
Acta Cybernetica 25 (2021) 285–306.

Taxonomy for The Trade-off Problem in

Distributed Telemedicine Systems∗

Zoltán Richárd Jánkiab and Vilmos Bilickiac

Abstract

Web systems are facing a great challenge because of the increasing amounts
of data and demand for features. By meeting these requirements, distributed
systems have gained ground, but they bring their own problems as well. These
issues are present in telemedicine. Since telemedicine is a wide field, various
phenomena have different effects on the data. Availability and consistency
play important roles in telemedicine, but since the CAP and PACELC theo-
rems describe the trade-off problem, no one can guarantee both capabilities
simultaneously. Our study seeks to get an in-depth view of the problem
by considering real world telemedicine use-cases and we present an easily
tuneable system with a taxonomy that assists the design of telemedicine sys-
tems. Model checking verifies the correctness of our model and data quality
measurements. During the evaluation, we found interesting states and the
consequence of this is called hypothetical-zero-latency.

Keywords: taxonomy, data quality, cache, trade-off, telemedicine, distributed
system

1 Introduction

Telemedicine is one of the areas of healthcare that is developing quickly and it is
finding a place in modern medicine. The number of electronic healthcare records
(EHR) is not only growing rapidly, but it raises several Information Technology (IT)
issues as well. In the past decades, several theoretical and practical IT solutions
have eased the continuously arising problems, like standardizations, systems, tools
and cloud solutions. Naturally, new solutions should address new issues, so it is a
neverending story [8].

Installing standardization can markedly influence the behaviour of a system.
In Telemedicine, the well-known Health Level Seven’s (HL7) Fast Healthcare In-
teroperability Resources (FHIR) specification [13] is a widely accepted and used

∗This research was supported by the EU-funded Hungarian grant EFOP-3.6.1-16-2016-00008
and it was also supported by the 2018-1.1.1-MKI-2018-00249 project and the Dericom Ltd.

aDepartment of Software Engineering, University of Szeged, Hungary
bE-mail: jankiz@inf.u-szeged.hu, ORCID: 0000-0003-1829-5663
cE-mail: bilickiv@inf.u-szeged.hu, ORCID: 0000-0002-7793-2661

DOI: 10.14232/actacyb.290352

286 Zoltán Richárd Jánki and Vilmos Bilicki

standard that was elaborated for exchanging healthcare information electronically.
It provides a loose data model for developers that describes the different entities of
healthcare well. In telemedicine, not just the data model can be standardized, but
also the communication among the services.

As the size of the databases - containing EHRs - is growing quickly, telemedi-
cine systems are continuously developing. Moreover, there is a significant number
of computing tasks in healthcare that require a variety of resources. Most of the
interconnected telemedicine applications are Web-based and in many cases, the
backbone is a distributed system. In most of telemedicine use-cases, data paths
between endpoints are complex, so simple client-server architectures are very un-
common today. A complex data path contains plenty of servers, caches, compu-
tational units that make aggregations on data and serve readily available services.
So, system logic and data storages are scattered and systems consist of most than
just a thin client and a monolithic server. Recent mobile end devices have unused
resources, but computing tasks are resource-intensive processes. However, there are
privacy concerns regarding data storages. In many cases, regulations do not allow
us to keep patient data in remote data centers. Thus, in telehealth, fog computing
is becoming more and more popular. In fog computing, computation tasks are
outsourced to edge devices in order to keep data as close to the source as possible.
Kraemer et al. introduced use-cases in [17], and how complex data paths can be
created.

Sometimes applying fog computing is not necessary or not feasible, but closeness
of data is essential because of huge communicational distances. Long data paths
can lead to noticeable delays. In order to minimize latency between clients and
servers, caches can be placed on data paths. Content Delivery Networks (CDN)
form the so-called transparent backbone of Internet in charge of content delivery.
As they effectively shorten physical distances, latencies are reduced. CDN stores
a cached version of content at different geographical locations in order to make it
available for many different locations far away from each other. CDNs are not only
used in industry sectors, but also in telemedecine [10].

Besides the advantages of distributed systems, there are some disadvantages as
well. Eric Brewer states that there are no distributed systems that can guarantee
at most two of the three desirable properties: consistency (C), availability (A) and
partition-tolerance (P) [6]. It is hard to find the right balance among the properties
mentioned in the CAP theorem. In our recent paper [15], we presented a system
model that provides an approach to resolving the consistency and availability trade-
off problem of distributed systems. We examined the data path of one telemedicine
use-case and checked all the possible states in order to ascertain where we can use
caches and how we must configure them in order to guarantee a strong consistency
level. This paper completes our previous work with a taxonomy that classifies
telemedicine use-cases by considering the offline status where real-world examples
and data paths are attached to the groups. Based on the strength of measured
consistency, we also calculated the quality of data and the model checking produced
an interesting phenomenon of distributed systems.

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 287

2 Related work

There are big challenges in many countries on account of the aging population and
the rise in chronic diseases while trying to reduce costs, but maintain high-quality
care for patients. Fortunately, telemedicine can reduce the burden on nurses and
practitioners. The number and variety of telemedicine applications is continuously
increasing and finding uses. In 2020, in Hungary, the legislative options of telecon-
sultation was initiated in healthcare [14].

One of the most important requirements is integrability when designing a te-
lemedicine system. Standardized systems can readily exchange healthcare data
among themselves. HL7’s FHIR [13] is one of the most well-known standards that
improves system integrability. Although FHIR was designed for relational database
systems, it can be adapted to NoSQL database systems as well.

