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Distance-Based Skeletonization on the BCC Grid∗

Gábor Karaiab and Péter Kardosac

Abstract

Strand proposed a distance-based thinning algorithm for computing sur-
face skeletons on the body-centered cubic (BCC) grid. In this paper, we
present two modified versions of this algorithm that are faster than the orig-
inal one, and less sensitive to the visiting order of points in the sequential
thinning phase. In addition, a novel algorithm capable of producing curve
skeletons is also reported.
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1 Introduction

Skeletons are region-based shape descriptors which summarize the general form of
(segmented) digital binary objects [17]. In 3D, surface skeletons (that may contain
2D thin surface patches) are to represent general objects, and curve skeletons (that
are stick-like 1D descriptors) are concise representations of tubular and tree-like 3D
objects. Distance-based skeletonization techniques focus on the detection of ridges
in the distance map by using a proper distance and a fast algorithm for distance
transform [2, 3]. Another strategy for skeletonization, called as thinning, is an iter-
ative object reduction in a topology preserving way [11]. Distance-based methods
are often combined with thinning. These approaches can be further classified as
follows [5]:

• Anchor-based thinning: First, the set of centres of maximal balls (CMB’s) is
detected as safe skeletal (anchor) points. Then thinning is applied to connect
CMB’s and determining the set of remaining skeletal points.

• Distance-ordered thinning: Distance mapping is followed by the thinning pro-
cess. In the k-th iteration, only object points with distance value k are taken
into consideration for possible deletion.
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• Hybrid approach: It combines anchored and distance-ordered thinning.

Most 3D skeletonization algorithms work on digital pictures sampled on the
cubic grid. An alternative structure, the body-centered cubic (BCC) grid tessellates
the space into truncated octahedra, which results in a less ambigous connectivity
structure compared to the cubic grid [21]. The importance of BCC grid shows an
upward tendency in the analysis of 3D digital images [1, 13, 14, 15, 24].

The first skeletonization algorithm for binary objects sampled on the BCC grid
was proposed by Strand [19]. His algorithm considers a fixed distance, and is only
capable of producing surface skeletons. According to our best knowledge, there
is not any other similar result in the later literature. In this paper, we present
two modified versions of Strand’s method that work for arbitrary distances, and a
further one capable of producing curve skeletons.

The rest of this work is organized as follows. Section 2 reviews the basic notions
and results of 3D digital topology. In Section 3, we discuss the original algorithm of
Strand working on the BCC grid. In Section 4, we propose the modified versions of
that algorithm for computing surface skeletons, while in Section 5, we also present a
variant to produce curve skeletons. Some experimental results are shown in Section
6, and we round off this work with some concluding remarks.

2 Definitions and Notions

In this section, we review the basic concepts of digital topology and distance trans-
form.

Let us denote by B the BCC grid, whose elements are called points. The BCC
grid is defined as the following subset of Z3:

B = {(x, y, z) ∈ Z3 | x ≡ y ≡ z (mod 2)}. (1)

We make a distinction among the following three types of neighborhood of a
point p = (px, py, pz) ∈ B (see Figure 1):

N6(p) = {(qx, qy, qz) ∈ B | |px − qx|+ |py − qy|+ |pz − qz| = 2},

N8(p) = {(qx, qy, qz) ∈ B | |px − qx|+ |py − qy|+ |pz − qz| = 3},

N14(p) = N6(p) ∪N8(p).

Two points p, q ∈ B are i-adjacent if q ∈ Ni(p) (i = 6, 8, 14). Furthermore, let
N∗

i (p) = Ni(p) \ {p}.
The lexicographical order relation “≺” between two distinct points p = (px, py,

pz) and q = (qx, qy, qz) in B is defined as follows:

p ≺ q ⇔ (pz < qz) ∨ (pz = qz ∧ py < qy) ∨ (pz = qz ∧ py = qy ∧ px < qx).

