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Abstract

In this paper we investigate realizability of discrete time linear dynamical
systems (LDSs) in fixed state space dimension. We examine whether there
exist different Θ = (A,B,C,D) state space realizations of a given Markov
parameter sequence Y with fixed B, C and D state space realization matrices.
Full observation is assumed in terms of the invertibility of output mapping
matrix C.

We prove that the set of feasible state transition matrices associated to a
Markov parameter sequence Y is convex, provided that the state space real-
ization matrices B, C and D are known and fixed. Under the same conditions
we also show that the set of feasible Metzler-type state transition matrices
forms a convex subset. Regarding the set of Metzler-type state transition
matrices we prove the existence of a structurally unique realization having
maximal number of non-zero off-diagonal entries.

Using an eigenvalue assignment procedure we propose linear programming
based algorithms capable of computing different state space realizations. By
using the convexity of the feasible set of Metzler-type state transition matrices
and results from the theory of non-negative polynomial systems, we provide
algorithms to determine structurally different realization. Computational ex-
amples are provided to illustrate structural non-uniqueness of network-based
LDSs.
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1 Introduction

Many problems in computer science and engineering involve sequences of real-valued
multivariate observations. It is often assumed that observed quantities are cor-
related with some underlying latent (state) variables that are evolving over time.
Considering linear dependencies among the latent states and the observed variables
leads us to linear dynamical systems. The application of linear systems is ubiqui-
tous, ranging from dynamical systems modeling to time series analysis, including
econometrics, meteorology, telecommunication, biomedical signal processing, or so-
cial network dynamics [15, 23, 35, 30, 17].

The aim of system identification is to construct parameterized models of dy-
namical systems by observing their input-output trajectories [22, 37]. A popu-
lar and theoretically advantageous method for estimating the parameters of linear
dynamical systems is the maximum likelihood method together with expectation
maximization or numerical optimization [31, 25, 16, 10]. Although the underlying
mathematical representation of linear systems is simple, due to the fact that the
associated optimization problem to be solved might be non-convex, estimating their
parameters could be a computationally challenging task [16]. A related problem,
structural identifiability examines the theoretical possibility to uniquely determine
the model parameters, assuming perfect observational data [37, 24, 3]. It turns out
that even in the case of linear dynamical systems, the underlying parameters may
not be uniquely determined, i.e. different parameterizations of the same model
structure may provide us with the same dynamical behavior.

One can observe a growing interest in both quantitative and qualitative exami-
nation of the underlying interconnected structure of dynamical systems [7, 20, 32,
4, 34]. There is a growing importance of large scale distributed engineering systems,
such as power grids, distributed computing networks and intelligent transportation
networks that are composed of smaller functional subunits. The interconnected
structure corresponding to the state variables has attracted much attention in the
context of physico-chemical systems such as chemically interacting species com-
posing systems biological networks: gene regulatory networks, protein-protein in-
teraction networks, metabolic networks and signal transduction pathways [36, 38].
Analyzing the locally connected structure of social networks could help us under-
stand how viruses and information spread across the population [5, 26, 28, 29].
Subsystems, functional units are locally connected to each other according to some
physical interaction topology encoded by their differential equation based descrip-
tion. The distributed, locally connected structure of dynamical systems poses im-
portant requirements towards efficient computational approaches, e.g. distributed
controller synthesis methods over traditional centralized control algorithms [33, 9].
It can be observed in many dynamical systems that the underlying network struc-
ture is topologically non-unique i.e., different interconnection (graph) patterns can
be encoded by the same dynamical equations [1, 2]. Naturally, the non-uniqueness
of the network structure implies that the dynamical system is structurally non-
identifiable.
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Main results: In this paper we investigate realizability and structural properties
of discrete time linear time invariant dynamical systems. We examine structural im-
plications of non-unique realizability on the interaction pattern of the state variables
as they are encoded in the state transition matrix. We examine the non-uniqueness
of state transition matrix of LDSs. Assuming fixed input matrix B and invertible
observation matrix C we prove that the feasible set of system matrices formulate a
convex set. We devote particular attention to LDSs of state transition matrices that
are constrained to be of Metzler property. We prove the convexity of the feasible
set of state transition matrices provided that the Metzler constraint is posed. Us-
ing the eigenvalue assignment procedure we formulate a convex optimization based
procedure that can be efficiently employed to find different realizations of LDSs.
Assuming the Metzler property and making use of the convexity of the feasible
set of system matrices we provide algorithms capable of determining structurally
different dynamically equivalent state space realizations.

2 Background and problem formulation

Mathematical notations

The notations used in the paper are summerized in Table 1 below.

Table 1: Notations

∅ empty set
R the set of real numbers
Rn×m the set of (n×m)-dimensional real valued matrices
0n×m (n×m)-dimensional zero matrix
[A]ij the entry in the ith row of the jth column of matrix A
	 subtraction operator acting on a set and a matrix, A	A is the set

given by subtracting the matrix A from all the elements of A

2.1 The studied system class and its properties

A discrete time linear dynamical system (LDS) in state space representation is given
by a tuple Θ = (A,B,C,D) and the associated system of difference equations (DEs)
is as follows:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0,

y(k) = Cx(k) + Du(k),
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. x(k) ∈ Rn denotes the
vector of state variables, u(k) ∈ Rm and y(k) ∈ Rp are the input and the associated
output of the system.

Though the solution associated to a particular parametrization Θ and initial
condition x0 is unique, the parameters characterizing the underlying dynamics are
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not necessarily. There may exist distinct Θ, Θ′ parametrizations of the same input-
output behavior meaning that the system is not structurally identifiable.

Definition 1. A system of the form of E.q. (1) is said to be structurally (globally)
identifiable, if for any admissible input u(k) and k ≥ 0 we have that

y(k|Θ1) = y(k|Θ2) ⇒ Θ1 = Θ2,

where y(k|Θ) denotes the output of the system E.q. (1) parametrized by Θ.

