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Abstract

The culpable cybersecurity practices that threaten leading organizations
are logically prone to establishing countermeasures, including honeypots, and
bestowing research innovations in various dimensions, such as ML-enabled
threat predictions. This article proposes an explainable AI-assisted permis-
sioned blockchain framework named EA-POT for predicting potential default-
ers’ IP addresses. EA-POT registers the probable defaulters predicted by ex-
plainable AI based on the approval of IP authorizers of blockchain databases.
Experiments were carried out at the IoT Cloud Research laboratory using
three prediction models, such as Random Forest Modeling (RFM), Linear
Regression Modeling (LRM), and Support Vector Machines (SVM); and, the
experimental results for predicting the AWS honeypots were explored. The
proposed EA-POT framework revealed the procedure for including interpretable
knowledge while blacklisting IPs that reach honeypots.
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1 Introduction

Developing a secure cloud-based or IoT-enabled application is an extraordinary feat
of development as newer security issues evolve, especially when the post COVID-19
scenario was considered in a connected devices world. Remote accesses to organiza-
tional resources and services are prone to security challenges in newer dimensions.
Notably, as an essential part of preparedness, transferring identity credentials to
employees has become a landmark shift in handling the security challenge needed
to protect resources.

It is estimated by high-income companies/organizations and researchers that a
reasonably high volume of budget needs to be spent to counteract evolving cyberse-
curity issues. For instance, Australia economists have estimated that it will spend
over $7.6 billion by 2024 [32]; Investments towards cloud security tools are projected
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to increase from $5.6 billion in 2018 to $12.6 billion in 2024 [36]; Centrify, a com-
pany specializing in cybersecurity, highlighted the possibility of phishing attacks
that could lead to a huge investment in potential IIoT industries [35].

Looking to the future, in the wake of COVID-19, many countries or organi-
zations, especially those belonging to government sectors, have suggested newer
security policies or procedures to counteract notable sprouting security challenges,
such as i) phishing, ii) malicious attacks, iii) accessing orphaned accounts, iv) ran-
somware attacks, v) advanced persistent threat, and so forth. In fact, the Wan-
naCry ransomware attack challenged over 150 countries [17]. Additionally, IoT
devices, which increase day by day, require diligent secure connectivity services.
The failure to provide proactive secured access to connected devices or associated
cloud services, especially in the automobile and healthcare industries, could lead
to unnecessary data leaks. This could disrupt important automated decisions and
slow down the global economic situation. There have been a few research efforts in
the recent past to address the IoT security inefficiencies [26, 27, 31].

Obviously, preventing potential attackers/hackers from breaching security needs
to be handled diligently. In recent years, honeypots have been established by several
leading cloud-based service providers, including AWS IoT infrastructure providers.
Honeypot, in general, lies alongside the firewall inviting security challenges from
potential hackers. In doing so, the specific pattern of attacks can be explored; the
motivation of cybercriminals in writing code could be reduced; the activity of in-
vesting money for illegal purposes may be minimized; the intention of attackers and
involved countries can be observed; and, the possibility of the attackers’ evolving
innovations can also be studied.

Traditionally, honeypots on cloud infrastructures address several known issues
as listed below:

1. The attacks initiated by their own organizations’ employees must be diligently
handled. In fact, such organizational attacks are possible due to poor knowl-
edge of utilizing cyber-physical devices/gadgets or the associated services;

2. Indigent policies of honeypots need to be dynamically handled in a decentral-
ized environment ; and,

3. The time needed to learn about the potential attack has to be negligible
compared to the time it takes to attack.

This paper proposes an EA-POT framework, an Explainable AI-assisted block-
chain framework, for honeypot IP predictions. EA-POT attempts to reduce the
time needed to identify potential attackers using prediction algorithms, such as
Random Forest Modeling (RFM), Linear Regression Modeling (LRM), and Sup-
port Vector Machines (SVM). Unlike traditional methods, which are dependent on
non-explainable parameters (black-box and temperamental), the proposed EA-POT
framework enables the explainability features of prediction models.

The framework is combined with a hyperledger fabric-based blockchain network
to register the honeypot IP addresses and to inject dynamic prevention policies on
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the fly. The reasons for including the permissioned blockchain into the framework
are multi-fold:

1. The blacklisted IP addresses considered to be more vulnerable become im-
mutable as the organizations or the inner employees of an organization cannot
modify them; and,

2. Specific policies can be formulated by involving permissioned organizations
or stakeholders in deciding the actions against the defaulters.

In addition, experts believe that the performance of the hyperledger fabric,
especially when the chaincodes are written using golang, is reasonably better than
the other blockchains. Authors of [9] have studied the performance impact of
transactions concerning the underlying programming languages; similarly, authors
of [22] have delved into the end-to-end transaction latency factors of hyperledger
fabric blockchains.