Choosing the most appropriate database system for a project is a big challenge.
We have to take into account the fact that cloud solutions are widespread, and they
are used not just for common data storage and computing, but also in telemedicine
[25]. Clouds have enhanced the use of distributed systems, but they may introduce
several problems in spite of increasing data and transactional throughput and plac-
ing data near clients. Eric Brewer’s CAP theorem clearly describes the limitations
of such a system, but it does not constrain the capabilities of a system. Daniel
J. Abadi introduced the so-called PACELC theorem [1], which is an extension of
CAP. PACELC states that in the case of network partitioning (P), a trade-off has
to be made between availability (A) and consistency (C), but else (E), when the
system is running normally in the absence of partitions, another trade-off has to be
made between latency (L) and consistency (C). Since telemedicine is diverse, it is
not trivial to find the proper balance between the capabilities when designing a sys-
tem. Thus, an appropriate taxonomy can help designers to develop a telemedicine
system that most effectively meets all functional and non-functional requirements.

Peter Bailis et al. presented the Probabilistically Bounded Staleness (PBS)
method [2] that shows how much time has to elapse for eventual consistency in
quorum-replicated data stores like Apache Cassandra. In their study, t-visibility
and k -staleness metrics describe the trade-off between availability and consistency,
and the WARS model represents latency. Their results were obtained by Monte
Carlo simulations and good approximations can be achieved. Although these met-
rics describe the problem very well, the results could be more accurate if a formal
system model was developed and the entire graph space was analyzed.

Furthermore, Microsoft designed Azure Cosmos DB as a tuneable database sys-
tem with 5 consistency levels starting from strong to eventual [22]. They elaborated
a system specification using the Temporal Logic of Actions (TLA) and its TLA+
formal language, and evaluated their model using TLA Checker (TLC) [18]. Ama-
zon also created TLA+ specs about their systems [23]. TLA+ and TLC together
form a valuable toolkit because instead of making approximations, they construct
a state graph from the possible states that the checked system can go into and
make a graph traversal. We used the same toolkit for finding the proper trade-off
between availability and consistency in our telemedicine systems. Also, the whole

288 Zoltán Richárd Jánki and Vilmos Bilicki

state space is available after the execution of TLC, so every possible state can be
analyzed separately. However, TLA+ is not the only formal language that can
model a system in action. Maude [4][21] is another specification language and tool
for modelling distributed systems. Lots of tools were implemented that can work
with Maude and can be used for specific models. Since TLA+ and its toolbox is
always kept up-to-date and contains everything in one place, we decided to use
TLA+.

These studies focus on in-system behaviour, even though there are also ex-
ternal factors that can significantly influence the availability and consistency of
distributed systems. Quality of Service (QoS) gives the overall performance of a
service. Phumzile Malindi [20] collected the demanded requirements of network pa-
rameters after taking into account different telemedicine areas. These parameters
were throughput, delay, jitter and context. It was shown via simulations how a net-
work should be configured and which data compression guarantees better quality.
These parameters can help us to perform a more accurate and realistic state graph
analysis in a system.

Lastly, many studies investigated how latency affects different telemedicine ar-
eas [3][16], but only a few of them were concerned with consistency in telehealth.
Although Nekane Larburu et al. used delay and consistency parameters for Quality
of Data (QoD) measurements in a Clinical Decision Support System (CDSS) [19],
they did not use metrics to measure the consistency of the MobiGuide system. We
made metric-based evaluations in a telemedicine system that shows how latency
affects both consistency and data quality.

3 Our results

In our paper, we explain the following results in distributed telemedicine systems.

• Here, a new methodology for modelling information critical heterogenous sys-
tems: we stated formal definitions of processes in complex distributed health-
care systems. Based on system model evaluations, we elaborate a taxonomy
that makes suggestions for particular telemedicine use-cases on how the data
path should be constructed.

• The verification of information critical systems and metrics: the implemented
system model is verified via a model checker that builts up a state graph
containing possible states of the system. We evaluate the whole state graphs
by comparing consistency among different states.

• New metrics for reliability of data: we present a distance-based metric for the
data quality measurement of numeric data portions in telemedicine systems.
Moreover, after evaluating state graphs of our system models, we will visualize
the trend of data quality during graph traversal.

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 289

4 Challenges

Creating telemedicine system specs raised a number of questions that we listed as
challenges. In this section, we will focus on the affected areas listed in Table 1.

Table 1: List of challenges in distributed telemedicine systems.

No. Challenge
1 Consistency measurement
2 Trade-off between availability and consistency
3 Offline states
4 QoS
5 QoD

4.1 Consistency measurement

Performing a consistency measurement is not a simple problem. First of all, one
needs to find proper metrics that describe consistency well. Furthermore, consis-
tency can be measured via simulations and model checking. Eventually, consistency
may vary due to the behaviour of external components. Our system specs and ver-
ifications are fine for using metrics of the PBS model with model checking and
also for taking into account external factors. Here, k -staleness is the parameter
for finely tuning the consistency of any part of the data path. A lower k value
guarantees stronger consistency. In this context, consistency can be defined as in
Definition 1.

Definition 1. Any read on a data item x returns a value corresponding to the
result of at most a k-version older write on x.

(xn ∈ X) ∧ (xn−k → xn)⇒ (xn−k ∈ X)

4.2 A trade-off between availability and consistency

Firstly, it is difficult to choose the best database system for a project and it is
almost impossible to find one that is universally acceptable. Since there are many
different areas in telemedicine, which database system is the best choice depends on
the context. Recently, most of the telemedicine systems use some kind of cloud so-
lution and they are based on distributed systems, hence as the CAP and PACELC
theorems state, a trade-off between availability and consistency has to be made.
It is not clear which outcome of trade-off is the best, because it is always con-
text dependent, especially in telemedicine. One solution is the so-called polyglot

290 Zoltán Richárd Jánki and Vilmos Bilicki

persistence where we use multiple data storage technologies and they are varied ac-
cording to needs across an application. Categorizations for database systems using
the PACELC theorem [9] have been published. For this purpose, we created a Soft-
ware Development Kit (SDK) in which database systems are easily interchangeable
across an application. Furthermore, we modelled and verified a system in which
trade-off is easily tuneable with a k -staleness parameter.