If the condition of structural identifiability does not hold, the system is said to
be structurally non-identifiable.

In case of structural non-identifiability, in order to quantitatively characterize
the system, it is appealing to describe the feasible set of possible parameters. A
quantitative characterization of the feasible set may help us finding realizations of
favorable properties, such as sparsity.

Definition 2. It is said that a tuple Θ′ = (A′, B′, C ′, D′) is a (dynamically equiva-
lent) realization of a LDS of the form E.q. (1) parametrized by Θ, if Θ′ provides the
same input-output behavior, i.e. y(k|Θ′) = y(k|Θ) for any admissible input signal
u(k), k ≥ 0.

By recursively expanding E.q. (1) one can obtain the input-output equations –
a common starting point of system identification – of the following form:

y(k) = CAkx(0) +

k−1∑
i=0

Yk−i−1u(i) + Du(k), (2)

where the terms Yk−i−1 = CAk−i−1B and D are called the Markov parameters
of the systems which are unique descriptors of the input-output behavior and are
invariant to any invertible state transformations. Since Markov parameters are
unique regarding the input-output behavior, we can formulate sufficient and nec-
essary condition of dynamical equivalence with respect to the Markov parameters
as follows: a tuple Θ′ = (A′, B′, C ′, D′) is a dynamically equivalent realization of
Y = {Yk = CAkB}k≥0, if it satisfies Yk = C ′A′kB′ for k ≥ 0 and D′ = D.

2.2 Problem setup

A related problem of structural non-identifiability of LDSs is the existence of dis-
tinct, A, A′ ∈ Rn×n state transition matrices having different patterns in their
non-zero entries, i.e. structurally different state transition matrices. Assuming
that E.q. (1) describes the dynamical behavior of a network-based system, the
state transition matrix A can be viewed as a weighted adjacency matrix character-
izing the interactions – in terms of both the interaction pattern and the magnitudes
– among the components, i.e. state variables. Such a way structural non-uniqueness
of a network topology can be recast as an identification problem, namely finding
structurally different n-dimensional state space realizations.
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In this work we concerned with the existence different realizations of LDSs and
focus on the non-uniqueness and structure of the feasible state transition matrices.

Assumptions Throughout this paper we assume that a LDS is given by a
state space realization Θ = (A,B,C,D) and the matrices B, C and D are fixed
over all the dynamical equivalent realizations of interest. We set C to be invertible.
Regarding the initial condition we assume x(0) = 0n.

By fixing the matrices B, C and D we explicitly restrict our attention to dynam-
ically equivalent realizations with different system matrices, but fixed input and
output patterns. This is particularly important in the context of network-based
dynamical systems where different state transition matrices incorporate distinct
interaction patterns of the system components. We note that the invertibility of C
covers the case of fully observable state variables.

Making use of the Markov parameter based description together with the above
assumptions, the following constraint set can be employed in order to express dy-
namical equivalence of different realizations:

CAkB = CA′kB, k ≥ 0. (3)

One difficulty with respect to the above constraint set is that generally we have a
countable set of Markov parameters Y = {Yk}k≥0 implying infinitely many con-
straints of the from E.q. (3). On the other hand, the terms CA′kB are non-linear
and are not convex in the entries of A′ – even for stable systems of nilpotent state
transition matrices – which could easily make the identification problem computa-
tionally intractable.

In this paper identifiability of the above defined class of LDSs is studied. We
wish to quantitatively characterize the feasible set of state transition matrices in
the studied class of LDSs. We also address the problem of determining structurally
different n-dimensional realizations of a LDS given by a particular initial state space
realization Θ.

3 Embedding eigenvalue assignment procedure

In this section a static full-output feedback based approach is used for stabilizing
a LDS and constructing a compressed set of closed-loop Markov parameters. The
procedure detailed here is known as embedding eigenvalue procedure and applied
in LDS identification to recover the Markov parameters [27, 18].

Let us take a LDS of E.q. (1). By taking an arbitrary M ∈ Rn×n we can
reformulate Eq. (1) as follows:

x(k + 1) = Ax(k) + Bu(k) + My(k)−My(k)

y(k) = Cx(k) + Du(k).
(4)

Then for the state equation we have

x(k + 1) = (A + MC)x(k) + (B + MD)u(k)−My(k). (5)
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Let us introduce the following matrices and new input variable

A = A + MC, (6)

B = [B + MD, −M ], (7)

v(k) = [u(k) y(k)]>. (8)

Then the state space model Eq. (1) can be reformulated in the following equivalent
form:

x(k + 1) = Ax(k) + Bv(k)

y(k) = Cx(k) + Du(k).
(9)

Now by recursively expanding E.q. (9) the input-output behavior can be expressed
as

y(k) = CA
k
x(0) +

k−1∑
i=0

CA
i−1

Bv(k − i) + Du(k). (10)

If M can be chosen so that A = A+MC is a stability matrix, then for the Markov
parameters asympthotically we have

lim
i→∞

CA
i
B = 0 (11)

In this case, E.q. (10) can be approximated as

y(k) ≈
p−1∑
i=0

CA
i−1

Bv(k − i) + Du(k) (12)

for a suitably high p ∈ N. In particular, if A + MC is set to be nilpotent,
then (A + MC)n = 0n×n holds. Note that such a stabilizing M matrix exists,
if the system E.q. (1) is observable. Such a way the countable set of Markov
parameters Y = {CB, CAB, CA2B, . . . } is compressed to a finite set Y =

{CB, CAB, CA
2
B, . . . CA

n−1
B}. For the compressed Markov parameters we

introduce the notation Y k = CA
k
B.

It can be shown that the system Markov parameters Y can be uniquely recovered
from that of the closed-loop system Y of E.q. (4) as follows: [27, 18]:

Yk = Y
(1)

k +

k−1∑
i=0

Y
(2)

i Yk−i−1 + Y
(2)

k D, k ≥ 1, (13)

where

Y k = CA
k
B =

[
C(A+MC)k(B+MD) −C(A+MC)kM

]
= [Y

(1)

k Y
(2)

k

]
(14)

for k ≥ 1.



