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Domain Semirings United

Uli Fahrenberga, Christian Johansenb, Georg Struthc,
and Krzysztof Ziemiańskid

Abstract

Domain operations on semirings have been axiomatised in two different
ways: by a map from an additively idempotent semiring into a boolean sub-
algebra of the semiring bounded by the additive and multiplicative unit of
the semiring, or by an endofunction on a semiring that induces a distributive
lattice bounded by the two units as its image. This note presents classes of
semirings where these approaches coincide.
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1 Introduction

Domain semirings and Kleene algebras with domain [1, 2] yield particularly simple
program verification formalisms in the style of dynamic logics, algebras of predicate
transformers or boolean algebras with operators (which are all related).

There are two kinds of axiomatisation. Both are inspired by properties of the
domain operation on binary relations, but target other computationally interesting
models such as program traces or paths on digraphs as well.

The initial two-sorted axiomatisation [1] models the domain operation as a map
d : S → B from an additively idempotent semiring (S,+, ·, 0, 1) into a boolean
subalgebra B of S bounded by 0 and 1. This seems natural as domain elements
form powerset algebras in the target models mentioned. Yet the domain algebra B
cannot be chosen freely: B must be the maximal boolean subalgebra of S bounded
by 0 and 1 and equal to the set Sd of fixpoints of d in S.

The alternative, one-sorted axiomatisation [2] therefore models d as an endo-
function on a semiring S that induces a suitable domain algebra on Sd—yet gener-
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ally only a bounded distributive lattice. An antidomain (or domain complementa-
tion) operation is needed to obtain boolean domain algebras.

In the model of binary relations over a set X, + is set union and · relational
composition; 0 is the empty relation and 1 the identity relation. The domain of
relation R ⊆ X × X is d(R) = {(x, x) | ∃y. (x, y) ∈ R} while its antidomain
is a(R) = {(x, x) | ∀y. (x, y) /∈ R}. In the path model over a directed graph
σ, τ : E → V , the carrier set consists of all finite paths (v1, e1, v2, . . . , vn−1, en−1, vn)
in the graph in which vertices vi ∈ V and edges ei ∈ E alternate and are compatible
with the source map σ and target map τ . The operations + and 0 are again ∪ and
∅, respectively; 1 is V with elements v ∈ V seen as paths of length 1. Extending
σ and τ to paths as expected, composition π1;π2 of paths π1 and π2 is defined
if τ(π1) = σ(π2), and it then glues on this vertex. Path composition is lifted
to sets of paths as P ;Q = {π1;π2 | π1 ∈ P, π2 ∈ Q, τ(π1) = σ(π2)}. Finally
d(P ) = {σ(π) | π ∈ P} and a(P ) = {v | ∀π. σ(π) = v ⇒ π 6∈ P}. Other models can
be found in the literature.

This note revisits the two axiomatisations mentioned above to tie some loose
ends together. We describe a natural algebraic setting in which they coincide, and
which has so far been overlooked. It consists of additively idempotent semirings in
which the sets of all elements below 1 form boolean algebras, as is the case, for in-
stance, in boolean monoids and boolean quantales. We further take the opportunity
to discuss domain axioms for arbitrary quantales.

The restriction to such boolean settings has little impact on applications: most
models of interest are powerset algebras and hence (complete atomic) boolean alge-
bras anyway. Yet the coincidence itself does make a difference: one-sorted domain
semirings are easier to formalise in interactive proof assistants and apply in program
verification and correctness.

2 Domain Axioms for Semirings

First we recall the two axiomatisations of domain semirings and their relevant
properties. To distinguish them, we call the first class, introduced in [1], test dioids
with domain and the second one, introduced in [2], domain semirings.

We assume familiarity with posets, lattices and semirings. A dioid, in particular,
is an idempotent semiring (S,+, ·, 0, 1), that is, x + x = x holds for all x ∈ S. Its
additive monoid (S,+, 0) is then a semilattice ordered by x ≤ y ⇔ x + y = y and
with least element 0; multiplication preserves ≤ in both arguments. (We generally
omit the · for multiplication.)

We write S1 = {x ∈ S | x ≤ 1} for the set of subidentities in S and call S
bounded if it has a maximal element, >.

We call a dioid S full if S1 is a boolean algebra, bounded by 0 and 1, with + as
sup, · as inf and an operation ( )′ of complementation that is defined only on S1.