The sequence of distinct points 〈x0, x1, . . . , xs〉 in a non-empty set of points
X ⊂ B is called an i-path of length s from x0 to xs in X if xk is i-adjacent to xk−1



Distance-Based Skeletonization on the BCC Grid 353

•
• •• •

•• p ••
• •• •
•

Figure 1: Elements of N14(p) in B (left), voxel representation of these points (right).
The set N6(p) contains the central point p and the six points (voxels) marked green.
The set N8(p) contains p and the eight points (voxels) marked red.

(i ∈ {6, 8, 14}, k = 1, . . . , s). Note that a single point is an i-path of length 0. Two
points p, q ∈ B are said to be i-connected in X ⊆ B if there is an i-path from p to
q in X. The set X is i-connected in the set of points Y ⊇ X if any two points in X
are i-connected in Y .

Following the concept of digital pictures in [9], we define the (14, 14) binary
digital picture as a quadruple P = (B, 14, 14, B). Each point in B ⊆ B is called
a black point and has a value of 1 assigned to it. Picture P is finite if it contains
finitely many black points. Each point in B \ B is called a white point and has
a value of 0 assigned to it. 14-adjacency is associated with both black and white
points. A black component or an object is a maximal 14-connected set of points in
B, while a white component is a maximal 14-connected set of points in B \ B. A
black point is called a border point in a picture if it is 14-adjacent to at least one
white point. Furthermore, a border point p is called a strong border point, if N8(p)
contains at least one white point, or else p is called a weak border point. In a finite
picture, there is a unique white component that is called the background . A finite
white component is called a cavity .

A reduction transforms a binary picture only by changing some black points to
white ones (which is referred to as the deletion of 1’s). A 3D reduction does not
preserve topology [8] if

• any object in the input picture is split (into several objects) or is completely
deleted,

• any cavity in the input picture is merged with the background or another
cavity,

• a cavity is created where there was none in the input picture, or

• a hole (that e.g. doughnuts have) is eliminated or created.

A simple point is a point whose deletion is a topology preserving reduction [9].
Sequential thinning algorithms traverse the border points of a picture, and focus on
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the actually visited single point for possible deletion, hence for such algorithms, the
deletion of only simple points ensures topology preservation. The following result
states that simplicity is a local property in B which can be verified by investigating
the 14-neighborhood of points:

Theorem 1. [23] Let p be a black point in a (B, 14, 14, B) picture. Then p is a
simple point if and only if the following conditions hold:

1. Point p is 14-adjacent to just one 14-component of N∗
14(p) ∩B.

2. Point p is 14-adjacent to just one 14-component of N14(p) \B.

Figure 2 shows examples for simple and non-simple points.

◦
• •◦ ◦

◦• p ◦◦
• ◦• ◦
◦

◦
◦ •◦ •

◦◦ p ◦◦
• ◦• ◦
◦

Figure 2: Example for a simple (left) and a non-simple point p (right) on the BCC
grid. The distinct black 14-components are labeled with different colors.

Let Γ be the set of white points in a picture. The distance transform is a
function that assigns to each point p the distance between p and the closest border
point q ∈ Γ to it. The most frequently used distance functions of two points p and
q are the Euclidean distance, de(p, q) =

√
(px − qx)2 + (py − qy)2 + (pz − qz)2 and

the neighborhood distances, where di(p, q) denotes the length of the shortest i-path
between p and q [12]. In B, neighborhood distances d8(p, q) and d14(p, q) are taken
into consideration. These distances, however, do not give a good approximations
to the Euclidean distance. As a better solution for this purpose, the lengths of the
moves from a point to its neighbors can be weighted according to some criteria, and
the path of the minimal sum of weights called as Chamfer distances can be used
[4, 12]. Let 〈a, b〉 denote the general Chamfer mask for weighted distance transform
on the BCC grid, where a and b are the weights assigned to all points in N∗

8 (p) and
N∗

6 (p), respectively. Some Chamfer masks are presented in [7, 22].
Let DT be a distance map of a (14, 14) picture. Point p ∈ B is called a local

maximum if for any point q ∈ N∗
14(p), DT (p) ≥ DT (q). An inscribed ball is a sphere

that is contained within the object and tangent to at least one of the object’s faces,
and it’s called maximal if it is not covered by any other inscribed ball. A center of
maximal ball (CMB) is labeled with the radius of that ball [5]. Point p ∈ B is a
CMB if for any point q ∈ N∗

14(p), DT (q) < DT (p) +w, where w is the weight that
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corresponds to q on the Chamfer mask when placed on p. In case of d8 distance,
only N∗

8 is considered for detection of local maxima and CMB’s.