Computing LDS Realizations with Embedding Eigenvalue Assignment 591

4 Representing different realizations using a com-
pressed set of Markov parameters

In this section we show that dynamic equivalence of n-dimensional LDS realizations
can be traced back to a finite set of linear equations. We make use of the eigenvalue
assignment procedure, such a way instead of a countable set of Markov parameters
Y one can consider a compressed set of n Markov parameters Y of a (stabilized)
closed-loop system. By an inductive proof a linear reformulation of the non-convex
equations of E.q. (3) is provided. We also show the existence of a bijection between
the original state space realizations and the closed-loop system realizations.

Making use of the embedding eigenvalue assignment procedure we can obtain
a finite set of compressed system descriptors Y = {Y k}n−1k=0 which is unique with
respect to the closed-loop system. Finding different realizations of Y can be recast
in the form of a finite set of non-linear equations:

CA′
k
B = CA

k
B, k = 1, . . . n. (15)

Note that the nilpotency of A implies that the nth equation is equivalent to

CA′
n
B = 0n×(n+m), furthermore, the invertability of C means that CA′

k
B =

0n×(n+m) for k ≥ n.

E.q. (15) together with CA′
n
B = 0n×(n+m) provide us with a finite set of con-

straints to be satisfied by all the dynamically equivalent realizations (A′, B, C,D)
of Y. However, E.q. (15) contains high nonlinearities in A′ which makes the iden-
tification problem non-convex and computationally intractable.

Proposition 1. Let us consider a LDS of Markov sequence Y with a state space
representation Θ = (A,B,C,D). Assume that ∃C−1. Then we have that

CAkB = CA′Ak−1B, k ≥ 1 (16)

holds for any feasible n-dimensional realization Θ′ = (A′, B,C,D) of Y.

Proof. Let us assume that Θ′ = (A′, B, C,D) is a dynamically equivalent realization
of Y we have that

CAkB = CA′kB, k ≥ 0.

For k = 1

CAB = CA′B = CA′A0B.

By induction assume that for some k > 1 the equation CAkB = CA′kB holds.
Then

CAk+1B = CA′k+1B = CA′A′kB = CA′C−1CA′lB = CA′C−1CAkB = CA′AkB.
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Making use of Proposition 1 the constraint set defined by E.q. (3) can be
equivalently reformulated as CAkB = CA′Ak−1B for k ≥ 0 which are linear in
A′. Similarly one can formulate a finite set of linear constraints for the closed-loop
system:

CA
k
B = CA′A

k−1
B, k = 1, . . . n (17)

By equipping E.q. (17) with a linear objective function c : Rn×n 7→ R, we obtain a
linear program of the decision variables A′, e.g.:

max c(A′)

subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . n

(18)

Such a way a computational model is provided to determining dynamically equiv-

alent realizations (A,B,C,D) of the closed-loop system Y = {CA
k
B}nk=1. Fur-

thermore, the feasible set of solutions of the linear program (18) provides all the
dynamically equivalent realizations of Y. We note that in the optimization prob-
lem (18) the decision variables are the entries of the matrix A′, i.e. the number of
decision variables is n2 where n is the dimension of the system.

Now it can be shown that the resulted closed-loop state transition matrix A′

can be used to reconstruct an n-dimensional realization of the open loop system
E.q. (1) described by the initial countable set of Markov parameters.

Proposition 2. Let us consider a closed-loop LDS Y with a state space represen-
tation Θ = (A,B,C,D) so that A

n
= 0n×n, A = A + M and B = [B + MD,−M ]

for some A,M ∈ Rn×n and B ∈ Rn. Assume that there exists A′ ∈ Rn×n, A′ 6= A
so that

CA
k
B = CA′

k
B, k = 1, . . . n,

i.e. Θ′ = (A′, B, C,D) is a dynamically equivalent realization of Y. Then Θ′ =
(A′, B, C,D) is a dynamically equivalent realization of Y = {CAkB}k≥0, where
A′ = A′ −M .

Proof. For the sake of convenience we introduce the following notations

Yk(A) = CAkB, Y k(A) = CA
k
B,

Y
(1)

k (A) = C(A + MC)k(B + MD), Y
(2)

k (A) = −C(A + MC)kM

to emphasize the dependence on a particular A. E.q. CA
k
B = CA′

k
B implies that

Y
(1)

k (A) = Y
(1)

k (A′) and Y
(2)

k (A) = Y
(2)

k (A′) hold for k ≥ 1. Since Y0 = CB does
not depend on the state transition matrix, applying recursively E.q. (13) for k ≥ 1
we obtain that Yk(A) = Yk(A′), k ≥ 0, i.e. Θ′ = (A′, B,C,D) is a dynamically
equivalent realization of Y.
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5 The geometrical structure of the set of feasible
system matrices

In this section we consider the set of feasible n-dimensional system matrices. We
prove that for fixed B, C and D parameters, the set of feasible system matrices with
respect to any Y Markov sequence is convex. The set of feasible system matrices
is denoted as follows:

A(Y, B,C,D) =
{
A
∣∣∣ A ∈ Rn×n, (A,B,C,D) is a realization of Y = {Yk}k≥0

}
.

(19)

Proposition 3. Let us consider a countable sequence of Markov parameters Y real-
izable by a state space realization (A,B,C,D) of order n and denote A(Y, B,C,D)
the set of feasible n-dimensional system matrices as it is defined by E.q. (19).
Assume that C is invertible. Then A is convex.

Proof. Let us consider two matrices A1, A2 ∈ Rn×n so that (A1, B,C,D) and
(A2, B,C,D) are realizations of Y. From Proposition 1 it follows that for any
a ∈ (0, 1)

CAkB = aCAkB + (1− a)CAkB =

aCA1A
k−1B + (1− a)CA2A

k−1B = C
(
aA1 + (1− a)A2

)
Ak−1B, k ≥ 1

(20)

In the sequel for the sake of convenience we use the notation Â = aA1 + (1− a)A2.
Now by induction we prove that CAkB = CÂkB for k ≥ 1.
For l = 1 we have

CAB = C
(
aA1 + (1− a)A2

)
B.