In this paper, the research work emphasized the importance of the EA-POT
framework to register blacklisted IPs, which were explainable using prediction mod-
els, in the immutable database. Experiments were held at the IoT cloud research
laboratory on distributed systems after a Kubernetes cluster of hyperledger fabric
components was launched.

The major contributions of the work are listed as follows:

1. an EA-POT framework was proposed to register potential hackers into the
blockchain database after the policies were satisfied;

2. the importance of explainable AI while predicting IPs was explored; and,

3. the experimental results were investigated and revealed to highlight the ne-
cessity of the proposed EA-POT framework.

The rest of the paper is organized as follows: Section 2 investigates the state-
of-the-art research in the field of honeypots and the utilization of explainable AI
for enhancing cybersecurity; Section 3 reveals the functionalities and components
of the proposed EA-POT framework; Section 4 illustrates the approach of utilizing
explainable AI for the framework; Section 6 manifests the experimental evaluations
of the proposed framework that were carried out at the laboratory; and finally,
Section 7 offers a few outlooks and conclusions for the near future research based
on the proposed work.

2 Related Work
Countering cybercrime in several countries is often considered an ongoing crucial
agenda. In fact, a proactive approach to handling security measures has attracted
several researchers/countries in recent years. Honeypots, being a measure of lur-
ing potential hackers, have served as a foundation for proactively analyzing the
characteristics of hackers and their malicious behaviors.
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This section explains the state-of-the-art work of honeypot research in three
different perspectives as listed below:

1. Honeypot placements (Clouds),

2. Inclusion of Machine Learning / Explainable AI,

3. Application of Blockchains.

Finally, the shortcomings of the existing works and the contributions of this
article are expressed in the section.

2.1 Honeypot Research – Domains, Placements, and Clouds

Researchers/practitioners belonging to several domains, such as Clouds and Indus-
trial IoT (IIoT), have evidenced the importance of including honeypots in their
organizations. There exist several honey pot implementations, both static and dy-
namic, in IIoT or cloud environments. For instance, authors of [20] and [16] studied
the application of honeypots for smart grids; authors of [7] revealed the importance
of honeypots for capturing DDoS attacks in IIoT environments; and, authors of
[24] proposed a social leopard algorithm to detect ransomware attacks using hon-
eypots. Additionally, a few honey pot implementations for protecting buildings [3]
and establishing a secured smart home infrastructure [14] have been developed in
the recent past.

A sector of researchers has attempted to optimize honeypot placements in or-
ganizations based on malicious attackers – i.e., authors of [12] and [1] have applied
a game-theoretic framework model to optimally choose honeypots in various loca-
tions; in [10], the authors have installed honeypots in nine countries and studied
the behavior of malicious users. Besides, honeypots have been widely deployed to
enable lightweight interactions in IoT-based infrastructures. For instance, authors
of [26] have implemented BoTNet, and authors of [27] have implemented IoTCMal
for low interaction honeypots using TelNet and SSH; authors of [6] have deployed
a global honeypot infrastructure to detect industrial attacks.

The deployment of honeypots has been studied in cloud environments as poten-
tial attacks on public cloud infrastructures, such as AWS Cloud, Google Compute
Engine, and Microsoft Azure. This process has become an inevitable activity. Ac-
cordingly, a few researchers have oriented their analysis and studies towards cloud
infrastructures. For instance, the authors of [21] have developed a high interac-
tion system using Kerberos authentication, Virtual Private Cloud, and Elastic File
System to understand the malicious nature of attackers; the authors of [13] have
developed honeypot as a service model for luring attackers. This honeypot-as-a-
service is implemented as a plug-and-play model, which could be hosted on gateways
for capturing the malicious attackers; and, a few practitioners have listed the AWS
honeypot data that suggested potential hackers, who attempted to maliciously at-
tack AWS cloud services, including AWS IoT services.
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2.2 Machine Learning and Explainable AI

Traditionally, machine learning has been applied in several domains, including IoT
to predict machine behavior or future events [8]. Several variants of machine learn-
ing, including federated learning aspects, have reached the market for efficient learn-
ing processes of IoT and cloud services [28, 4]. Additionally, the application of own
decision-making algorithms, such as neural networks, has been practiced to classify
security attacks [2].

In fact, proactively learning the behavior of malicious attackers or potential
IP addresses of the attacker’s needs a diligent skillset that modern computational
efforts are required. With the evolution of several machine learning platforms and
tools, in recent years, the identification of attackers and the classification of the
severity of attacks have become a widely discussed topic of research. Authors of
[23] have studied the application of probabilistic models for proactively estimating
the honeypot detection. The authors have confined their research to TELNET and
SSH-based communications in IoT domains. Authors of [15] have applied an outlier
detection mechanism to project anomalies from the outlier information. To do so,
the authors have utilized unsupervised machine learning approaches for honeypots.