3 Strand’s algorithm

The method proposed by Strand uses d14 distance and sequential thinning, and
it can produce only surface skeletons by preserving non-simple points and surface
edge points. A point p ∈ B is called a surface edge point, if the following two
conditions hold:

• there are two points q, r ∈ N∗
14(p) ∩B such that N14(q) ∩N14(r) = {p} and

• there is no point s ∈ N∗
14(p) ∩B such that N14(p) ∩N14(s) ⊆ B.

The thinning part consists of two phases. Forward thinning reduces the input
object to a 3–4 voxel thick object, which is peeled further during backward thinning.
Note that surface edge point condition is applied only in the last phase. The unusual
in this process is that during the backward thinning phase, object points are visited
in descending order of their distance value. The sequential thinning suffers from
the disadvantage of being sensitive to the visiting order of border points with the
same distance value. As a result the final skeleton usually has some “false” skeleton
points, which causes insignificant segments. This situation is illustrated in Figure 3
and an example for its occurrence can be found in Figure 4.

•
• •• •

•• p ••
• •• •
◦

Figure 3: Example for unfavorable visiting order during sequential thinning. Weak
border point p becomes non-simple after deletion of its neighbor marked red.

Theorem 2. The runtime complexity of Strand’s algorithm (see Algorithm 1) is
O(|I|4/3), where |I| denotes the number of points in the image.

Proof. The first phase of the algorithm is linear since computing the d14 distance
transform requires two raster scans [22] and the sequential detection of CMB’s
takes one extra scan. Forward thinning is linear too, because the object point’s
local neighborhood is examined exactly once. In worst case, weak border points
on the original object may appear as surface or line endpoints, which means the
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Algorithm 1 Strand’s skeletonization algorithm.

Input: picture (B, 14, 14, X) with the initial objects in it
Output: picture (B, 14, 14, X) containing the surface skeleton

// Distance mapping and identifying CMB’s

1: DT ← computeDT (X)
2: H ← {p ∈ X | p is a CMB}

// Forward thinning

3: for k ← 1 to max(DT ) do
4: for each p ∈ X do
5: if DT (p) = k and p is simple and N14(p) ∩H = ∅ then
6: X ← X \ {p}
7: end if
8: end for
9: end for

// Backward thinning

10: repeat
11: changed1← false
12: for k ← max(DT ) downto 1 do
13: repeat
14: changed2← false
15: D ← {p ∈ X \H | DT (p) = k and p is simple}
16: for each p ∈ D do
17: if p is simple and p is not a surface edge point then
18: X ← X \ {p}
19: changed1← true
20: changed2← true
21: end if
22: end for
23: until changed2 = false
24: end for
25: until changed1 = false

algorithm may classify black points incorrectly during the first iteration. As a
consequence, the length of these segments is equal to half of the object’s thickness,
which we refer to as Tobj .

During the for loop from Step 12 to 24, all remaining object points are visited,
but it can peel only a one-unit layer from each segment because of the descending
visiting order of the object point’s distance value, since only simple points can be
deletable. Hence, each object point will be visited at most Tobj times until the
algorithm terminates, so the runtime complexity is O(Tobj · |I|). Tobj is maximal,
if the input image has a cubic shape, which means the image size is the same
for all dimensional axes. In this case, the original object is 3

√
|I| / 2 thick, if all

points in the image are black. By inserting it into the previous formula, we get
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Original object
(20 280)

Result of forward thinning Final skeleton
(4 926)

Figure 4: Result of Strand’s algorithm on a holey cube. In the middle and right
figure anchor voxels are gray and further skeleton voxels are red. Numbers in
parentheses show the number of black points.