Using the inductive assumption CAlB = CÂlB for general l we obtain that

CAl+1B = CÂAlB = CÂC−1CAlB =

CÂC−1CÂlB = CÂl+1B

We have that any convex combination aA1 + (1 − a)A2 results in a feasible state
space realization (aA1 + (1− a)A2, B,C,D) of the Markov sequence Y.

6 Characterizing structurally different system re-
alizations

In this section we consider realizations of special structure in their state transition
matrices. The off-diagonals are constrained to be non-negative. State transition
matrices having non-negative off-diagonal entries are particularly important when
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the purpose is to model networks of interacting components: non-zero off-diagonal
entries could represent the magnitude of interactions while negative diagonals may
incorporate to information or mass leakage. Positive systems – in which all the en-
tries of the state transition matrix are constrained to be non-negative – compose a
widely-studied class of linear time invariant systems with the above structural prop-
erties [8]. Discrete time linear compartmental models – having many applications
in modeling biological systems – also satisfy the above non-negativity condition
[14, 13]. Social networks provide an important application field of modeling dis-
crete time dynamical systems defined on networks [26, 28, 29, 21]. The DeGroot
and Friedkin-Johnsen models are well-known discrete time linear models of opinion
dynamics and information spreading in networks where the off-diagonal entries of
state transition matrices are also constrained to be non-negative [6, 11].

Formally, for a Markov sequence Y we restrict our attention to realizations
Θ = (A,B,C,D) so that A is Metzler, i.e. [A]ij ≥ 0 for i 6= j. Then the feasible
set of state transition matrices can be defined as follows:

Ap(Y, B, C,D) =

{
A

∣∣∣∣∣ [A]ij ≥ 0 for i, j = 1, . . . n, i 6= j,

(A,B,C,D) is a realization of Y

} (21)

Note that the convexity ofAp(Y, B,C,D) is guaranteed as a corollary of Proposition
3 which can be seen as follows. For any A1, A2 ∈ Ap(Y, B,C,D), the convex
combination aA1 + (1 − a)A2 with a ∈ (0, 1) is a feasible state transition matrix
in A(Y, B,C,D). Since a convex combination is a linear combination with non-
negative coefficients, the sign of the off-diagonal entries remain non-negative, i.e.
Ap(Y, B,C,D) is convex.

Now with respect to the set Ap(Y, B,C,D) we identify matrices having dis-
tinguished structural properties and show how they relate to all the other feasible
state transition matrices.

In order to ease the discussion of structural properties state transition matri-
ces, we introduce a simple graph-based description of LDSs with state transition
matrices of Metzler-type using the analogy of influence graphs in the literature of
positive systems [8]. Considering a state transition matrix A ∈ Rn×n, the asso-
ciated directed graph representation G(A) = (E, V ) is defined as follows. V , the
set of nodes corresponds to the set of states of the associated LDS. E, the set of
edges represents the influences between state variables, i.e. (i, j) ∈ E if and only if
[A]ij > 0. Such a way G(A) provides a unique description of the structure of A.

In the sequel the term structure of a state transition matrix A ∈ Ap(Y, B,C,D)
refers to the structure (topology) of the associated directed graph representation
G(A) as it is defined above.

Definition 3. Let us consider a LDS Y with fixed B ∈ Rn×m, C ∈ Rn×n and
D ∈ Rn×m. A matrix A ∈ Ap(Y, B,C,D) is called dense (sparse) state transition
matrix if it contains maximal (minimal) number of non-zero off-diagonal entries.
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Then the associated realization Θ = (A,B,C,D) is said to be a dense (sparse)
realization.

Definition 4. Let us consider a LDS Y with fixed B ∈ Rn×m, C ∈ Rn×n and D ∈
Rn×m. A state transition matrix A ∈ Ap(Y, B, C,D) is said to have superstructure
property, if its graph representation G(A) contains the graph representations of
all other feasible Metzler system matrices as subgraphs, formally G(A′) ⊆ G(A)
∀A′ ∈ Ap(Y, B,C,D).

It can be shown that a dense realization provides a superstructure with respect
to Ap(Y, B, C,D).

Proposition 4. Let us consider a LDS of Markov parameters Y with fixed B ∈
Rn×m, C ∈ Rn×n and D ∈ Rn×m state space realization matrices. Any dense state
transition matrix Ad ∈ Ap(Y, B,C,D) is of superstructure property.

Proof. Assume that there exists a dense state transition matrix Ad ∈ Ap(Y, B,C,D)
so that Ad has no superstructure property. Then it follows that there exists a state
transition matrix A ∈ Ap(Y, B,C,D) for which there is an index-pair (i, j), i 6= j so
that [A]ij > 0, but [Ad]ij = 0. The convexity of Ap(Y, B,C,D) guarantees that for
any a ∈ (0, 1) the resulted matrix A′ = aA+(1−a)Ad provides a dynamically equiv-
alent realization with non-negative off-diagonal entries, i.e. A′ ∈ Ap(Y, B,C,D).
Such a way we obtained a state transition matrix A′ having more non-zero off-
diagonal entries, than Ad has, which is contradiction.

Corollary 1. Let us consider a Markov sequence Y. For any B ∈ Rn×m, C ∈ Rp×n

and D ∈ Rp×m, there exists a structurally unique state transition matrix Ad having
maximal number of non-zero off-diagonal entries with respect to Ap(Y, B,C,D).

7 Computational framework for finding
structurally different realizations

In this section first we assume a state space realization Θ = (A,B,C,D) so that its
respective Markov parameter sequence Y is of finite-length, i.e. CAkB = 0n×m, k ≥
p for some finite p. Examining the realizability of finite-length Markov sequences
can be motivated by a partial realization problem or realizability analysis of stable
and damping systems having only a finite number of non-zero Markov parameters
[27, 12].