A few machine learning researchers have predicted attacks using statistical mod-
eling methods, including GARCH models. For instance, the authors of [19] have
characterized the honeypot captured data using statistical approaches. The au-
thors have pointed out the importance of explainable statistical approaches for
efficiently handling the prediction problems in honeypot data using case studies.
The same authors have additionally predicted cyber-attack rates using GARCH
prediction models in their following works [30]. Obviously, robust prediction mod-
els are crucial for proactively identifying the potential hackers or malicious attackers
in modern networking applications, including IIoT or cloud services.

Apart from the normal prediction approaches which predict the potential hack-
ers or their activities, a few researchers have devised honeypot mechanisms to
protect against vulnerabilities arising out of the adversarial learning processes. Au-
thors of [29] have suggested learning models that protect against adversarial errors
opted by automated machine learning algorithms. For instance, IIoT applications,
guided by machine learning services, could be exposed to wrong learning advice
which could end up with hazardous results. To override such effects, honeypots
were utilized to protect failures and rectify prediction failures.

As observed, there exists a few research works that utilize machine learning
algorithms and mechanisms, including the Cloud services domain, for predicting or
characterizing hackers. However, there are very few works that utilize explainable
AI for validating the importance of honeypot predictions levied by machines or
computing domains in an organization. It could be noticed from the literature that
explainable AI has emerged in the recent past to justify the blackbox prediction
approaches or prediction algorithms.
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2.3 Blockchains for Honeypots

Although attackers and associated vulnerabilities could be predicted, the findings
need to be protected. Insider attacks in most organizations have been highly dan-
gerous due to the modifications and corrections held to the findings by potential
inner-organizational hackers. Blockchains could protect against tampering with
data in such environments. In addition, the security policies could vary depending
on regional/organizational policies. For instance, blacklisting certain IP addresses
depends on several factors, including the organizational relationships with associ-
ated countries.

There exists a few research works of honeypots relating to blockchains. However,
they were applied in a different context. For instance, researchers of [25] and [5]
have established data science algorithms to learn the potential fraudulent activities
such as fraud payments due to the Ethereum smart contracts.

A very few research works have applied the permissioned blockchains to quickly
validate the blacklisting IPs that reach honeypots.

This work endeavored to apply prediction models, such as RFM, LRM, and
SVM to predict the potential hacking IPs and commit the information into the
permissioned blockchain ledger. The entry of information into the ledger is governed
by a few approvers, including the Explainer-AI of the proposed framework (see
Section 3).

3 EA-POT Framework

Honeypots have been reasonably deployed alongside production systems in recent
years to study the behavior of potential cyberattackers. Accordingly, the honeypots
pave way for the security team of organizations to protect their systems from sev-
eral vulnerable attacks. In fact, the potential attackers should be predicted in an
explainable manner before the information were listed in an immutable database.

This section explains the inner details of the proposed EA-POT framework for
blacklisting potential cyber attackers using explainable prediction models and block-
chains.

The proposed EA-POT framework consists of the following entities:

• Honeypot Data Engine,

• Prediction Models,

• Explainable AI Components,

• Policy Stakeholders,

• Blokchain Network, and,

• BlackBlock Database.
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Figure 1: EA-POT Framework

The crucial functionalities of these entities are explained below.

3.1 Honeypot Data Engine

The Honeypot Data Engine is an entity that resides on honeypots that are located
nearer to the firewall component of the organizations. It collects information, such
as IP addresses, source port address, destination port addresses, connection proto-
cols, such as TCP or UDP, country of origin, and so forth, of defaulters. Besides, it
formats the information into CSV, XML, and JSON formats, in a periodic manner
and keeps them ready for further processing of the intended prediction models of
the framework.

3.2 Prediction Models

The framework utilizes a few notable algorithms, such as RFM, LRM, and SVM
for predicting the potential hackers and their IP addresses. One battle in which the
traditional honeypot engines allied to defeat progress was the timely identification
of potential hackers’ IP addresses. In doing so, several countermeasures could be
adopted for overriding the issues.

The synopsis of the three prediction algorithms applied in the EA-POT framework
is given in the following paragraphs.
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Random Forest Modeling (RFM) Random Forest Modeling (RFM), the con-
cept initially conceptualized by Breiman et al. [40], has been widely applied for
creating prediction models that resemble real-world situations. It is an ensemble-
based learning approach that creates decision forests based on modeling features.
The models are created for the dependent variable of the dataset. For instance,
the independent variable for honeypot IP prediction includes the IP addresses of
potential hackers.

The decision forests consist of tens of hundreds of decision trees that analogously
represent rules and inferences. Based on the creation of decision forests consider-
ing the decision rules for training data, the predictions are applied to the testing
data. During the process of predictions, in the case of honeypot IP predictions, the
independent variables, such as source port addresses, destination port addresses,
latitude and longitude of locations, and so forth, are considered as modeling features
– i.e., the independent variables.