Definition 1 ([1]). A test dioid (S,B) is a dioid S that contains a boolean subal-
gebra B of S1—the test algebra of S—with least element 0, greatest element 1, in
which + coincides with sup and that is closed under multiplication.



Domain Semirings United 577

Once again we write ( )′ for complementation on B.

Lemma 1 ([1]). In every test dioid, multiplication of tests is their meet.

Lemma 2 ([1]). Let (S,B) be a test dioid. Then, for all x ∈ S and p ∈ B,

1. x ≤ px⇔ p′x = 0,

2. x ≤ px⇔ x ≤ p> if S is bounded.

Definition 2 ([1]). A test dioid with predomain is a test dioid (S,B) with a
predomain operation d : S → B such that, for all x ∈ S and p ∈ B,

x ≤ d(x)x and d(px) ≤ p.

It is a test dioid with domain if it also satisfies, for x, y ∈ S, the locality axiom

d(xd(y)) ≤ d(xy).

Weak locality d(xy) ≤ d(xd(y)) already holds in every test dioid with predomain.
Thus d(xd(y)) = d(xy) in every test dioid with domain.

It is easy to check that binary relations and sets of paths satisfy the axioms of
test dioids with domain, and that B = S1 in both models.

Lemma 3 ([1]). In every test dioid (S,B), the following statements are equivalent:

1. (S,B, d) is a test dioid with predomain,

2. the map d : S → B on (S,B) satisfies, for all x ∈ S and p ∈ B, the least left
absorption property

d(x) ≤ p⇔ x ≤ px, (lla)

3. in case S is bounded, d : S → B on (S,B) is, for all x ∈ S and p ∈ B, the
left adjoint in the adjunction

d(x) ≤ p⇔ x ≤ p>. (d-adj)

Interestingly, test algebras of test dioids with domain cannot be chosen ad libi-
tum: they are formed by those subidentities that are complemented relative to the
multiplicative unit [1]. This has the following consequences.

Proposition 1. The test algebra B of a test dioid with domain (S,B, d) is the
largest boolean subalgebra of S1.

We write Sd = {x | d(x) = x} and d(S) for the image of S under d.

Lemma 4 ([2]). Let (S,B, d) be a test dioid with domain. Then B = Sd = d(S).

Next we turn to the second type of axiomatisation.
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Definition 3 ([2]). A domain semiring is a semiring S with a map d : S → S such
that, for all x, y ∈ S and with ≤ defined as for dioids,

x ≤ d(x)x, (d1)

d(xd(y)) = d(xy), (d2)

d(x) ≤ 1, (d3)

d(0) = 0, (d4)

d(x+ y) = d(x) + d(y). (d5)

Every domain semiring is a dioid: d(1) = d(1)1 = 1 + d(1)1 = 1 + d(1) = 1,
where the second identity follows from (d1) and the last one from (d3), therefore
1 + 1 = 1 + d(1) = 1 and finally x+ x = x(1 + 1) = x. It follows that ≤ is a partial
order and that axiom (d1) can be strengthened to d(x)x = x.

Once again it is straightforward to check that binary relations and sets of paths
form domain semirings.

In a domain semiring S, d induces the domain algebra: d ◦ d = d and therefore
Sd = d(S). Moreover, (Sd,+, ·, 0, 1) forms a subsemiring of S, which is a bounded
distributive lattice with + as binary sup, · as binary inf, least element 0 and greatest
element 1 [2], but not necessarily a boolean algebra.

Example 1 ([2]). The distributive lattice 0 < a < 1 is a dioid with meet as
multiplication, and a domain semiring with d = id and therefore Sd = S.

Proposition 2 ([2]). The domain algebra of a domain semiring S contains the
largest boolean subalgebra of S bounded by 0 and 1.

Axiom (d5) implies that d is order preserving: x ≤ y ⇒ d(x) ≤ d(y). In
addition, d(px) = pd(x) for all p ∈ Sd, d(1) = 1, and d(>) = 1 if S is bounded.
More importantly, (lla) can now be derived for all p ∈ Sd (it need not hold for
p ∈ S1) [2]; it becomes an adjunction when S is bounded.

Lemma 5. In any bounded domain semiring S, (d-adj) holds for all p ∈ Sd.