4.3 Offline states

Secondly, any part of a system can go in an offline state. Offline state in telemedicine
means that the client application or the server-side is not available at a given time.
It is also possible that both of them are out of operation. The offline state and
availability are closely related, since offline status can lower availability. However, it
can be related to partitioning depending on the telemedicine use-case. In case of a
system that is designed for general practitioners for daily usage, partitioning cannot
cause problems because only one entity writes data in the system. On the other
hand, in a remote otolaryngological system, when a general practitioner and more
than one specialist can make diagnosis, partitioning can cause problems. In case
of partitioning, consistency can be eventually guaranteed, but the system operates
continuously. In order to keep availability at a high level, we recommend placing
content delivery networks (CDN) and caches on the data path. Although caches
assist availability, consistency must be abandoned. In our system model, we placed
caches on the data path and configured it with a staleness parameter in order to
get a high consistency level.

4.4 Quality of Service

QoS is a challenge in telemedicine systems that affects mainly realtime services.
Teleconsultation and telesurgery are the two most common areas of realtime te-
lemedicine. However, there are services in these categories, but they also require
realtime communication. There is a close connection between QoS parameters and
networking, and network configuration can improve QoS. These configurations can
be implemented in the patient’s home and in the clinic as well.

4.5 Quality of Data

The QoD measurement is another context dependent concept. Its application
greatly depends on the type of dataset and the goal of data usage. In teleme-
dicine systems, the most rapidly changing data portions are numeric data sets.
QoD calculations usually contain an aggregation of distance function results that
describe inconsistencies between the real-world phenomena and the data obtained
from resources. Latency can be found everywhere in a system as a variable and it
strongly affects data quality. Hinrichs’ Definition 2 describes what QoD means in
our context, in which xdb represents data stored in a database and xreal stands for
real-world data at a given t point [19]. We took measurements on the data quality

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 291

and learned how data can be corrupted due to latency and multiple data-process
instances.

Definition 2.

Q(x) :=


1

d(xdb, xreal) + 1
, if xdb 6= xreal

1, otherwise

5 Telemedicine use-cases

We examined data paths in active telemedicine projects to see whether the offline
status is allowed or not. Offline capability is important because it can efficiently
improve availability even when consistency worses. However, in our recent paper
[15], we showed that consistency level can also be increased if we set constraints
on the maximal staleness of the data. There, we introduced our modelling ap-
proach and constructed the first formal definitions of the core processes in a dis-
tributed telemedicine system. It was also shown how the metrics are used during
the model checking, and how the results can be evaluated. In that study, we pro-
posed what benefits and drawbacks can arise from using lower k parameter, but
in a smaller state graph. In Table 2, we list some real telemedicine scenarios with
their availability and consistency requirements. Mainly, these use-cases determine
the development of our taxonomy. Figure 1 shows a schematic illustration of these
telemedicine scenarios.

Table 2: Real telemedicine use-cases with a trade-off

Telemedicine use-case Availability Consistency
Offline status

enabled
Teleconsultation

with remote monitoring
X

Da Vinci surgery X
Remote diagnostic
in otolaryngology

X X

Remote monitoring
in ICU

X X

Remote monitoring
in CAPD

X X

Remote monitoring
in spirometry

X X

292 Zoltán Richárd Jánki and Vilmos Bilicki

Video

Teleconsultation
with remote monitoring

Da Vinci
surgery

Remote diagnostic
in otolaryngology

Remote
monitoring

in ICU

Remote
monitoring
in CAPD

Remote
monitoring

in spirometry

Figure 1: Data paths in real telemedicine use-cases

5.1 Teleconsultation with remote monitoring

In this use-case, a video conference is set up between a patient and doctor while
the remote monitoring of vital signs is being performed. Both video chat and
monitoring are carried out in realtime, and due to this the need for consistency
overrides availability. Since consistency is crucial here, the system does not include
caches. Sometimes raw data can be aggregated (e.g.: ECG signal processing)
and this can cause inconsistencies for a short time irrespective of the consistency
configurations.

5.2 Da Vinci surgery

Da Vinci surgery is one of the most well-known telesurgery methods that is used
in several surgical procedures. The operation is carried out by a specialist, who
controls a robot remotely while the patient’s vital signs are monitored remotely.
As a surgical procedure also occurs in realtime, consistency is preferred over avail-
ability. Caching is disabled in order not to lose a high consistency level. Some
aggregations may also occur in the cloud, and this can lead to inconsistent states

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 293

for a certain period. QoS is very important in telesurgery, because high latency
can make a surgical procedure unstable. A stable network connection, minimized
jitter and delay are all necessary for this.

5.3 Remote diagnostic in otolaryngology

One of our telemedicine projects that was supported by the European Union (EU)
is the development of a remote diagnostic system in otolaryngology [5]. Patients
visit their general practitioner, who does not hospitalize patients, but takes photos
and records a video of body areas of patients. After uploading images and videos, a
referral is forwarded to a medical specialist who makes a diagnostic report based on
the received frames. There are no realtime communications between two doctors,
and no recent updates can be found in the data path, so availability has a higher
priority than consistency. Eventual consistency is sufficient in this system, so we
can further improve availability with caches. Also, there is no possibility of staleness
in the data.

5.4 Remote monitoring in ICU

The Intensive Care Unit (ICU) is a department of a hospital that provides intensive
care medicine to patients with life-threatening illnesses. Here, continuous remote
monitoring is essential and often decisions have to be made in seconds. Thus
consistency is more important than availability. However, availability also plays an
important role, because in an offline state, the last visible record may be decisive.
For this purpose, caches can be placed on data paths, but they have to be configured
with low k parameter values in order to get up-to-date data.