RFM-specific tuning parameters[41], such as number of trees to grow in a forest
(ntree), number of trials (mtry), and so forth, define the prediction accuracy on
the testing dataset. For instance, increasing the number of trees could improve the
prediction accuracy on large datasets.

Support Vector Machine (SVM) Support Vector Machine (SVM) is a super-
vised learning algorithm [11], as similar to RFM, where it attempts to produce
hyperplanes that split data with sufficient distinctions. It attempts to increase the
decision boundary of categorizing training data so that predictions could be much
easier. The accuracy of the prediction algorithm is highly dependent on the dataset
that is utilized – i.e., if the algorithm could not find sufficient hyperplanes, the error
rate for predictions is typically higher than the expected ones.

During the training processes, the SVM algorithm iteratively prepares hyper-
planes based on the independent variables of the dataset. To do so, it utilizes
kernels, such as linear, polynomial, radial, and sigmoid, to transform the training
data to a high dimensional space so that the process of creating hyperplanes is
comparatively carried out elegantly.

Linear Regression Modeling (LRM) Linear Regression Modeling (LRM) is
considered to be the simplest prediction model that identifies the relationship be-
tween the dependent and independent variables of a dataset. It highlights the
potential changes that could happen in the dependent variable while modifying
the independent variables. Not all independent variables are inclined towards the
dependent variables of a dataset.

During the training processes of the linear regression algorithm, linear equations
or mathematical formulas are created for the dependent variable based on the
training dataset. In the proposed work, ML algorithms, such as RFM, SVM, and
LRM are sufficient for learning the blacklisted IPs as decisions on confirming them
are governed by a few stakeholders of blockchain networks. Accordingly, the policies
could be varied as specified in the blockchains and the predictions are faster than
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learning algorithms, such as neural networks.

3.3 Explainable AI Components
The prediction models are reasoned using the explainable AI components aug-
mented in the framework. The framework applies explainable AI components to
explore the inference levied from the models. For instance, the framework feeds
specific modeling parameters to understand the R2 values of the models. The R2

values determine the closeness of the model and the dependent variables. The
framework iterates over the available independent variables to identify the best set
of independent variables IV1...n which offer the best R2 values.

3.4 Policy Stakeholders
The policies for registering an IP to blacklists and for releasing the IPs from the
blacklists need to be guided/formulated by multiple stakeholders. For instance,
email hackers, the IP addresses, and port numbers of hacking applications need to
be blacklisted depending on genuine reasons. Notably, blacklisting IP addresses due
to technical failures reduces the reputation of an organization. Hence, in EA-POT
framework, an array of policy stakeholders are represented for validating the gen-
uineness of blacklisting IP addresses. In addition, it involves the explainable AI
features to evaluate the necessity of blacklisting an IP into the immutable database.

3.5 Blockchain Network
The policy stakeholders of the EA-POT framework are connected to each other using
a P2P blockchain network. These policy stakeholders are responsible for running
policies or chaincodes; and, to interpret the data on server components. These
server components, mostly established as a docker farm, are connected to each
other using the blockchain network.

3.6 BlackBlock Database
The potential blacklisted IP addresses that are predicted and validated using the
blockchain stakeholders of the network are registered into the blockchain ledger
of EA-POT framework named as BlackBlock database. The reason to set up a
blockchain database to register blacklisted IPs into the ledger is to protect the
vulnerability raised by potential hackers, mostly the vulnerability due to the inner
threats by colleagues of the same organizations. Figure 1 depicts on the entities
involved in the EA-POT framework.

4 Explainable AI and Predictions
The recent era of machine learning development, in various research domains, has
seen a proliferation of prediction models which can often be classified as blackbox
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mechanisms. At this juncture, the evolution of explainable AI concepts has im-
proved the trust levied by researchers on blackbox models. This section explains
the interpretability procedure of prediction models of the EA-POT framework.

In general, a blacklisting of IP addresses happens due to several reasons:

1. an execution of a malicious program in a machine, including sensor nodes;

2. varying policies of organizations, which protect against the utility of certain
types of applications – for instance, a military organization does not permit
access to unauthorized military services;

3. inappropriate content, such as illicit videos and images in the services; and

4. spying of services within intra- and inter-organizations.

Predicting the blacklisting of an IP address in EA-POT framework attempts
to avoid threats and strengthens the firewall policies depending on the learning
inferences. In addition to a normal prediction process, EA-POT framework applies
explainable features of AI to bolster the accuracy of predictions.

There may be various reasons for the formidable range of issues and inaccuracies
of prediction models in modern applications:

1. the learning parameters are not appropriately chosen;

2. the modeling algorithms learn almost all available data – i.e., the model is
biased concerning the data;

3. the training datasets are comparatively low; and so forth.

Obviously, it is an impressive activity for the user to understand the reason for
predicting the blacklisting IP, an independent variable BIP , with a specific level of
accuracy considering dependent variables Xi...n. EA-POT utilizes local independent
variable information of models for collecting Xi...n that influence the predictions.