O( 3
√
|I| / 2 · |I|) = O(|I|4/3), which is not just the third phase’s, but the whole

algorithm’s runtime complexity.

4 Our two modified algorithms to produce surface
skeletons

To construct linear time algorithms, we merge the thinning phases in Algorithm 1
and simplify the organization of the thinning iterations. Our deletion rule also
preserves non-simple points and surface edge points. We introduce a new parameter
N which gives an upper limit to the visiting number of all black points during the
thinning phase (i.e. each iteration will be repeated at most N times). Note that
setting N to ∞ means that the visiting number is not limited. This parameter
is applied in both of our improved algorithms. The motivation is to reduce the
sensitivity to the visiting order of border points. The sequential thinning part
consists of two substeps in our modified algorithms. First, we collect the deletable
points from the actual image into set D. Then we individually delete each point in
this set, if they are still simple when visited. In order to lessen the occurrence of
false skeleton points, elements of D are visited in lexicographical order.

Our first improved variant, called AB-N-visits, is an anchor-based thinning
method that considers local maxima instead of CMB’s to be anchor points be-
cause many CMB’s are proved to be “false” skeleton points on weighted distance
maps [5]. In this approach, we consider only strong border points to make sure
the strong and weak border points will be visited in different iterations. At the
end of each iteration, all visited but non-deleted points are insterted in the set S
of skeleton points (see Step 17 of Algorithm 2). This operation guarantees that no
border points will be examined during the further iterations which already have
been visited.
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Our second improved variant, called DO-N-visits, is a distance-ordered thinning
method that omits the detection of anchor points, i.e. the set H is not used in this
version. The border points are visited in ascending order of their distance value
during the thinning phase.

Algorithm 2 Anchor-based variant AB-N-visits to extract surface skeleton.

Input: picture (B, 14, 14, X) with the initial objects in it, visiting limit N
Output: picture (B, 14, 14, S) containing the surface skeleton

1: DT ← computeDT (X)
2: H ← {p ∈ X | p is a local maximum}
3: S ← ∅

// Thinning

4: repeat
5: L← {p ∈ X \ (S ∪H) | p is a strong border point}
6: D ← {p ∈ L | p is simple for X and p is not a surface edge point}
7: t← 0
8: repeat
9: t← t + 1

10: for each p ∈ D in lexicographical order do
11: if p is simple then
12: X ← X \ {p}
13: L← L \ {p}
14: end if
15: end for
16: until t = N or no points are deleted
17: S ← S ∪ L
18: until D = ∅

Theorem 3. The runtime complexity of Algorithm 2 and Algorithm 3 is linear, if
N ∈ N.

Proof. As we mentioned in Theorem 2, d14 distance mapping has linear computa-
tional cost. Here we note that d8 and any 〈a, b〉 Chamfer distance have the same
property [7]. Moreover, there are also linear time adaptations of the Euclidean
distance transform on the BCC grid [20].

Following the indication in Theorem 2, |I| denotes the number of points in the
image. During the thinning phase, each object point is visited in exactly one it-
eration. In Algorithm 2, this is ensured by collecting all previously investigated
but not deleted border points. In Algorithm 3, the distance-ordered strategy guar-
antees this property. It is also obvious that each border point is visited up to N
times during one thinning iteration. As a consequence, all object points are visited
maximum N times during the thinning phase. Hence, the computational cost is
O(N · |I|), which means linear time complexity if N is a positive integer since it is
a fixed parameter.
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Algorithm 3 Distance-ordered variant DO-N-visits to extract surface skeleton.

Input: picture (B, 14, 14, X) with the initial objects in it, visiting limit N
Output: picture (B, 14, 14, X) containing the surface skeleton

1: DT ← computeDT (X)
// Thinning

2: for k ← 1 to max(DT ) do
3: D ← {p ∈ X | DT (p) = k and p is simple and p is not a surface edge point}
4: t← 0
5: repeat
6: t← t + 1
7: for each p ∈ D in lexicographical order do
8: if p is simple then
9: X ← X \ {p}

10: end if
11: end for
12: until t = N or no points are deleted
13: end for

The extracted surface skeletons of the holey cube by our improved algorithms
are shown in Figure 5. It is easy to see that these surface skeletons contain less
insignificant skeleton points compared to the result in Figure 4.