Proof. d(x) ≤ p implies x = d(x)x ≤ px ≤ p> and d(x) ≤ d(p>) = pd(>) = p1 = p
follows from x ≤ p>.

As mentioned in the introduction, an antidomain operation is needed to make
the bounded distributive lattice Sd boolean.

Definition 4 ([2]). An antidomain semiring is a semiring S with a an operation
a : S → S such that, for all x, y ∈ S,

a(x)x = 0, a(x) + a(a(x)) = 1, a(xy) ≤ a(xa(a(y))).

Antidomain models boolean complementation in the domain algebra; the do-
main operation can be defined as d = a◦a in any antidomain semiring S. The second
and third antidomain axioms then simplify to a(x)+d(x) = 1 and a(xy) ≤ a(xd(y)).
The domain algebra Sd of S is the maximal boolean subalgebra of S1, as in Propo-
sition 1. This leads to the following result.
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Lemma 6 ([2]). Let (S, a) be an antidomain semiring. Then (S, Sd, d) is a test
dioid with domain.

If the domain algebra Sd of a domain semiring S happens to be a boolean
algebra, it must be the maximal boolean subalgebra of S1 by Proposition 2, so that
S is again a test dioid with B = Sd. Antidomain is then definable.

Lemma 7. Every domain semiring with boolean domain algebra is an antidomain
semiring.

Proof. With a = ( )′ ◦ d, the first antidomain axiom follows immediately from
Lemma 2(1); the remaining two axioms hold trivially.

Example 2. In the dioid 0 < a < 1 from Example 1, d : 0 7→ 0, a 7→ 1, 1 7→ 1 defines
another domain semiring with Sd = {0, 1} = B. So Sd ⊂ S1 is the maximal boolean
subalgebra in S1. In addition, a : 0 7→ 1, a 7→ 0, 1 7→ 0 defines the corresponding
antidomain semiring. Finally, this dioid is a test dioid by Lemma 6 and in fact a
test dioid with domain in which B = Sd ⊂ S1.

As powerset algebras, relation and path domain semirings have of course boolean
domain algebras with complement x′ = 1 ∩ x, where x denotes complementation
on the entire powerset algebra. Both are therefore antidomain semirings, with the
operations shown in the introduction.

We finish this section with an aside on fullness:1 While every test dioid with
domain and every antidomain semiring is full whenever Sd = S1 by Proposition 1
and Lemma 6, in domain semirings, Sd = S1 need not imply that Sd is boolean
(Example 1) and vice versa (Example 2). A domain semiring S is therefore full
precisely when Sd is boolean and equal to S1.

3 Coincidence Result

The results of Section 2 suggest that the two types of domain semiring coincide
when the underlying dioid is full. We now spell out this coincidence.

Proposition 3. Let (S,B, d) be a test dioid with domain. Then (S, d) is a domain
semiring with Sd = B and an antidomain semiring with a = ( )′ ◦ d.

Proof. The domain semiring axioms are derivable in test dioids with domain [1]; the
antidomain axioms follow by Lemma 7. Moreover, B is the maximal boolean sub-
algebra of S1 by Proposition 1, and thus equal to Sd by Proposition 2 (alternatively
Lemma 4).

We know from Lemma 6 that every antidomain semiring is a test dioid with
domain. Hence, by Proposition 3, antidomain semirings and test dioids with domain
are interdefinable (see also [2]). For the other converse of Proposition 3 we consider
full domain semirings S where Sd = S1 is a boolean algebra by Proposition 2. These
are test dioids, hence (lla) can be used to define domain.

1We are grateful to a reviewer for reminding us of this fact.
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Corollary 1. Let S be a full dioid with map d : S → S. Then (lla) holds for all
x ∈ S and p ∈ S1 if and only if the predomain axioms

x ≤ d(x)x and d(px) ≤ p

from Definition 2 hold for all x ∈ S and p ∈ S1.

Proof. As S is a test dioid with B = S1, Lemma 3(1) applies.

Lemma 8. Let S be a full dioid with map d : S → S that satisfies (lla) for all
x ∈ S and p ∈ S1. Then (S, S1, d) is a test dioid with predomain and Sd = S1.

Proof. S is a test dioid with predomain by Corollary 1. Sd ⊆ S1 because d(x) ≤ 1 in
any test dioid with predomain [1]. S1 ⊆ Sd because p ≤ 1 implies p = d(p)p ≤ d(p)
and d(p) ≤ p because pp = p, using (lla).