The major advantages of including the explainable features of the model in the
EA-POT framework are:

• the features of Explainer-AI reveal the level of confidence of prediction models
in R2 percent; and,

• they establish a set of permutations from the observation instances and high-
light the inclination of dependent variables towards the independent variable.

The Explainer-AI identifies the best suitable modeling parameters based on the
R2 values of the prediction models. Accordingly, the algorithms impose the choice
for registering IP addresses into the blockchain ledger.
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5 Immutability of BlackBlock and Processes

In EA-POT framework, BlackBlock database is established to list the blacklisted IP
addresses that are predicted to be registered into the honeypots of organizations.
In this section, the formation of a blockchain network, Blackblock database, and
the processes involved in ensuring immutability are discussed.

5.1 Blockchain Network

The BlackBlock database of EA-POT framework is a distributed ledger that is estab-
lished in the nodes of a Kubernetes cluster. The Kubernetes cluster [39] is chosen
for the scalability and reliability features of distributed ledgers.

In general, Kubernetes is an orchestration tool that manages the containerized
workloads of applications. It is manifested that the performance of Kubernetes clus-
ters is better than many other orchestration tools while executing the containerized
applications on them [18].

In EA-POT framework, the stakeholders of blockchains are represented as docker
instances, which are containerized instances. The inclusion of the Kubernetes clus-
ter enables users to evaluate and modify the state of docker machines, typically,
the peer nodes of blockchains in the network.

The policy stakeholders of the framework that are represented in the docker
instances include:

• IP Approving Authority,

• Explainer-AI,

• Cybercrime official, and

• Netizen/Expert.

These stakeholders have provisions to interact with the docker instances through
docker client instances (see Figure 1). The docker instances, which represent the
stakeholders of the EA-POT framework, install and launch chaincodes, the policies,
for understanding the inferences of explainable AI, and for manipulating the entry
of IP addresses into the ledger.

The chaincodes of the framework are written in golang language. These chain-
codes are responsible for implementing policies of stakeholders where the Explainer-
AI or similar stakeholders could determine the approval of transactions – i.e., the
registering of blacklisted IPs into the database. The chaincodes are instantiated,
installed, packaged, and queried using specific commands as shown below:

peer chaincode install/instantiate/...

The Blackblock database is protected within a specific channel that has connec-
tions to the permissioned stakeholders. The channel configurations and associated
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information are defined before starting the blockchain network. The channel is re-
sponsible for establishing a sub-network where peer nodes could share the database
within the organizations.

The blockchain network of the EA-POT framework emphatically complies with
promoting a trustless trust environment using the distributed docker instances.
The network offers ledger services across the connected nodes. It enables the nodes
to readily keep the database for querying or modifying or manipulating the records
in the database.

5.2 BlackBlock Database

The proposed EA-POT framework has a specific data structure to append blacklisted
IP addresses into the BlackBlock database. The data in the database is appended
as backlinked listed blocks for every initiation of transactions by peer nodes. The
blocks are identified by hashes which include the previous hash values of the block-
chain and the state of the blocks [37].

Each block is appended with a data structure that includes IP addresses, source
port addresses, destination port addresses, and country information. Typically, the
chaincode policies determine the entry of the blacklisted IP into the BlackBlock
database.

The data appended into the database is sequential and immutable. The moment
an entry would be registered into the ledger in a channel, the data will be visible
to all available peer nodes of the channel.

5.3 Processes Involved

The processes involved in the entire life cycle of the EA-POT framework for register-
ing the blacklisted IP addresses into the permissioned blockchain are described as
steps below:

1. Initiation: In this step, the honeypot data engine and blockchain networks
are initiated on top of the Kubernetes cluster. This means that the services
are enabled at servers to attract potential hackers. In addition, the channel
and peer networks are activated for implementing chaincode policies.

2. Predictions: Based on the available data, the learning models are created
using sophisticated algorithms, such as RFM, LRM, and SVM. The generated
regression models are utilized for predicting the future potential hacker IP
addresses.

3. Explanations: Using the generated prediction models, explanations are de-
veloped using the independent variables of the models in the EA-BOT frame-
work. The explanations are linked to the chaincode policies of the policy
stakeholders of the blockchain network such that the stakeholders govern the
control of blockchain transactions, including Explainer-AI.
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4. Chaincode Instantiation: The stakeholders of the EA-POT framework are re-
sponsible for collectively agreeing upon entering the predicted IPs to blacklist
them. Chaincode policies are defined in the EA-POT framework such that the
stakeholders are diverse in nature – i.e., one stakeholder is Explainer-AI.
This stakeholder evaluates the model that manifests a higher threshold of
agreement while blacklisting IPs; another stakeholder is a representative of
country authorities who approves and disapproves the blacklisted IPs – i.e.,
IP Approving Authority. This stakeholder evaluates the IPs concerning the
country-wide policies set up for IPs; the other stakeholder is a netizen/expert
who has a wide experience in executing a similar kind of applications and have
the knowledge to judge the genuineness of actions to some confidence level.
This stakeholder is named as Cybercrime Official, and the last stakeholder
of the EA-POT framework is responsible for evaluating the IPs based on the
genuineness of country-specific information.