Algorithms for determining structurally different realizations of LDS with re-
spect toAp(Y, B,C,D) are provided. Making use of the convexity ofAp(Y, B,C,D),
we adopt algorithms proposed for mass action law kinetic systems and show that
structurally different realizations regarding the feasible set of Metzler system ma-
trices Ap(Y, B,C,D) can be efficiently obtained [1]. We prove that a dense state
transition matrix Ad in Ap(Y, B,C,D) can be computed in polynomial time using a
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convex optimization based procedure. Then it can be also shown that all the struc-
turally different realizations of Ap(Y, B,C,D) can be determined by iteratively
computing constrained dense realizations.

Finally we show that using the eigenvalue assignment procedure, the proposed
algorithms can be extended to compute structurally different realizations of LDSs
of arbitrary Markov parameter sequences.

7.1 Algorithm for computing dense realization

Here we provide an algorithm capable of finding a dense realization with respect
to Ap(Y, B,C,D) in polynomial time, given that Y is a finite sequence. The cor-
rectness of the algorithm follows from the convexity of Ap(Y, B,C,D). First we
define a subroutine denoted by FindRealization in order to determine feasible
state transition matrices.

FindRealization:
(

Θ = (A,B,C,D), L,H
)

: returns a tuple (A′, P ) so that

A′ ∈ Rn×n is a feasible state transition matrix of Metzler-type, i.e. A′ ∈
Ap(Y, B,C,D), and the objective function

∑
(i,j)∈H [A′]ij is maximized by A′,

where H is a set of index pairs. L denotes a set of index pairs so that [A′]ij = 0, if
(i, j) ∈M . Formally, A′ is obtained as the solution of the following linear program:

max
∑

(i,j)∈H
[A′]ij

subject to

CAkB = CA′Ak−1B, k = 1, . . . p

[A′]ij = 0, (i, j) ∈ L

(22)

P denotes the set of ordered pairs encoding the non-zero pattern of A′ so that
(i, j) ∈ P iff [A′]ij > 0. If feasible realization A′ does not exist, it returns (0n×n, ∅).

Next we introduce Algorithm 1 (FindDenseRealization) for finding a dense
dynamically equivalent realization, given a state space model Θ = (A,B,C,D).

Proposition 5. The state transition matrix Ad returned by algorithm
FindDenseRealization(Θ = (A,B,C,D), L) provides a dynamically equivalent
realization Θ′ = (A′, B,C,D) of the LDS with Markov parameters Y = CAkB,
k = 1, . . . p. Furthermore, Ad is dense among all the state transition matrices
in Ap(Y, B,C,D) satisfying the zero-constraints defined by L. Ad is computed in
polynomial time.

7.2 Algorithm for computing all structurally different real-
izations

Here we describe an algorithm capable of determining all structurally different re-
alizations of any LDS Θ = (A,B,C,D) with respect to Ap(Y, B, C,D), given that
Y = {CAkB}pk=0 with p > 0 finite. Making use of Algorithm FindDenseRe-
alization described in the previous section, the proposed computational method



Computing LDS Realizations with Embedding Eigenvalue Assignment 597

Algorithm 1 FindDenseRealization
Input: Θ = (A,B,C,D), L
Output: Result

1: H ← {1, . . . , n2 − n}
2: P ← H
3: Ad ← 0n×n

4: loops← 0
5: while TRUE do
6: (A′, P )← FindRealization(Θ = (A,B,C,D), L,H)
7: if P 6= ∅ then
8: BREAK
9: end if

10: Ad ← Ad + A′

11: H ← H \ P
12: loops← loops + 1
13: end while
14: if Ad 6= 0n×n then

15: Ad ← Ad

loops

16: return Ad //Result is a dense realization.
17: else
18: return -1 //There is no feasible realization.
19: end if

iteratively finds constrained dense realizations. Such a way all distinct structure
can be obtained.

Assuming a fixed ordering of the state variables, we introduce the notation R
to denote the set of binary sequences of length (n× n)− n encoding the structure
of non-zero off-diagonal patterns of the system matrices. The i’th entry of R ∈ R
is denoted by R[i]. An edge e is in the graph G(A) iff there exists an index i ∈{

1 . . . |E(G(A))|
}

for which e = ei and R[i] = 1.

We introduce the array Exist of 2|R| binary variables such that Exist[R] = 1 iff
there exists a dynamically equivalent realization encoded by the sequence R ∈ R.

A stack S is employed to temporarily store tuples of the form (R, k) with R ∈ R
and k ∈ N. The command ’push (R, k) into S’ pushes the tuple (R, k) into S, while
’pop from S’ returns the last tuple (R, k).

We say that the binary relation =k holds between the sequences R,W ∈ R
(R =k W ) if for i = 1 . . . k, R[i] = W [i]. The equivalence class of the relation
=k for which R is a representative element is denoted by Ck(R). Note that for an
equivalence class more representative elements may exist.
The following subroutines are employed in the algorithm:

1. FindDenseRealizationSequence(Θ = (A,B,C,D), R, k, i): computes a
dense state transition matrix Ad with respect to Ap(Y, B, C,D), given a se-
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quence R ∈ R and k, i ∈ N. It returns a feasible state transition matrix
A ∈ Ap(Y, B,C,D) and the associated binary sequence W ∈ R so that
W =k R and for every W [j] = 0 for j = k + 1, . . . i. If such a reaction does
not exist returns -1.

Note that FindDenseRealizationSequence can be implemented by means
of FindDenseRealization.

2. FindNextOne(R, k) returns the smallest index i for which k < i and R[i] =
1. If R[i] = 0 for all k < i then it returns z + 1.

