indian population. The age classifier performed the worst on white people, while
it performed by far the best on asian people. Regarding sexes, both the race and
age predictor performed notably better for females.

In case of the embeddings of InsightFace, the results were a bit different. The
sex classifier performed worse than average on whites, and better than average on
indians. The race classifier also achieved better than average score for indians,
and the lowest score on asians and whites. In the case of age prediction, the most
extreme outlier was the much lower score for white people, while the score of asians
was also significantly higher than average. In this case, the sex predictor performed
slightly better for males, however the race and age prediction was significantly
better for females.

Based on these results it seems that there could be noteworthy differences in
predicting demographic attributes for different sexes and races. While the impact of
these differences may not be significant in all applications (e.g.: targeted advertising
in retail), in other scenarios they could have a profound effect on people’s lives (e.g.:
mass surveillance, law enforcement profiling). Another important aspect to consider
is how many people will be affected by the technology in each use case. For example
applications in the public sector (e.g.: surveillance by governments) will impact far
more people than typical use cases in the private sector (e.g. employee tracking),
and in those cases even seemingly small differences of 0.5-1% can affect thousands
or tens of thousands of people, which emphasizes the importance of treating facial
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recognition technology with great caution.

6 Conclusion and future work

In this paper we have reviewed the main principles behind facial recognition al-
gorithms, introduced three popular Python libraries, and presented the potential
discriminational and privacy risks in relation to the processing of face embeddings.
We have discussed why face embeddings must be considered sensitive biometric data
and we proposed a novel data protection evaluation framework for facial recogni-
tion, which could be a general starting point for conducting the DPIA required
by the GDPR. We have also looked at various attacker models that could pose a
threat to data subjects’ privacy via inference based re-identification.

In particular, we analyzed the risks of re-identification by reverse-engineering
demographic data (age, sexuality, race) from embeddings stored in a database. We
found that the smaller the database and the higher the accuracy of prediction, the
higher the re-identification risks are. In the case of a 10 person database and 90%
accuracy, 50.1% of people are likely to be precisely re-identified, while this number
decreased to 27.7% at 60% prediction accuracy. The risks are also not negligible
even for larger databases, because for a database of 300 we showed that at 90%
accuracy 3.75% of people are in a unique equivalence class, and 11.79% are in an
equivalence class of size 2 to 5 and are likely to be de-anonymized. It must be
noted that while the re-identification percentages decrease for larger databases, the
absolute number of successful re-identification cases increase.

Afterwards, we compared the performance of three face recognition Python
libraries (OpenCV, Dlib, InsightFace) on a custom face image dataset that we have
generated. Our findings indicate that while all three libraries produce a negligible
number of false positives, DIlib produces far more false negatives than the other
two, especially for black people. Regarding run time, OpenCV is about 12 times
faster and InsightFace is about 2 times faster than Dlib.

Finally, we extracted face embeddings from our custom dataset using all three
libraries to then train random forest classifiers to predict sex, race and age from
each library’s embeddings. We then compared the prediction accuracies of our
random forest models on the total dataset and also on demographic subgroups.
Our findings indicate that those models perform the best that were trained and
tested on the embeddings of Dlib, followed by the embeddings of OpenCV and
finally InsightFace.

Based on our results, there can be differences in prediction accuracies between
different sexes and races, and the impact of these biases always has to be evaluated
in each application scenario (e.g. law enforcement profiling vs. retail profiling).

For future work, our aim is to gain better understanding and greater explainabil-
ity of the inner workings of our models in order to discover why misclassifications
happen and how demographic data is encoded in embeddings. Also, our focus is to
design a procedure that could prevent demographic data leakage from the stored
embeddings.
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While one obvious approach could be to encrypt the embeddings before stor-
age, they would necessarily have to be decrypted for the calculation of Euclidean
or Manhattan distances, so it wouldn’t permanently solve the leakage problem.
Another plausible solution would be to use homomorphic encryption, which would
allow operations to be performed on the embeddings in encrypted form, but due to
its computational complexity and slow performance its usage might not be feasible
in real-time applications.

Therefore, our research aims find a solution (e.g. adversarial search techniques)
to modify the embeddings in such a way to notably lower the prediction accuracies
by machine learning models for all demographic and sensitive attributes, with-
out compromising the usability of the face embeddings (i.e.: without significantly
changing their relative Euclidean distances). Our hope is that achieving this will
allow a much more privacy friendly way to utilize face recognition and process face
embeddings.
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