5. Transactions: Once when the stakeholders agree on the possibility of the
vulnerability of an IP address impacted on honeypots, the transaction to
blacklist the IP address as an entry to the BlackBlock database is initiated
by the orderer service of the hyperledger fabric-based permissioned blockchain
[38]. Figure 2 illustrates the processes involved in the EA-POT framework in
a pictorial form.

Figure 2: Processes Involved in the EA-POT Framework

6 Experimental Results

This section explains the experiments held at the IoT Cloud research laboratory. At
first, the experimental setup is explained; next, the validation and prediction results
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of identifying the potential IP addresses of hackers using prediction algorithms are
explored; next, the application of explainable AI concepts, while including them in
blockchains, for approving the transactions is discussed; and, at last, the entry of
predicted IPs into the BlockBlack immutable database is showcased.

6.1 Experimental Setup
To mimic the scenario of receiving IP addresses into the honeypot engine of the
EA-POT framework, AWS honeypot dataset [33] was utilized in the experiments.
The honeypot dataset had 451581 rows of data with information, such as hacker IP
addresses, country of origin, source port address, destination port address, latitude
and longitude of the hacker, postal code, protocol, and date/time of the incident.
Although any honeypot dataset could be applied for predicting potential hackers,
in this work, the AWS honeypot dataset was utilized for the prediction models
RFM, LRM, and SVM, to reveal the capability of the framework.

All experiments were carried out on four machines of IoT cloud research lab-
oratory – i) a DELL precision tower 7810 machine which consists of 48 CPUs.
This node serves as the master node of the Kubernetes cluster; and, ii) three i7
processor machines which serve as the worker node of the cluster. These nodes
were interconnected based on the Calico networking policies [34] of the Kubernetes
cluster.

On top of the Kubernetes cluster, a hyperledger-based permissioned blockchain
was set up with the following configurations: fabric v2.0, dockerv19.03, and golang
version 1.14. Four docker instances were established that represent the policy stake-
holders of EA-POT, such as:

explainer-ai.com,
ip-approve-authority.com,
cybercrime-aiciiit.com, and
netizen.com.

The blockchain network was established using these docker machines that rep-
resent the organizations. Each organization had one peer for installing, instan-
tiating, and executing the chaincode policies; the blockchain network had one
channel to hold the blockchain ledger consisting of honeypot IPs; the peer of the
cybercrime-aiciiit.com served as the orderer of the permissioned blockchain
setup of the EA-POT framework.

For providing predictions, algorithms, namely, RFM, LRM, and SVM were writ-
ten using R version 4.0.0. The prediction algorithms utilized 50 percent training
data and the other 50 percent testing data during the validation processes.

6.2 Honeypot Data – Validation of Algorithms
Analyzing honeypot data of AWS using prediction algorithms, such as RFM, LRM,
and SVM of the EA-POT framework could provide a better insight into the efficiency
of the algorithms. Hence, the validation of subsets of data was analyzed. Figure 3
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reveals the R2 values of the prediction results. For RFM experiments, the number
of trees was chosen as 100 (ntree=100) and the number of variables sampled at
each split was chosen as 2 (i.e., ntry=2). For SVM experiments, the kernel was
fixed as “linear“; the coefficient value was fixed as “0“; cache memory was chosen as
40 MB; the tolerance of termination criterion was chosen as 0.001; and, the epsilon
value was fixed as 0.1. Additionally, the model was allowed to undergo probability
predictions. For LRM experiments, the model type was chosen as “responsive“. All
prediction experiments were carried out such that the variable “ipnumber“ of the
dataset was chosen as the dependent variable; and, the independent variables were
considered as “country code“, “source port address“, and “destination port address“.
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Figure 3: R2 Values of RFM, LRM, and SVM

The following points could be observed from the Figure 3:

1. RFM algorithm performs well when compared to the other two algorithms
of consideration. It could be observed that RFM has achieved around 99.99
percent accuracy when compared to the 85.4 percent accuracy of SVM.
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2. Similarly, the prediction algorithm performs better when the training data
size increases. For instance, the R2 value of the SVM algorithm improved
from 79.6 percent to 86.4 percent when the data size was increased from 2326
to 89795.

In addition, experiments were performed to study the variation of the predic-
tion accuracy (R2) while choosing different parameters in modeling algorithms. For
instance, the R2 value of SVM was reduced to 76.4 when the SVM modeling algo-
rithm was executed with kernel=“radial“, coefficient=0, tolerance=0.01, epsilon =
1, and the probability of prediction was set to TRUE.