5.5 Remote monitoring in CAPD

Continuous Ambulatory Peritoneal Dialysis (CAPD) is another EU-financed tele-
medicine project [5] and its system is maintained by us. This service monitors
the patient’s dialysis fluid intake and outcome. In addition, blood pressure and
weight are measured, but the time elapsed between measurements may be several
hours. In this case, eventual consistency is also acceptable, so availability has the
highest priority. Since there are no rapid changes (rapid requests) in the data sets,
inconsistency can never really occur, so caches can be configured with the higher
k parameter values. The decision support system generates alerts if the patient’s
measured values are over or under a given threshold. Due to the offline state, a
possible alert may be missed.

5.6 Remote monitoring in spirometry

Next, spirometry remote monitoring system is a quite similar EU-financed teleme-
dicine project [5]. Patients have medical tests at home and this gives data on the

294 Zoltán Richárd Jánki and Vilmos Bilicki

volume of air being inhaled or exhaled as a function of time. Raw data leaves it us-
ing a spirometer and it is sent to a mobile device via a Bluetooth connection. Tests
are repeated 3 times in one measurement. The mobile device sends raw data to
the cloud that makes the following aggregations: FEV1, FVC, PEF, MMEF2575,
FEV1/FVC. A pulmonologist is interested in the best aggregated values from 3
tests. A pulmonological evaluation may take place a few hours later, so eventual
consistency is appropriate. However, QoD can present interesting phenomena, since
tests are performed in seconds, hence raw data is periodically transmitted to the
cloud frequently. Here, cloud computing works as a trigger, so due to the dis-
tribution, each event starts a new server instance. The events may be processed
simultaneously, so the cloud cannot guarantee any ordering of events [11]. This
occurrence may lead to inconsistencies that need to be resolved.

6 Our modelling approach

6.1 System model

In this section, we introduce our system spec that is suitable for measuring con-
sistency under different circumstances and it is also capable for finding rare or
near-impossible phenomena in a system. Definition 3 shows formal definitions of
basic operations and data sets that we have evaluated after executions. ClientData
is for the data set that the client started to upload to the database. DBData rep-
resents the actual status of database, while ProcData contains data obtained after
aggregation. We used a tuple data structure in order to make database instances
comparable. Definitions 4, 5 and 6 formally describes processes of our measuring
system. Client writes (CW) raw data received from devices or sensors. CW has two
possible outcomes, namely a write action if the threshold of the allowed maximum
number of operations (MaxNumOp) is not exceeded and the system terminates.
This is a limitation in the system model used to examine a finite set of possible
states of system.

Definition 3.

ClientData := ({xm, opm}, . . . , {x1, op1}) (1)

DBData := ({yn, opn}, . . . , {y1, op1}) (2)

ProcData := ({zl, opl}, . . . , {z1, op1}) (3)

ClientWrite(x) := {xi, opi} ◦ ClientData (4)

DBWrite(y) := {yj , opj} ◦DBData (5)

ProcWrite(z) := {zk, opk} ◦ ProcData (6)

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 295

Definition 4.

CW (x) :=

{
ClientWrite(x) if (numOp < MaxNumOp)

Termination, otherwise

Definition 5.

DBW (x) :=

{
DBWrite(x) if (len ClientData > len DBData)

Waiting, otherwise

Definition 6.

DBPROC(x) :=

{
ProcWrite(x) if (len DBData > len ProcData)

Waiting, otherwise

DBW and DBPROC processes work like triggers that are waiting for changes
in data sets, thus unnecessary process execution cannot take place. DBW describes
the process of persistence and DBPROC is responsible for data aggregation. After
the mathematical definitions, we included TLA+ spec parts as well that can be seen
in figures 2, 3 and 4. Since our model describes a distributed telemedicine system,
we can have database replicas and multiple computational units. Processes are
defined for group of instances, but in order to identify which instance is working
currently, different identifiers are assigned to the replicas and server instances. Since
only 1 client is present, it is identifed with the id 10 (pc[10]). In the DBW and
DBPROC definitions, pc[self] means that the model checker must substitute the
proper identifier of the instance for the running process. The client just simply
pushes the data until the number of write operations does not reach the threshold.
Otherwise, the simulation terminates. If a new data is inserted to the database,
it is stored in a list (ClientRawData), and operation identifier is assigned to this
element. DBW and DBPROC processes check whether new data has arrived, and
if so, makes the persistence and the aggregation.

6.2 The consistency measurement technique

After recalling the CAP and PACELC theorems, the measuring consistency may
be the trickiest one of the measurement of 3 desirable capabilities. In order to make
a property observable, we have to find proper metrics that describe it. Peter Bailis
et al. introduced the PBS method for availability and consistency measurements.
It is based-on k and t parameters that denote staleness and visibility values. Using
these parameters, they made approximations of the availability and consistency of a
quorum-based database system. The Azure Cosmos DB TLA+ system specification
told us consistency can be measured not just under a simulation, but also with

296 Zoltán Richárd Jánki and Vilmos Bilicki

CW
∆
= ∧ pc[10] = “CW”
∧ if (numOp < MaxNumOp)

then ∧ numOp′ = numOp + 1
∧ finalData ′ = finalData + 1
∧ ClientRawData ′ = 〈[d 7→ finalData ′, op 7→ numOp′]〉 ◦ ClientRawData
∧ pc′ = [pc except ! [10] = “CW”]

else ∧ pc′ = [pc except ! [10] = “Done”]
∧ unchanged 〈finalData, ClientRawData, numOp〉

∧ unchanged 〈readData, dbLat , calcLat , DbRawData, DbProcData,
lenClientRawData, lenDbRawData, latRead , latWrite,
latProc〉

1

Figure 2: The CW definition in TLA+

DB W (self)
∆
= ∧ pc[self] = “DB W”