AB-N-visits
(4 432)

DO-N-visits
(3 881)

Figure 5: Result of our improved algorithms on a holey cube shown in Figure 4 on
d14 distance map with N = 2. In the left figure anchor voxels are gray and further
skeleton voxels are red. Numbers in parentheses indicate the number of skeleton
points.
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5 Modified variant to produce curve skeletons

By modifying our distance-ordered variant, we can also extract the curve skeleton
directly from the original object. For this purpose, instead of surface edge points
we retain either of two types of curve endpoints. Point p ∈ B is a C1 endpoint, if
|N∗

14(p)∩B| = 1, i.e., p has only one black neighbor in N∗
14(p). Let u be this black

neighbor. Point p is a C2 endpoint, if p is a C1 endpoint and u is a line point.
Point u is a line point if there are exactly 2 black points in its 14-neighborhood and
they are not 14-adjacent to each other. We consider a border point deletable if it
is simple but not an endpoint. The corresponding algorithm is called DO-CS. We
reorganised the thinning iterations: the non-deleted black points must be visited
again during the further iterations in order to shrink the surface patches until line
branches are only left. Parameter N is not used since the sufficient number of
iterations repetition depends on the structure of the objects in the input picture.
This algorithm terminates only if there are no more deletable points. Therefore, it
is impossible to set a constant upper limit k to the visiting number of object points.
As a result, the extraction of the curve skeleton has nonlinear time complexity.

It is important to note that anchor point condition should not be used because
the detected ridge points belong to the surface skeleton, so surface segments will
probably be also generated.

According to our experiments, visiting elements of D in lexicographical order
has a relevant effect only on d8 and d14 distance maps. The reason behind this
phenomenon is the fact that on Chamfer or Euclidean distance maps the number
of considered border points in a thinning iteration are less than in d14 or d8 distance
map, so there is a lower chance of unfavorable visiting order. Furthermore, there are
much more configurations for surface edge points than for line endpoints. Hence,
the curve endpoint criteria are less sensitive to the visiting order, especially the C2
condition.

Extracted surface skeletons of the holey cube are shown in Figure 6. Notice
that d8 skeleton is much more jagged due to the unlucky visiting order of border
points.

6 Results

Our algorithms were tested on numerous objects of different shapes. Figures
7–10 show the surface skeletons and 11–13 show the curve skeletons. To make
the difference between the applied parameters more visible, some of the following
figures consist of fusioned images, where red, green and gray voxels belong to the
first, second and both skeletons extracted with the indicated parameters, respec-
tively. In the case of Strand’s method the gray and red points mean the anchor
points and further skeletal points, respectively. In case of any 〈a, b〉 weighted dis-
tances, local maxima are considered as anchor points instead of CMB’s even for
Strand’s method. Numbers in parentheses show the number of object or skeleton
points.



Distance-Based Skeletonization on the BCC Grid 361

Algorithm 4 Variant DO-CS to extract the curve skeleton.

Input: picture (B, 14, 14, X) with the initial objects in it, line endpoint criterion
Ci (i ∈ {1, 2})

Output: picture (B, 14, 14, X) containing the curve skeleton
1: DT ← computeDT (X)

// Thinning

2: for k ← 1 to max(DT ) do
3: repeat
4: D ← {p ∈ X | DT (p) ≤ k and p is simple and p is not a Ci endpoint}
5: repeat
6: for each p ∈ D do
7: if p is simple then
8: X ← X \ {p}
9: end if

10: end for
11: until no points are deleted
12: until D = ∅
13: end for

d14
(97)

d8
(84)

Figure 6: Produced curve skeletons of a holey cube shown in Figure 4 with different
distances. The resulting curve skeletons with C1- and C2-endpoint condition coin-
cide with each other because no C2-endpoint was detected. Numbers in parentheses
indicate the number of skeleton points.