The time required for predicting these algorithms increased for a certain subset
of analysis data. Table 1 illustrates the time required for processing data TDP ,
time for modeling data TM , and time for predicting data TP .

Table 1: Time Measured in Seconds For Data Processing, Modeling, and Prediction

Dataset Algorithm TDP TM TP
RFM 2.52 0.76 0.02
LRM 2.42 0.01 0.0022325x2326
SVM 2.33 1.3 0.08
RFM 2.76 2.12 0.04
LRM 2.45 0.017 0.00144624x4625
SVM 2.37 4.95 0.32
RFM 3 3.75 0.23
LRM 2.66 0.04 0.00223057x23058
SVM 2.57 2.3 7.1
RFM 3.26 1.68 0.75
LRM 3.05 0.211 0.0145807x45807
SVM 3.18 11.8 27.3
RFM 3.04 3.48 1.13
LRM 3.14 0.19 0.0467697x67697
SVM 3.82 1.58 58.51
RFM 3.14 5.98 1.107
LRM 3.13 0.32 0.00489794x89795
SVM 3.69 1.08 65.71

Table 1 pinpoints that the modeling time was dependent on the available dataset.
Increasing the data size of the dataset had an increase in the modeling and pre-
diction time – i.e., RFM algorithm required TM = 0.76 seconds and TP = 0.02
seconds for 2325 x 2326; whereas, the same algorithm took over TM = 1.08 seconds
and TP = 65.71 seconds for 89794 x 89795.

Another feature that was observed from Table 1 is the increasing prediction time
of SVM when compared to LRM or RFM. Note that the prediction time of SVM
reached 65.71 seconds when compared to RFM of 1.107 seconds. The average data



EA-POT: An Explainable AI Assisted Blockchain Framework... 165

processing time reached 3 seconds for all these prediction algorithms. The data
processing involved loading data, initializing dependent and independent variables,
and splitting the training and testing dataset of the AWS honeypot data.

In addition, it was observed that varying the parameters of modeling algo-
rithms influenced the TM . For instance, the RFM algorithm showed an increasing
modeling time when experimented with more number of splits in variables while
constructing the random trees – i.e., TM reached 10.92 seconds when RFM was
executed with ntree=4 in contrary to TM = 5.98sec. for ntree=2 of 89794 x 89795
dataset (see Table 1).

6.3 Prediction Results

Having validated the model, the potential hacker IP addresses were predicted for
the specific location using RFM, LRM, and SVM algorithms. The prediction re-
sults obtained for a few candidate locations, when experimented with the RFM
algorithm, are shown in Table 2.

The prediction of potential IP addresses that fall prey to the honeypot engine
of organizations was reported in Table 2 using RFM prediction algorithm. In fact,
the other algorithms could also be reported as similar to RFM. However, the reason
for choosing RFM is because of its higher prediction accuracy when compared to
the other algorithms namely LRM and SVM.

As shown in Table 2, the potential IP addresses that could harm organizations,
that reach the honeypots, were initially predicted as numbers. Later, the numeric
IP addresses were converted to IP numbers based on the iptools utility of R
programs.

Table 2: Prediction of IP Addresses of Honeypot using RFM

Sl.No Latitude Longitude IP Addresses Country
1 37.49 127.02 218.237.65.47 South Korea
2 40.45 -105.46 129.82.138.44 United States
3 52.35 4.9167 8.16.85.133 Netherlands
4 55.154 61.429 31.207.238.106 Russia
5 39.715 -75.5281 199.59.160.152 United States
6 31.8639 117.2808 25.9.68.20 China
7 37.4906 127.02 60.173.14.88 China

6.4 Explainability Analysis

Explainability features of prediction algorithms reveal the prior importance of ac-
curate predictions. The predictions carried out at EA-POT framework utilizes R2

values to explain the importance of independent variables of prediction algorithms.
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It is a known fact that most of the available models are considered black boxes – i.e.,
they may bestow better predictions without hinting at the reasons for achieving a
better accuracy or without pointing out the most impacting independent variables
for achieving the accuracy. In succinct, apt independent variables must be chosen
for gaining better prediction results.

To manifest the influence of the choice of independent variables in the prediction
results, experiments were carried out by varying the involvement of independent
variables in the prediction processes of prediction algorithms.

In the experiments, three selection options S1, S2, and S3 were considered.
The selections were organized to choose certain columns of the dataset – i.e., S1
utilized latitude, date, longitude, country code, source port, and destination port
as independent variables while predicting the IP addresses; S2 utilized protocol,
source port, and destination port addresses; and, S3 utilized all variables, such
as date of occurrence, hostname, latitude, longitude, country code, source port,
destination port, country name, and postal code for predicting the blacklisted IP
addresses.

The explainability features of prediction algorithms were utilized by the block-
chain chaincodes of the EA-POT framework. Figure 4 manifests that the variation
in choosing inappropriate independent variables could lead to potential prediction
inaccuracies – for instance, S3 has only 7.35 percent accuracy while predicting the
IP addresses that reach the honeypots.