∧ if (Len(ClientRawData) > lenClientRawData)
then ∧ lenClientRawData ′ = Len(ClientRawData)

∧ pc′ = [pc except ! [self] = “DB W LAT”]
else ∧ pc′ = [pc except ! [self] = “DB W”]

∧ unchanged lenClientRawData
∧ unchanged 〈finalData, readData, dbLat , calcLat ,

ClientRawData, DbRawData, DbProcData,
lenDbRawData, numOp, latRead , latWrite, latProc〉

1

Figure 3: The DBW definition in TLA+

DB PROC (self)
∆
= ∧ pc[self] = “DB PROC”

∧ if (Len(DbRawData) > lenDbRawData)
then ∧ lenDbRawData ′ = Len(DbRawData)

∧ pc′ = [pc except ! [self] = “DB PROC LAT”]
else ∧ pc′ = [pc except ! [self] = “DB PROC”]

∧ unchanged lenDbRawData
∧ unchanged 〈finalData, readData, dbLat , calcLat ,

ClientRawData, DbRawData, DbProcData,
lenClientRawData, numOp, latRead , latWrite,
latProc〉

1

Figure 4: The DBPROC definition in TLA+

logical modelling. Based on these techniques, we elaborated a system specification
that combines logical modelling with the k -staleness metric. In our short paper [15],

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 297

we evaluated our model and examined how latency affects consistency. We showed
that we can have inconsistent states if latency exists, but with the k -staleness
parameter, we can configure caches on the data path and improve both availability
and consistency.

Firstly, we reworked our spec and checked how the consistency level decreases
when we have multiple server instances. Secondly, we extended our processes by
following the above-mentioned telemedicine use-cases and we were able to measure
data quality.

6.3 The QoD measurement technique

After investigating several QoD studies, we opted for a basic distance function -
shown in Equation 7 - for data quality measurements [12], and which is suitable for
numeric data sets.

d(wdb, wreal) := |wdb − wreal| (7)

We substituted the distance function into Hinrichs correctness metric formula
- stated in Equation 8 - and calculated it for each value pairs. Here, wdb stands
for the value stored in the database and wreal denotes the real-world value. This
metric is suitable for observing the correct order and it is vital for consistency.

Qcorr.(wdb, wreal) :=
1

d(wdb, wreal) + 1
(8)

7 The simulation environment

Figure 5 shows our system spec. We modelled a client that collects data from a
Bluetooth device used in telemedicine systems. The raw data obtained is uploaded
to the cloud and it remains there. Computational processes are triggered when
data is stored and it is aggregated as we did in spirometry with FEV1, PEF and
other parameters. After the evaluation is over, the computed data is stored in a
database that is needed by a doctor. This environment covers all of our scenarios
listed in Section 5.

Each instance was defined as a process in our TLA+ spec, so we created 3
process definitions like the client, database and computational unit, and various
latency values were attached to the database and computational operations. Sensor
and cache were not modelled as processes because they do not contain logic in this
specification.

In order to evaluate the state graph, the model checker must be terminated
somewhere. We limited the maximum number of client write operations (MaxNu-
mOp) to 10 because model checking produces millions of states and it is rapidly
growing when the number of operations are increasing. Latency values present the
number of states in the graph that a process must wait after starting a request
and before getting a response in case of a client or passing back data in case of a

298 Zoltán Richárd Jánki and Vilmos Bilicki

Client Database Computational
processSensor

dispatch(data)

send(data)

send(data)

Cache

return(data)

request() request()

return(data)return(data)

request()

return(data)

Figure 5: The simulation environment

database or a computational unit. The model checker produce a state graph about
what possible states a system has and what values the variables contain at a given
state. Latency values were chosen from the [0 − 3] interval for the client and the
servers and [0 − 1] interval for the cache. Thus, when a client has a latency value
2, after starting the request, it will wait until 2 new states are not present in the
state graph that was produced by itself. As it is presented in [24], there are huge
differences among different computer actions. During our simulation only Central
Processing Unit (CPU) and Random Access Memory (RAM) are used, and the
RAM access takes the most of the time in the calculation of a new state in the
graph. So, a new state can be generated within 100 nanoseconds. The significant
amount of latency is occurred by the network. It is also known that a network con-
nection is almost 10 000 000 times slower than accessing the RAM [7], so increasing
the latency by 1 means approximately 100 milliseconds delay in our simulation en-
vironment. A delay between 0 and 300 milliseconds can be valid for a client and a
server, but data can be retrieved faster from a cache (e.g. a CDN).

The TLC Model Checker produced more than 20 million states and our dot
graph file was about 10 GB. There is no available tool that can visualize such
huge dot files, but we implemented a transformation script that created a JSON
structured file from a raw dot file with an 50% reduction in the file size. Since the
original dot files that were produced by TLC contain all the variables and their

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 299

values for every states, a small modification of the model or a tiny extension of the
examined variable intervals can lead to huge file size growth. Our compression script
not just transformed the dot format to JSON, but also removed those variables
and their values that were unnecessary for the analysis. Also, the lines about
transition information were removed because they do not carry information about
the variables. The generated dot state identifiers were changed to numbers starting
from 0 and incremented by 1 at each new state. Both consistency and data quality
evaluations were carried out on the same state graphs with the Python Pandas
library.

8 Evaluations

8.1 Consistency results

Earlier we observed that the k -staleness parameter works well in caches, so both
availability and consistency can be improved using this technique. Our model
checking procedure constructed state graphs that showed how latency affects the
consistency level and data set. In order to increase the availability, we tested
our environment using cache and the data retrieved from cache was compared to
the data that is present in the database. Here, the cache was configured with
k -staleness parameter. We modelled multiple database and computational unit
instances in order to have a realistic distributed system model. Table 3 shows how
latency affects the consistency while varying k values. Here, latency steps are taken
in 100 milliseconds as described in Section 7.