As we discussed in Section 3, Strand’s algorithm leaves many insignificant skele-
ton segments in case of d14 distance. It’s easy to see that Strand’s method remark-
ably overshrinks the input object, when weighted distance is used. Also note that
the more accurate approximation of the Euclidean distance is used, the less anchor
points are detected. In the case of N = 1, algorithm DO-N-visits leaves one side
of the letter A almost unchanged due to the unfavorable visiting order of border
points. This phenomenon is successfully handled with setting N to 2. However, the
modified versions may overshrink the object, if N is too large, especially in d8 or
d14 distance maps (see Figure 8). Hence, options N ∈ {2, 3} are usually sufficient.
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Original object
(42 522)

d14
Strand
(8 805)

〈5, 6〉
Strand
(1 110)

〈6, 7〉, N = 1, 2
AB-N-visits

(4 365) + (4 329)

d14, N = 1
DO-N-visits

(6 162)

d14, N = 2
DO-N-visits

(3 918)

Figure 7: Produced surface skeletons of the letter A with various parameters.

d8, N = 2,∞
AB-N-visits

(4 873) + (4 852)

d14, N = 2,∞
DO-N-visits

(3 918) + (3 792)

Figure 8: Overshrinked surface skeletons of the letter A. For N = ∞, the highest
repetition number, i.e. the highest value of t in Algorithm 2 and Algorithm 3 was
14 and 12, respectively.
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Original object
(149 142)

d14
Strand

(26 305)

〈4, 5〉
Strand
(3 331)

d8, N = 1, 2
AB-N-visits

(14 612) + (14 416)

d14, N = 1, 2
DO-N-visits

(19 130) + (8 930)

Figure 9: Produced surface skeletons of a gear with various parameters.

We can also observe that the medial surface is strongly jagged due to the nature of
sequential thinning.

A similar phenomenon can be observed on the gear and the amphora. By setting
N to 2 we get a much cleaner skeleton. Note that the number and distribution of
skeletal points also depend on the thinning strategy.

It can be well observed that significantly less false line segments were produced
on the curve skeletons with condition C2 compared to C1.

7 Conclusions

The proposed algorithms AB-N-visits and DO-N-visits have linear runtime com-
plexity and are less sensitive to the visiting order of border points compared to
Strand’s method. According to our experiments, it is sufficient to set N to at most
3 to produce “clear” surface skeletons. All examined algorithms preserve topology
due to the fact that only a single simple point is deleted at a time. All the pro-
posed methods can be extended to arbitrary distances including any 〈a, b〉 weighted
distance or even the Euclidean distance. The optimal parameters (e.g. distance,
thinning strategy) depend on the shapes of the objects to be represented. We note
that, though numerous authors have proposed methods to evaluate the performance
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Cross-sectional image Original object
(566 765)

d14
Strand

(51 901)

〈3, 4〉
Strand

(25 892)

d14, N = 1, 2
AB-N-visits

(53 522) + (51 493)

de, N = 1, 2
DO-N-visits

(29 749) + (29 246)

Figure 10: Produced surface skeletons of an amphora with various parameters.

Original object
(94 031)

d8
C1 + C2

(539) + (524)

〈3, 4〉
C1 + C2

(576) + (537)

Figure 11: Extracted curve skeletons of a helicopter with various parameters.

Original object
(105 933)

〈4, 5〉
C1 + C2

(1 131) + (861)

de
C1 + C2

(1 153) + (818)

Figure 12: Extracted curve skeletons of a dragon with various parameters.
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Original object
(212 639)

d14
C1 + C2

(283) + (145)

de
C1 + C2

(121) + (121)

Figure 13: Extracted curve skeletons of an object with various parameters. In
the right figure, the C1- and C2-skeletons are coincide with each other since no
C2-endpoint was detected.

of skeletonization algorithms (see for example [6, 10, 18, 25]), due to the lack of
definition of the “true skeleton” for a discrete object, a widely accepted approach
evaluating the goodness of skeletonization algorithms is yet absent [16].

Future research should be devoted to constructing similar distance-based al-
gorithms combined with parallel thinning strategies and adapting the presented
results to the face-centered cubic grid [21].
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