Proposition 4. Let (S, d) be a full domain semiring. Then (S, Sd, d) is a test dioid
with domain.

Proof. If (S, d) is a full domain semiring, then (lla) is derivable and locality holds.
Then (S, Sd, d) is a test dioid with predomain by Lemma 8 and therefore a test
dioid with domain because of locality.

Our coincidence result, through which the two types of domain semirings are
united, then follows easily from Propositions 3 and 4.

Theorem 1. A full test dioid is a test dioid with domain if and only if it is a
domain semiring.

On full dioids, domain can therefore be axiomatised either equationally by the
domain semiring axioms or those of test dioids with domain, or alternatively by
(lla) and locality. The domain algebras of relation and paths domain semirings, in
particular, are full.

In any dioid, hence in particular any domain semiring, fullness can be enforced,
for instance, by requiring that every p ∈ S1 be complemented within S1, that is,
there exists an element q ∈ S1 such that p+ q = 1 and qp = 0. It then follows that
S1 is a boolean algebra [2].

Alternatively, in any test dioid with domain or any antidomain semiring, Sd =
S1 whenever x ≤ 1 ⇒ d(x) = x, for all x ∈ S. Yet Example 2 shows that this
implication does not suffice to make Sd boolean in arbitrary domain semirings.

Finally, locality need not hold in full test dioids that satisfy (lla).

Example 3. Consider the full test dioid with S = {0, 1, a,>} in which a and 1 are
incomparable with respect to ≤, aa = 0, multiplication is defined by a> = >a = a
and >> = >, and d maps 0 to 0 and every other element to 1. Then (lla) holds,
but d(ad(a)) = d(a1) = d(a) = 1 > 0 = d(0) = d(aa).
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4 Examples

The restriction to full test dioids is natural for concrete powerset algebras, like the
relation and path algebras mentioned. It is captured abstractly, for instance, by
boolean monoids and quantales.

A boolean monoid [1] is a structure (S,+,u, ·, , 0, 1,>) such that (S,+, ·, 0, 1)
is a semiring and (S,+,u, , 0,>) a boolean algebra. As all sups, infs and multipli-
cations of subidentities stay below 1, every boolean monoid is a full bounded dioid;
boolean complementation on S1 is given by p′ = 1 u p for all p ∈ S1.

Domain can now be axiomatised as an endofunction, either equationally us-
ing the domain semiring or test dioid with domain axioms, or by the adjunction
(d-adj) and locality, as in Section 3. Once again, the antidomain operation a is
complementation on S1. Theorem 1 has the following instance.

Corollary 2. A boolean monoid is a test dioid with domain if and only if it is a
domain semiring.

Quantales capture the presence of arbitrary sups and infs in powerset algebras
more faithfully. Formally, a quantale (Q,≤, ·, 1) is a complete lattice (Q,≤) and
a monoid (Q, ·, 1) such that composition preserves all sups in its first and second
argument. We write

∨
for the sup and

∧
for the inf operator. We also write

0 =
∧
Q for the least and > =

∨
Q for the greatest element of Q, and ∨ and ∧ for

binary sups and infs.
A quantale is boolean if its complete lattice is a boolean algebra. Every boolean

quantale is obviously a boolean monoid, and every finite boolean monoid a boolean
quantale. If Q is a boolean quantale, then Q1 forms even a complete boolean
algebra. In boolean quantales, predomain, domain and antidomain operations can
therefore be axiomatised like in boolean monoids, and we obtain another instance
of Theorem 1, analogous to Corollary 2, simply by replacing “boolean monoid”
with “boolean quantale”.

As for domain semirings, Qd need neither be full nor boolean in an arbitrary
domain quantale: the dioids in Examples 1 and 2 are defined over finite semilattices
and hence complete lattices. They are therefore quantales. In this case, the identity
d(x ∧ 1) = x ∧ 1 forces Qd = Q1, because this inequality implies d(x) = x for all
x ≤ 1, and in fact a domain semiring with a meet operation suffices for the proof.2

In antidomain quantales, this identity thus implies fullness. Whether or how the
fullness could be forced equationally in arbitrary domain semirings or antidomain
semirings is left open.

5 Domain Quantales

Some loose ends remain to be tied together in this note as well:

• Does the interaction of domain with arbitrary sups and infs in quantales
require additional axioms?