Table 3: Consistency evaluation in client-server interaction with given k -staleness
parameter values

Latency k = 0 k = 1 k = 2 k = 3
0 unit 92.84% 83.86% 80.47% 78.89%
1 unit 86.67% 79.69% 75.12% 72.46%

We found that if k parameter value is 0, consistency can almost get 100%, but
latency can cause drastic decline. Increasing k by one makes approximately 5%
reduction in consistency level.

8.2 Data quality results

Besides consistency measurements, we tested data quality on the whole state graph.
We learned that through graph traversal the data quality starts to decline. During
our evaluations, we found how data quality changes in client-server and server-
server interactions.

300 Zoltán Richárd Jánki and Vilmos Bilicki

In the case of client-server communication, we can guarantee a data quality
above 90% if we add a restriction on data staleness with k = 0 value. Of course,
increasing latency reduces QoD, but a cache with lower k value can gain not only
the availability of such a system, but also the quality (even with 10%). Lower the
k value, higher consistency and data quality can be guaranteed as shown in Table
4. Latency steps are taken in 100 milliseconds.

Table 4: QoD evaluation in client-server interaction with given k -staleness param-
eter values

Latency k = 0 k = 1 k = 2 k = 3
0 unit 95.47% 89.47% 87.52% 84.63%
1 unit 91.58% 87.13% 84.14% 81.24%

In the case of server-server interaction, we realized that latency can destroy,
and also improve data quality in server-server interactions. As the matrix in Fig-
ure 6 shows, travelling horizontally and increasing the latency of computational
processes, QoD may be reduced, but going vertically down and enlarging the la-
tency of persistence, we can see a change for the better. And, the highest data
quality level can be achieved in the 3− 3 units position. If we assume that in case
of telesurgery, an aggregated heart rate value is provided in every 5 seconds, and
every fifth calculation result differs by 1 from the correct one, the QoD value is
only 90, 08% at the end of a one-hour long term. If the difference in every fifth
aggregation is 2, the QoD is only 86, 78%. Although these are small differences in
aggregations, and they do not have significant effects from the patient’s point of
view, the QoD values are much lower than the ones that our simulations produced.
Of course, data quality can be further improved if we add more latency units to
the model.

DB\Comp 0 unit 1 unit 2 units 3 units

0 unit 98.96% 99.16% 99.16% 99.14%

1 unit 99.29% 99.44% 99.45% 99.46%

2 units 99.42% 99.55% 99.56% 99.58%

3 units 99.52% 99.64% 99.65% 99.67%

Figure 6: Consistency changes with a latency increase

While evaluating data quality values, we realized some interesting states in the
graph.

If we assume that - in a perfect world - there is no latency anywhere, we still
cannot guarantee in a distributed system that the data quality will be 100%.

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 301

If no latency exists in a world, then raw data comes from client quasi simulta-
neously. Since there is only one client who uploads data, there is a known correct
order of data, but they arrive at the same time as the computation process. Thus,
in distributed systems perhaps more than one process will be started at the same
time, and there is no guarantee about which raw data part will be skipped by them.
We called this phenomenon hypothetical-zero-latency.

Based on these results, we constructed a taxonomy for distributed telemedicine
systems.

9 Taxonomy for the trade-off problem

During our previous studies in telemedicine, we encountered various classifications
of telemedicine services. To our knowledge, there are no categorization in teleme-
dicine that can be applied for measuring availability and consistency in distributed
telemedicine systems.

We elaborated a taxonomy that focuses on this trade-off problem and classifies
telemedicine use-cases by considering the requirements for availability and consis-
tency. Taxonomy breaks down telemedicine areas starting with offline capability
of systems and the degree of staleness in data. Based on these categories, we can
make evaluations in different use-cases and make suggestions for system developers
on how to solve the trade-off problem stated in the CAP and PACELC theorems.
Our classification scheme is presented in Table 5.

Table 5: Trade-off taxonomy

Use-case category
Possibility
of staleness

Recommendation
for system selection

Non-offline telemedicine
No PC/EL without cache
Yes PC/EC without cache

Semi-offline telemedicine
No

PC/EL with cache
higher k -staleness parameter

Yes
PC/EL with cache

lower k -staleness parameter

Offline telemedicine
No

PA/EL with cache
higher k -staleness parameter

Yes
PA/EL with cache

higher k -staleness parameter

If the offline status is not enabled but staleness of data occurs (however, this
is rare), we recommend using a PC/EL database system and avoid using caches.
Consistency is really important in such situation and teleconsultation use-cases are
mainly in this category, so availability plays an important role. As regards non-
offline telemedicine, if staleness is likely to occur, PC/EC systems are suggested,

302 Zoltán Richárd Jánki and Vilmos Bilicki

because strong consistency is required. Telesurgery use-cases cover this class. Going
forward, for the semi-offline category, PC/EL systems are the recommended ones
with parameterized caches. Such telemedicine services can go into an offline state
and they are occasionally realtime. An offline state is not a problem, if a high level
of availability is guaranteed. Lastly, in offline telemedicine longer offline periods
are permitted, but caches are highly recommended in order to prevent a reduction
in availability, so PA/EL systems are recommended here. Figures 7, 8, 9, 10, 11, 12
show the formal definitions of the system that applies this classification. If the data
is available, it is stored with the given system configurations. Hence, a polyglot
persistence can be performed, and telemedicine applications can be served with
the most optimal settings. NO NS and NO S denotes the non-offline telemedicine
cases with and without possible data staleness. In these classes caches are disabled
on the data path because consistency is preferred. SO NS and SO S are the semi-
offline cases when caching is allowed and k -staleness parameters are configured as
the taxonomy states because high availability is important, but a high consistency
level is also needed and it can be guaranteed with a lower k parameter value. Lastly,
O NS and O S classes permit an offline status with relatively high k -staleness
parameter values because availability is preferred to consistency.