Algorithm 2 FindAllRealizations
Inputs: Θ = (A,B,C,D)
Output: Exist

1: D ← FindDenseRealization(Θ = (A,B,C,D), ∅)
2: push (D, 0) into S
3: Exist[D]← 1
4: while size(S) > 0 do
5: (R, k)← pop from S
6: i← FindNextOne((R, k))
7: if i < z then
8: push (R, i) into S
9: end if

10: while i < z do
11: (A′,W )← FindDenseRealizationSequence(Θ = (A,B,C,D), R, k, i)
12: if W < 0 then
13: BREAK
14: else
15: i← FindNextOne(W, i)
16: Exist[W ]← 1
17: if i < z then
18: push (W, i) into S
19: end if
20: end if
21: end while
22: end while

Proposition 6. Algorithm FindAllRealizations(Θ = (A,B,C,D)) determines
all structurally different dynamical equivalent state transition matrices of a LDS
given by Θ = (A,B,C,D) with respect to Ap(Y, B, C,D), provided that Y =
{CAkB}pk=0 for some finite p > 0.
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7.3 Extension to arbitrary LDS

This section extends the aforementioned results in order to find structurally dif-
ferent realizations of arbitrary LDS. We consider a LDS Θ = (A,B,C,D) so that
there are no constraints on Y = {CAkB}k≥0. Assuming that the pair (A,C) is ob-
servable, the eigenvalue assignment procedure can be employed. Then there exists
M ∈ Rn×n so that A = A + M is nilpotent, i.e. A

n
= 0.

Consider the linear program

max
∑

(i,j)∈H
[A′]ij

subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . n

[A′]ij ≥ [M ]ij , i, j = 1, . . . n, i 6= j

[A′]ii ≤ [M ]ii, i = 1, . . . n

[A′]ij = 0, (i, j) ∈ L

(23)

Given a solution A′ of the linear program E.q. (23), Proposition 2 guarantees
that A′ = A′ − M provides a dynamically equivalent realization of the system
Θ = (A,B,C,D) and A′ ∈ Ap(Y, B,C,D). Now we replace the linear program
of E.q. (22) with E.q. (23) in FindRealization so that it returns (A′, P ) where
A′ + M = A′ is the solution of E.q. (23) and P is as it is defined above. Then
we have that the resulted algorithms FindDenseReal and FindAllRealizations
determine a set of matrices A for which A	M defines a set of structurally different
realizations of Θ = (A,B,C,D). For each A′ ∈ A, we have that (A′ − M) ∈
Ap(Y, B,C,D). This way structurally different realizations with Metzler-type state
transition matrices of a LDS – of arbitrary Markov sequence – can be computed.

8 Computational examples

In this section we provide examples to illustrate structural non-uniqueness of the
non-zero off-diagonal patterns of state transition matrices associated to a Markov
sequence Y. By some simple linear dynamical system models we show that the set
of feasible state transition matricesA(Y, B,C,D) is not necessary unique and struc-
turally different dynamically equivalent realizations can be computed. Throughout
the section we restrict our attention to realizations with system matrices of Metzler-
type.

In each example, first the system is stabilized by a full-state feedback M using
the algorithm of [19] in order to obtain a closed-loop system of the form of E.q. (4)
with a finite sequence of non-zero Markov parameters Y. In Example 8.1 Algorithm
1 and 2 are employed to determine all the structurally different realizations with re-
spect to Ap(Y, B, C,D). Then Proposition 2 guarantees that structurally different
realizations of the open-loop system Y can be recovered by subtracting M from the
closed-loop system matrices. Example 8.2 illustrate the structural non-uniqueness
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of a social network equipped with a linear dynamical behavior. Indirect sparsity
and density constraints are employed in order to find different realizations.

8.1 Example 1

Let us consider the following system

A =



−2 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0
0 0 0 1 0 −1 0 1 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0


, (24)

B =
[

1 0 0 0 0 0 0 0 0 0 0
]
, (25)

C is an (n× n)-dimensional identity matrix and D = 0n.

A full-output feedback M is obtained by the algorithm [19]. Then using Al-
gorithm 2 we determined all the structurally different closed-loop system matrices
in Ap(Y, B, C,D). Finally a set of structurally different state transition matrices
with respect to Ap(Y, B,C,D) is computed by Ap(Y, B, C,D)	M .

Figure 1 depicts the number of structurally different realizations as the function
of the number of non-zero off-diagonal entries in the state transition matrix. Table
2 provides a set of structurally different realizations in Ap(Y, B, C,D) as they are
determined in the above described way.

Ad =



−2 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0
0 0 0 1 0 −1 0 1 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 100 100 100. −100 0 0
0 0 0 0 1 0 0 0 0 −100 100
0 0 0 0 1 0 0 0 0 100 −100


(26)
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Table 2: Graph representations of all the structurally different state transition
matrices computed by FindAllRealizations. Non-zero entries which are not con-
tained in the initial realization are denoted by dashed lines.
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Figure 1: Structural non-uniqueness of feasible system matrices A associated to
dynamically equivalent state space realizations of E.q.

The non-uniqueness of the network structure has important theoretical and
practical consequences. It turned out that the system is structurally non-identifiable,
that is the same dynamical behavior can be realized with different parameteriza-
tions. At the same time, a computational procedure is provided to test structural
non-identifiability with theoretical guarantee. Non-uniqueness of the underlying
network topology is a specific case of the lack of structural identifiability: the un-
derlying dynamical behavior is realizable with different sets of interconnections of
the state variables. The existence of different network structures is particularly im-
portant if the state variables have some biological, physical or chemical meaning:
the same dynamical behavior (functionality) can be implemented using different
relationships between the system variables.

8.2 Example 2

The Zachary karate club network is a widely studied social network representing
the interactions of 34 members outside a Karate club [39]. Here we study the
information flow across the network equipped with a particular weighted directed
edge set as it is depicted in Figure 2. The weighted directed edges can be uniquely
encoded in the form of an adjacency matrix A ∈ R34×34, assuming a fixed ordering
of the nodes, i.e. state variables. For the entries of A see Appendix 9. With the
chosen edge directions we wish to simulate the information flow from the direction
of the first node, i.e. x1 (source) to the last nodes, x33 and x34 (sinks).