2Again we owe this observation to a reviewer.



582 Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański

• Why has domain not been axiomatised explicitly using the adjunction (d-adj),
at least for boolean quantales?

• And why has domain in boolean monoids or quantales not been axiomatised
explicitly by d(x) = 1 ∧ x>, as in relation algebra?

This section answers these questions.
First, we consider the domain semiring axioms in arbitrary quantales and argue

that additional sup and inf axioms are unnecessary.

Definition 5. A domain quantale is a quantale that is also a domain semiring.

As every quantale is a bounded dioid, the adjunction (d-adj) holds for every
p ∈ Qd. In addition, domain interacts with sups and infs as follows.

Lemma 9. In every domain quantale,

1. d(
∨
X) =

∨
d(X),

2. d(
∧
X) ≤

∧
d(X),

3. d(x)(
∧
Y ) =

∧
d(x)Y for all Y 6= ∅.

Proof.

1. d is a left adjoint by Lemma 5 and therefore sup-preserving. Sups over X are
taken in Q; those over d(X) in Qd.

2. (∀x ∈ X.
∧
X ≤ x)⇒ (∀x ∈ X. d(

∧
X) ≤ d(x))⇔ d(

∧
X) ≤

∧
d(X).

3. Every y ∈ Y 6= ∅ satisfies

d
(∧

d(x)Y
)
≤ d(d(x)y) = d(x)d(y) ≤ d(x)

and therefore∧
d(x)Y = d

(∧
d(x)Y

)(∧
d(x)Y

)
≤ d(x)

(∧
d(x)Y

)
≤ d(x)

(∧
Y
)
.

The converse inequality holds because x(
∧
Y ) ≤

∧
xY in any quantale.

If Y = ∅ in part (3) of the lemma, then d(x)(
∧
Y ) = d(x)> need not be equal

to
> =

∧
∅ =

∧
d(x)Y.

In the quantale of binary relations over the set {a, b}, for instance, R = {(a, a)},
satisfies d(R) = R and

d(R)> = {(a, a)} · {(a, a), (a, b), (b, a), (b, b)} = {(a, a), (a, b)} ⊂ >.

Moreover, part (1) of the lemma implies that the domain algebra Qd is a com-
plete distributive lattice: d(

∨
d(X)) =

∨
d(X) holds for all X ⊆ Q, so that any
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sup of domain elements is again a domain element. Yet the sups and infs in Qd

need not coincide with those in Q.
Second, the adjunction d(x) ≤ p ⇔ x ≤ p> holds for all p ∈ Q1 in a boolean

quantale Q. General properties of adjunctions then imply that, for all x ∈ Q,

d(x) =
∧
{p ∈ Q1 | x ≤ p>}.

Lemma 8, in turn, guarantees that this identity defines predomain explicitly on
boolean quantales. Yet Example 3 rules out that it defines domain: the full test
dioid from this example is, in fact, a boolean quantale; it satisfies (lla) and thus
(d-adj), but violates the locality axiom of domain quantales.

Finally, we give two reasons why the relation-algebraic identity

d(x) = 1 ∧ x>

cannot replace the domain axioms in boolean monoids and quantales.
It is too weak: In the boolean quantale {⊥, 1, a,>} with 1 and a incomparable

and multiplication defined by >> = > and aa = a> = >a = a, it holds that
d(a) = ⊥ (when defined by d(x) = 1 ∧ x>), yet d(a)a = ⊥a = ⊥ < a. Therefore
d(x)x = x is not derivable from d(x) = 1 ∧ x> even in boolean quantales.

It is too restrictive: although d(x) = 1 ∧ x> obviously holds in the quantale of
binary relations, it fails, for instance, in the quantale formed by the sets of (finite)
paths over a digraph σ, τ : E → V mentioned in the introduction. Recall that the
domain elements of a set P of paths are a subset of V given by the sources of the
these paths. It is then obvious that V ∩P> = ∅ unless P contains a path of length
one and d(P ) = ∅ ⇔ P = ∅, so that d(P ) = V ∩ P> fails for any P in which all
paths have length greater than 1.

This type of argument applies to all powerset quantales in which the composition
of underlying objects (here: paths) is generally length-increasing and the quantalic
unit and domain elements are formed by fixed-length objects.
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