NO NS (self)
∆
= ∧ pc[self] = “NO NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “NO NS”]
∧ unchanged 〈db type, dbData, Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = false
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, K , num op, data, lat proc,
d〉

NO S (self)
∆
= ∧ pc[self] = “NO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “NO S”]
∧ unchanged 〈db type, dbData, Cache〉

else ∧ db type ′ = “PC/EC”
∧ Cache ′ = false
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, K , num op, data, lat proc,
d〉

SO NS (self)
∆
= ∧ pc[self] = “SO NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO NS”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = true
∧K ′ = 3
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

SO S (self)
∆
= ∧ pc[self] = “SO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO S”]

1

Figure 7: Formal definition of the process from the NO NS class

10 Conclusions

In our research, we found that the trade-off problem - presented in the CAP and
PACELC theorems - can have significant effects in different telemedicine use-cases.
Related works described the consequences of having an inappropriate balance be-
tween availability and consistency. Our experiences in real-world telemedicine sce-
narios helped us to demonstrate how our system can be easily tuned and adapted
under different circumstances. We introduced a new methodology for modelling
information critical heterogenous systems, and verified these systems and metrics
by constructing state graphs and evaluating them via graph traversal. Moreover,

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 303

NO NS (self)
∆
= ∧ pc[self] = “NO NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “NO NS”]
∧ unchanged 〈db type, dbData, Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = false
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, K , num op, data, lat proc,
d〉

NO S (self)
∆
= ∧ pc[self] = “NO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “NO S”]
∧ unchanged 〈db type, dbData, Cache〉

else ∧ db type ′ = “PC/EC”
∧ Cache ′ = false
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, K , num op, data, lat proc,
d〉

SO NS (self)
∆
= ∧ pc[self] = “SO NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO NS”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = true
∧K ′ = 3
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

SO S (self)
∆
= ∧ pc[self] = “SO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO S”]

1

Figure 8: Formal definition of the process from the NO S class

NO NS (self)
∆
= ∧ pc[self] = “NO NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “NO NS”]
∧ unchanged 〈db type, dbData, Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = false
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, K , num op, data, lat proc,
d〉

NO S (self)
∆
= ∧ pc[self] = “NO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “NO S”]
∧ unchanged 〈db type, dbData, Cache〉

else ∧ db type ′ = “PC/EC”
∧ Cache ′ = false
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, K , num op, data, lat proc,
d〉

SO NS (self)
∆
= ∧ pc[self] = “SO NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO NS”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = true
∧K ′ = 3
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

SO S (self)
∆
= ∧ pc[self] = “SO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO S”]

1

Figure 9: Formal definition of the process from the SO NS class

SO S (self)
∆
= ∧ pc[self] = “SO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO S”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = true
∧K ′ = 0
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

O NS (self)
∆
= ∧ pc[self] = “O NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “O NS”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PA/EL”
∧ Cache ′ = true
∧K ′ = 5
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

O S (self)
∆
= ∧ pc[self] = “O S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “O S”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PA/EL”
∧ Cache ′ = true
∧K ′ = 3
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

db(self)
∆
= DB(self) ∨NO NS (self) ∨NO S (self) ∨ SO NS (self)

∨ SO S (self) ∨O NS (self) ∨O S (self)

Allow infinite stuttering to prevent deadlock on termination.

1

Figure 10: Formal definition of the process from the SO S class

we presented a distance-based metric for the data quality measurement of numeric
data portions in telemedicine systems. Since the mentioned use-cases are real tele-

304 Zoltán Richárd Jánki and Vilmos Bilicki

SO S (self)
∆
= ∧ pc[self] = “SO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO S”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = true
∧K ′ = 0
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

O NS (self)
∆
= ∧ pc[self] = “O NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “O NS”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PA/EL”
∧ Cache ′ = true
∧K ′ = 5
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

O S (self)
∆
= ∧ pc[self] = “O S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “O S”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PA/EL”
∧ Cache ′ = true
∧K ′ = 3
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

db(self)
∆
= DB(self) ∨NO NS (self) ∨NO S (self) ∨ SO NS (self)

∨ SO S (self) ∨O NS (self) ∨O S (self)

Allow infinite stuttering to prevent deadlock on termination.

1

Figure 11: Formal definition of the process from the O NS class

SO S (self)
∆
= ∧ pc[self] = “SO S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “SO S”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = true
∧K ′ = 0
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

O NS (self)
∆
= ∧ pc[self] = “O NS”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “O NS”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PA/EL”
∧ Cache ′ = true
∧K ′ = 5
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

O S (self)
∆
= ∧ pc[self] = “O S”
∧ if (lat db[self] < db latency)

then ∧ lat db′ = [lat db except ! [self] = lat db[self] + 1]
∧ pc′ = [pc except ! [self] = “O S”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PA/EL”
∧ Cache ′ = true
∧K ′ = 3
∧ dbData ′ = 〈[d 7→ (Head(clientData).d), type 7→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

db(self)
∆
= DB(self) ∨NO NS (self) ∨NO S (self) ∨ SO NS (self)

∨ SO S (self) ∨O NS (self) ∨O S (self)

Allow infinite stuttering to prevent deadlock on termination.

1

Figure 12: Formal definition of the process from the O S class

medicine systems as well, it is planned to make measurements during their project
pilots using event-based thechniques for tracking the applications and the servers.
System modelling and data quality measurements helped us to elaborate a tax-
onomy for distributed telemedicine systems based on the trade-off problem and
explore hypothetical-zero-latency phenomenon. In the future, we plan to extend
our current taxonomy, introduce more use-cases that can be categorized and exam-
ine hypothetical-zero-latency cases in greater detail.