We make use of the adjacency matrix A of the network to define the dynamics
of information flow over the nodes and formulate a simple LDS of the from E.q.
(1). The adjacency matrix A defines the state transition matrix, [A]ij > 0 iff there
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is direct information flow from node j to node i. B ∈ R34 is set to be zero for all
the entries except for the first one which is equal to 1, i.e. [B]1 = 1 and [B]i = 0
for i = 2, . . . 34. This way we can examine how an input signal u(k) ∈ R, k ≥ 0
– perturbing the state of the first node – propagates along all the other nodes.
C ∈ R34×34 is the identity matrix, i.e. we assume that all the state variables are
observable. D = 034. The state variable vector x(t) ∈ R34, t ≥ 0 encodes the
information content of the state variables. We assume that x(0) = 034.

Starting with the above defined state space model Θ = (A,B,C), first we per-
formed the eigenvalue assignment procedure. A matrix M ∈ R34×34 is determined
so that the resulting A = A + M be nilpotent. This way a stabilized closed-loop
system Θ = (A,B,C) – having at most 34 non-zero Markov parameters – is ob-
tained, where B = [B, −M ]. In order to find a dynamically equivalent realization
of the stabilized system Θ with Metzler-type state transition matrix and sparsity
constraint, we solved the following optimization procedure

max
34∑

i,j=1
i 6=j

∣∣∣[A′]ij∣∣∣
subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . 34

[A′]ij ≥ [M ]ij , i, j = 1, . . . 34, i 6= j

[A′]ii ≤ [M ]ii, i = 1, . . . 34

(27)

where the entries of A′ correspond to the decision variables. Denoting the solution
of (27) by As, Proposition 2 guarantees that Âs = As−M provides a dynamically
equivalent realization of the initial system. The obtained realization (Âs, B,C) has
78 non-zero off-diagonal entries and its graph representation G(Âs) is isomorph to

that of the initial state transition matrix G(A). Next a dense realization (Ad, B, C)
is computed with respect to the closed-loop system Θ using Algorithm 1. Proposi-
tion 2 guarantees that Âd = Ad−M determines a dynamically equivalent realization
with respect to the initial system Θ. We found that the obtained state transition
matrix Âd contains 451 non-zero off-diagonal entries. The obtained matrices Âs

and Âd are illustrated in Figure 3.
Since [As]ij ≥ [M ]ij and [Ad]ij ≥ [M ]ij hold for i, j = 1, . . . 34, i 6= j, the state

transition matrices Âs and Âd are of Metzler-type. Furthermore, [As]ij = [M ]ij
and [Ad]ij = [M ]ij for i 6= j imply that [Âs]ij = 0 and [Âd]ij = 0, respectively, i.e.

G(As) and G(Ad) are isomorph to G(Âs) and G(Âd), respectively. Such a way we
can put indirectly sparsity and density constraints to state transition matrices of
LDS having arbitrary Markov parameters. However, it is important to note that the
resulted state transition matrices Âs and Âd are not proved to be sparse and dense
with respect to the initial system Θ, i.e. there may exist dynamically equivalent
realizations having less or more non-zero off-diagonal entries, respectively.

The existence of structurally different realizations implies that the Karate club
network equipped with the above dynamical system model is structurally non-
identifiable. The particular importance of the example is that the same dynamical
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behavior, that is information propagation among the nodes, is feasible with struc-
turally different network topologies. Different interconnections can provide the
same emergent dynamical behavior described by a DTLTI system. The result un-
derlines that a certain network topology, even in the case of linear systems, might
not be a complete descriptor of the modeled process.

Figure 2: Illustration of Zachary’s karate club network with a particular directed
edge set.
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Figure 3: Graphical representation of state transition matrices associated to dif-
ferent realizations. Initial: the initial state transition matrix A. Sparse (com-
puted): the state transition matrix Âs computed by posing l1 sparsity constraints
on the off-diagonal entries (i.e. decision variables). Dense (computed): the state
transition matrix Âd obtained by Algorithm 1. Note that the initial and sparse
matrices are equivalent in terms of the pattern of their non-zero off-diagonal en-
tries, i.e. G(A) and G(Âs) are isomorph graphs. We emphasize that sparsity, as
a structural property, is understood with respect to the off-diagonal entries. The
existence of structurally different state transition matrices implies that the same
information propagation dynamics can emerge in structurally different networks.
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9 Conclusion

In this paper we considered realizability of discrete time linear dynamical systems.
Throughout the paper it is assumed that a LDS is given by a Markov parameter
sequence Y and that the state space realization matrices B, C and D are known
and fixed. Under these assumptions the existence of different realizations of Y is
equivalent to the existence of distinct state transition matrices of the same dimen-
sion that provides the same sequence Y. Assuming that the state space realization
matrix C is invertible, we quantitatively characterized the set of feasible state space
realizations. It is proved that the set of state transition matrices A(Y, B, C,D) as-
sociated to a Markov sequence Y is convex, given B, C and D matrices. Under the
same conditions it is also shown that the subset of Metzler-type system matrices
Ap(Y, B,C,D) is convex. Furthermore, we proved that there exists a structurally
unique state transition matrix Ad ∈ Ap(Y, B,C,D) of maximal number of off-
diagonal entries whose respective graph representation G(Ad) contains that of any
other feasible state transition matrix in Ap(Y, B,C,D) as subgraph.

Making use of the eigenvalue assignment procedure, we reformulated dynamical
equivalence of state space realizations in terms of a finite set of linear constraints in
the entries of the state transition matrix. This way we proposed a convex optimiza-
tion based algorithm that can be used to find different realizations of any Markov
sequence. Since the existence of different system matrices implies structural non-
identifiability of the underlying dynamical system, this way non-identifiability of
LDSs can be validated in fixed state space dimension in polynomial time. By
making use of the convexity of Ap(Y, B,C,D) and adopting results from the field
of non-negative polynomial systems, we provided algorithms that can determine
structurally different realizations of LDSs with respect to Metzler-type state tran-
sition matrices. Representative examples are presented in order to illustrate that
dynamically equivalent realizations of LDSs are not necessary structurally unique,
i.e. there may exist structurally different realizations of the same LDS even in the
case of fixed B, C and D state space realization matrices.