S1 S2 S3

RFM 99.99 97.3 20.12

LRM 95.45 89.25 12.34

SVM 85.4 79.45 7.35
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Figure 4: Variations in R2 Values Depending on Independent Variables

6.5 Blockchain Transactions

It is not advisable to blindly choose the predicted IP address and protect the
intended organizations or take countermeasures on the defaulters. Listing potential
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IP addresses, therefore, needs to be diligently handled.
In EA-POT framework, permissioned blockchains using hyperledger fabric were

applied. The master and worker nodes are set up such that docker instances repre-
senting the peer nodes of the blockchain network are executed on the Kubernetes
cluster. During the experiments, the time taken to establish the Kubernetes clus-
ter by the master node on three working nodes was 245.72 seconds. The clustering
has several steps, such as creating the master node, joining worker nodes, deploying
docker pods that represent the blockchain organizations, and specifying the domain
names of the organizations for the fully operational cluster.

Once the predictions were carried out by the master node of the Kubernetes
cluster, the predicted IPs are initiated as blockchain transactions by a peer node
of the blockchain network. Note that all peer nodes install and instantiate the
chaincodes – i.e., the policies for defining whether to register the IP address as
blocklist into the BlackBlock database. In EA-POT framework, the organizations
that approve the blockchain transactions are i) IP Approving Authority, ii) EA-POT
Explainer, iii) CyberCrime Official, and iv) Netizen/Expert.

The time taken by the peer nodes of the blockchain network to install and query
chaincodes was 13.35 seconds of which 12.78 seconds were spent on the installation
of chaincode policies.

Predicting blacklisted IPs may not be successful at all times due to the accuracy
of algorithms. Accordingly, it is not a good solution to blacklist all predicted IPs.
Hence, in the proposed framework, the stakeholders of blockchains, based on the
policies, decide to collectively agree on the IP addresses before they were registered
in the immutable database.

To demonstrate the viability of choosing stakeholders for deciding the registry
of IP addresses in the BlackBlock database, a few experiments reported in Table 2
were repeated. It was observed that all IP addresses that were predicted by the
RFM algorithm in the experiments were not committed to the database – i.e., IP
addresses “8.16.85.133“ and “25.9.68.20“ pointing to the latitude and longitude of
countries, such as the Netherlands and China were incorrect. This is because a

Table 3: IP Addresses Committed to the BlackBlock Database

Table
Entry

Approver 1
(IP Approving
Authority)

Approver 2
(Explainer-AI)

Approver 3
(Cybercrime
Official)

Approver 4
(Netizen
Expert)

BlackBlock
(Committed)

1 X X X X X
2 X X X X X
3 X X X
4 X X X X X
5 X X X X X
6 X X X
7 X X X X X
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few predictions could lead to wrong IP addresses when applied using prediction
models. Accordingly, all policy stakeholders of the Blockchain network, namely the
IP Approving Authority, did not approve the entry of registering the IP addresses
to the BlackBlock database (see Table 3). Hence, only the IP addresses that were
approved by all stakeholders were committed to the database.

Table 3 illustrates the records that were registered into the BlackBlock database.
The database, being an immutable database, could not be modified by participants,
including the intra-organizational participants. Thus, the proposed EA-POT frame-
work achieves better efficiency in handling cybercrimes without any modifications
to the predicted honeypot IP addresses.

7 Conclusion

The process of converting potential cyber threats into threat discoveries, learning,
and ultimately developing security-enabled products, such as honeypots has been
evidenced in recent years in various domains, such as IIoT and Cloud environments.
Initial efforts to predict the potential hackers, either by establishing honeypots or
the other cybersecurity features, predominantly save time and protect the limited
compute resources from hackers, especially on cloud-based IoT services. Prediction
approaches of the past indicate that blackbox prediction approaches were practiced
with limited utility. Additionally, the hacker information was not well-protected,
especially when the hacking was carried out within an organization by an insider
employee.

This article proposed an Explainable AI-Assisted Blockchain Framework for
honeypot IP predictions named EA-POT framework. The proposed framework ap-
plied explainable features of prediction models, such as Random Forest Modeling,
Support Vector Machine, and Linear Regression Modeling, to approve the registry
of predicted blacklisted IPs into the Blockchain database along with the other ap-
provers, such as CyberCrime official of a country/region.

Experiments were carried out in the IoT Cloud research laboratory by establish-
ing a hyperledger-fabric permissioned blockchain on top of the Kubernetes cluster
consisting of four experimental compute nodes. The experiments manifested the
efficiency of the proposed EA-POT framework using AWS honeypot use cases. The
article explored the findings and reported how the EA-POT framework blacklisted
potential IPs based on the policy stakeholders involving the explainable AI features
of prediction models.
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