References

[1] Abadi, Daniel. Consistency tradeoffs in modern distributed database system
design: CAP is only part of the story. IEEE Computer, 45:37–42, 2012. DOI:
10.1109/MC.2012.33.

[2] Bailis, Peter, Venkataraman, Shivaram, Franklin, Michael, Hellerstein, Joseph,

Taxonomy for The Trade-off Problem in Distributed Telemedicine Systems 305

and Stoica, Ion. Probabilistically bounded staleness for practical partial quo-
rums. Proceedings of the VLDB Endowment, 5, 2012. DOI: 10.14778/

2212351.2212359.

[3] Bhandari, Sabin, Sharma, Shree Krishna, and Wang, Xianbin. Latency min-
imization in wireless IoT using prioritized channel access and data aggrega-
tion. In GLOBECOM 2017 — 2017 IEEE Global Communications Conference,
2017. DOI: 10.1109/GLOCOM.2017.8255038.

[4] Bobba, Rakesh, Grov, Jon, Gupta, Indranil, Liu, Si, Meseguer, Jose, Ölveczky,
Peter, and Skeirik, Stephen. Survivability: Design, Formal Modeling, and Val-
idation of Cloud Storage Systems Using Maude. In Assured Cloud Computing,
pages 10–48. Wiley, 2018. DOI: 10.1002/9781119428497.ch2.

[5] Boromisza, Piroska. A XVI. egészségügyi infokommunikációs konferenciáról
jelentjük. IME - Interdiszciplináris Magyar Egészségügy, 17:55–57, 2018.

[6] Brewer, Eric. CAP twelve years later: How the ”rules” have changed. Com-
puter, 45:23–29, 2012. DOI: 10.1109/MC.2012.37.

[7] F. Silva, Tiago. The good, the bad and the ugly in software development.
https://tiagodev.wordpress.com/tag/event-loop/. Accessed: 2021-03-
15.

[8] Gamal, Aya, Barakat, Sherif, and Rezk, Amira. Standardized electronic
health record data modeling and persistence: A comparative review. Jour-
nal of Biomedical Informatics, 114:103670, 2021. DOI: 10.1016/j.jbi.2020.

103670.

[9] Gessert, Felix, Wingerath, Wolfram, Friedrich, Steffen, and Ritter, Norbert.
NoSQL database systems: A survey and decision guidance. Computer Science
— Research and Development, 32:353–365, 2017. DOI: 10.1007/s00450-

016-0334-3.

[10] GlobalDots. https://www.globaldots.com/content-delivery-network-

explained. Accessed: 2020-09-29.

[11] Google. Extend cloud firestore with cloud functions. https://firebase.

google.com/docs/firestore/extend-with-functions. Accessed: 2020-09-
29.

[12] Heinrich, Bernd, Kaiser, Marcus, and Klier, Mathias. How to measure data
quality? — A metric based approach. In International Conference on Infor-
mation Systems, 2007.

[13] HL7. FHIR overview. https://www.hl7.org/fhir/overview.html. Ac-
cessed: 2020-09-25.

[14] Hungarian Government. Magyar közlöny, 2020. 157/2020. (IV. 29.), Accessed:
2020-09-25.

306 Zoltán Richárd Jánki and Vilmos Bilicki

[15] Jánki, Zoltán Richárd and Bilicki, Vilmos. Crosslayer cache for telemedicine.
In The 12th Conference of PhD Students in Computer Science, pages 159–163,
2020.

[16] Kibsgaard, Martin and Kraus, Martin. Measuring the latency of an aug-
mented reality system for robot-assisted minimally invasive surgery. In
Proceedings of the 12th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications — GRAPP,
(VISIGRAPP 2017), pages 321–326. INSTICC, SciTePress, 2017. DOI:
10.5220/0006274203210326.

[17] Kraemer, Frank, Bräten, Anders, Tamkittikhun, Nattachart, and Palma,
David. Fog computing in healthcare — A review and discussion. IEEE Access,
5:9206–9222, 2017. DOI: 10.1109/ACCESS.2017.2704100.

[18] Lamport, Leslie, Matthews, John, Tuttle, Mark, and Yu, Yuan. Specifying and
verifying systems with TLA+. In Proceedings of the 10th Workshop on ACM
SIGOPS European Workshop, EW 10, pages 45–48, New York, NY, USA, 2002.
Association for Computing Machinery. DOI: 10.1145/1133373.1133382.

[19] Larburu, Nekane, Bults, Richard, and Hermens, Hermie. Quality-of-data man-
agement for telemedicine systems. Procedia Computer Science, 63:451–458,
2015. DOI: 10.1016/j.procs.2015.08.367.

[20] Malindi, Phumzile. QoS in telemedicine. In Telemedicine Techniques and
Applications, 2011. DOI: 10.5772/20240.

[21] Maude. Maude overview. http://maude.cs.illinois.edu/w/index.php/

Maude_Overview. Accessed: 2020-09-28.

[22] Microsoft. What are consistency levels in Azure Cosmos DB? https://docs.

microsoft.com/en-gb/azure/cosmos-db/consistency-levels, 2020. Ac-
cessed: 2020-09-25.

[23] Newcombe, Chris, Rath, Tim, Zhang, Fan, Munteanu, Bogdan, Brooker,
Marc, and Deardeuff, Michael. Use of formal methods at Ama-
zon Web Services. https://lamport.azurewebsites.net/tla/formal-

methods-amazon.pdf, 2014. Accessed: 2020-09-25.

[24] Poli, John. Compute performance — Distance of data as a mea-
sure of latency. https://formulusblack.com/blog/compute-performance-
distance-of-data-as-a-measure-of-latency/. Accessed: 2021-03-15.

[25] Saini, Anjali and Yadav, P.K. Distributed system and its role in healthcare
system. International Journal of Computer Science and Mobile Computing,
4:302–308, 2015.