Acknowledgement

The authors thank the anonymous Reviewers for their constructive comments.

References

[1] Ács, Bernadett, Szederkényi, Gábor, Tuza, Zsolt, and Tuza, Zoltán A. Com-
puting all possible graph structures describing linearly conjugate realizations of
kinetic systems. Computer Physics Communications, 204:11–20, 2016. DOI:
10.1016/j.cpc.2016.02.020.
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Appendix A: Proof of Proposition 5

Proof. Since Ad returned by FindDenseRealization is a convex combination of
dynamical equivalent realizations computed by Algorithm FindRealization, Ad ∈
Ap(Y, B,C,D) holds and [Ad]ij = 0 for all (i, j) ∈ L.

Assume that Ad returned by FindDenseRealization is not dense in
Ap(Y, B,C,D) among the state transition matrices satisfying the zero-constraints
defined by L. Then there exists a tuple (i, j), i 6= j for which there is a realization
A′ ∈ Ap

M so that [A′]ij > 0, but [Ad]ij = 0. By construction it is guaranteed
that Algorithm FindDenseRealization has at least one iteration in which the
optimization objective to be maximized involves the entry indexed by (i, j), i.e.
(i, j) ∈ H. Then it follows that [Ad]ij > 0 which is a contradiction.

Since FindDenseRealization computes a linear program of the form E.q. 22
at most (n2 − n)-times, Ad is obtained in polynomial time.

Appendix B: Proof of Proposition 6

Proof. Let us assume that there exists a sequence V ∈ R encoding a feasible state
transition matrix which is not returned by the algorithm FindAllRealizations.
Then consider the sequence R for which R =p V and p is maximal. If p = 0 then the
encoding sequence of the dynamically equivalent dense realization is an appropriate
choice for R. For i = FindNextOne(R, p) and j =FindNextOne(V, p) we have
i ≤ j, since V ∈ Cp(R). Moreover if i = j then it follows that p is not the maximal
integer such that R =p V which is a contradiction.

Let us consider the sequence W1 returned by FindReal(R, p, i). There exists
a dynamically equivalent realization encoded by W1, since the input constraints
of FindReal(R, p, i) are fullfilled by V . For W1 we get that j1 = FindNex-
tOne(W1, p) for some j1 ∈ Z>0. Then the inequality j1 ≤ j must hold, since
V ∈ Ci(W1). If j1 = j then it would follow that R is not that sequence for which
V ∈ Cp(R) holds with a maximal p, i.e. j1 = j is a contradiction.

There is a step in the algorithm FindAllRealizations when the sequence W2 is
computed by FindDenseRealizationSequence(Θ = (A,B,C,D), R, p, j1). For
W2 we have that V ∈ Cj1(W2) which implies that j2 ≤ j for j2 = FindNex-
tOne(R, p, j1). If j = j2 would hold, then j2 would be the maximal integer with
the sequnece W2 for which W2 =j2 V holds, but this is a contradiction.

Continuing the above steps would lead to infinitely many valid graph structures
which is a contradiction.
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Appendix C: Adjacency matrix of Example 2

Non-zero entries in the initial adjacency matrix of Example 2.

[A]2,10 = 1;

[A]3,1 = 0.5; [A]3,2 = 0.5;

[A]4,1 = 0.3; [A]4,2 = 0.5; [A]4,3 = 0.2;

[A]5,1 = 1;

[A]6,1 = 1;

[A]7,1 = 0.3; [A]7,5 = 0.4; [A]7,6 = 0.3;

[A]8,1 = 0.2; [A]8,2 = 0.2; [A]8,3 = 0.2; [A]8,4 = 0.4;

[A]9,1 = 0.4; [A]9,3 = 0.6;

[A]10,3 = 1.0;

[A]11,1 = 0.1; [A]11,5 = 0.1; [A]11,6 = 0.8;

[A]12,1 = 1.0;

[A]13,1 = 0.9; [A]13,4 = 0.1;

[A]14,1 = 0.1; [A]14,2 = 0.2; [A]14,3 = 0.3; [A]14,4 = 0.4;

[A]17,6 = 0.7; [A]17,7 = 0.3;

[A]18,1 = 0.8; [A]18,2 = 0.2;

[A]20,1 = 0.1; [A]20,2 = 0.9;

[A]22,1 = 0.4; [A]22,2 = 0.6;

[A]26,24 = 0.65; [A]26,25 = 0.35;

[A]28,3 = 0.2; [A]28,24 = 0.3; [A]28,25 = 0.5;

[A]29,3 = 1.0;

[A]30,24 = 0.3; [A]30,27 = 0.7;

[A]31,2 = 0.1; [A]31,9 = 0.9;

[A]32,1 = 0.25; [A]32,25 = 0.25; [A]32,26 = 0.4; [A]32,29 = 0.1;

[A]33,3 = 0.1; [A]33,9 = 0.1; [A]33,15 = 0.1; [A]33,16 = 0.1; [A]33,19 = 0.05; [A]33,21 = 0.05;

[A]33,23 = 0.1; [A]33,24 = 0.1; [A]33,30 = 0.1; [A]33,31 = 0.1; [A]33,32 = 0.1;

[A]34,9 = 0.05; [A]34,10 = 0.05; [A]34,14 = 0.15; [A]34,15 = 0.05; [A]34,16 = 0.01;

[A]34,19 = 0.09; [A]34,20 = 0.02; [A]34,21 = 0.08; [A]34,23 = 0.03; [A]34,24 = 0.07;

[A]34,27 = 0.1; [A]34,28 = 0.05; [A]34,29 = 0.05; [A]34,30 = 0.05; [A]34,31 = 0.05;

[A]34,32 = 0.05; [A]34,33 = 0.05
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