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Dense Languages and Non Primitive Words

Toshihiro Kogaab

Abstract

In this paper, we are concerned with dense languages and non primitive
words. A language L is said to be dense if any string can be found as a
substring of element of L. It is known that if a regular language R is dense,
then R contains infinitely many non-primitive words. Then it is natural to
ask whether this result can be generalized for a wider class of dense languages.
In this paper, we actually obtain such generalization.
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1 Introduction

1.1 Density and asymptotic density

Let Σ be a non-empty finite set of distinct symbols with |Σ| ≥ 2. A language
L ⊆ Σ∗ is said to be dense (in Σ∗) iff Σ∗sΣ∗ ∩ L 6= ∅ for any s ∈ Σ∗, and L is
said to be thin (in Σ∗) iff L is not dense in Σ∗. The concept of dense languages
is important in code theory (e.g., [1, 2]), and many classifications and properties
of dense languages are already known (e.g., [6, 8, 13]). Next, for L ⊆ Σ∗ and
n ≥ 0, let Dn(L) := |L ∩Σn|/|Σn|. Moreover, let D∗(L) := limn(1/n)

∑n−1
i=0 Di(L)

(asymptotic density of L), provided that the limit exists. Then L is said to have
positive asymptotic density iff D∗(L) exists and D∗(L) > 0. Although D∗(L) does
not necessarily exist in general, we can easily show (by Theorem III.6.1 of [12]) that
if R is a regular language, then D∗(R) always exists. Moreover, the same Theorem
III.6.1 implies that if R is regular, then D∗(R) = 0 iff limnDn(R) = 0. Some other
basic properties of asymptotic density can be found in Chapter 13 of [2].

1.2 Dömösi-Horváth-Ito conjecture

Let REG be the family of all regular languages over Σ and CFL be the family of
all context-free languages over Σ. Let QΣ ⊆ Σ+ be the set of all primitive words.
In formal language theory, Dömösi-Horváth-Ito conjecture states that QΣ /∈ CFL.
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This conjecture was first suggested in [3], and still remains open. Some strategies
for approaching this conjecture can be found in [4]. In 2020, Ryoma Syn’ya [16]
suggested a new strategy for approaching QΣ /∈ CFL. He proved that any regular
language with positive asymptotic density always contains infinitely many non-
primitive words. Precisely, his theorem can be stated as follows:

Theorem 1.1 (Ryoma Sin’ya [16]). Let R ∈ REG satisfy D∗(R) > 0. Then there
exists z ∈ Σ+ and p ≥ 1 such that zpn+1 ∈ R (∀n ≥ 0). In particular, we cannot
have R ⊆ QΣ for such R.

This result states that QΣ does not have good lower approximations by regular
languages. Since D∗(QΣ) = 1, we obtain QΣ /∈ CFL, provide that we have:

Claim 1.1. Let L ∈ CFL satisfy D∗(L) = 1. Then there exists R ∈ REG such
that R ⊆ L and D∗(R) > 0.

If this claim is true, then in view of D∗(QΣ) = 1, we can conclude from Theorem
1.1 and Claim 1.1 that QΣ /∈ CFL. However, in fact, the above Claim 1.1 is actually
false. A counter-example is implicitly shown in [16, Theorem 14], and directly
shown in [17]. Specifically, let Σ = {a, b} and L = {v ∈ Σ∗ | |v|a ≤ 2|v|b}. Then we
can show that this is a counter-example. Therefore, we need some generalizations
of Theorem 1.1 if we continue his strategy. Aside from this, Theorem 1.1 itself is
of independent interest, because this result states a non-trivial connection between
asymptotic density and primitive words. In this paper, we are concerned with such
connections, and we generalize Theorem 1.1 for a wider class of dense languages.

2 Main result
In this section, we state our main result. We first begin with a connection between
density and positive asymptotic density for regular languages:

Theorem 2.1 (Ryoma Sin’ya [15]). Let R ∈ REG. Then limnDn(R) = 0 if and
only if R is thin.

A simple proof of this theorem can also be found in [7]. As we have already
mentioned in Section 1, if R is regular, then limnDn(R) = 0 iff D∗(R) = 0.
Moreover, if R is regular, thenD∗(R) always exists. Combining these with Theorem
2.1, it follows that if R is regular, then R is dense iff R has positive asymptotic
density. Hence, we can restate Theorem 1.1 as follows:

Theorem 2.2. Let R ∈ REG be dense. Then there exists z ∈ Σ+ and p ≥ 1 such
that zpn+1 ∈ R (∀n ≥ 0).

As we have just mentioned, Theorem 2.2 is equivalent to Theorem 1.1, Now
we generalize Theorem 2.2 for a wider class of dense languages. We first introduce
some notations. Let TL := {L ⊆ Σ∗ | L is thin}, i.e., TL is the set of all thin
languages over Σ. Next, For any set X, let 2X denote the power set of X. For any
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N ⊆ 2Σ∗ , we define Γ(N ) ⊆ 2Σ∗ as the regular closure of N . In other words, we
define Γ(N ) as the smallest set such that

N ⊆ Γ(N ), ∀L1, L2 ∈ Γ(N ) [ L1 ∪ L2, L1L2, L
∗
1 ∈ Γ(N ) ].

Then, our result can be stated as follows:

Main Theorem 2.3. Let L ∈ Γ(TL) be dense. Then we have

∀u, v ∈ Σ∗, ∃z ∈ Σ∗vΣ∗, ∃p ≥ 1, ∀n ≥ 0 [ (zu)pnz ∈ L ]. (1)

Since REG = Γ({∅} ∪ {{a} | a ∈ Σ}) and {∅} ∪ {{a} | a ∈ Σ} ⊆ TL, we have
REG ⊆ Γ(TL), and in fact REG ( Γ(TL). Moreover, if L ⊆ Σ∗ satisfies the
condition (1), then there exists z ∈ Σ+ and p ≥ 1 such that zpn+1 ∈ L (∀n ≥ 0).
This implies that Theorem 2.2 is just a special case of Main Theorem 2.3. In other
words, Main Theorem 2.3 is a generalization of Theorem 2.2 (and Theorem 1.1).

The rest of this paper is structured as follows. In Section 3, we provide some
lemmas related to monoids. In Section 4, we prove Main Theorem 2.3. In Section
5, we show that Main Theorem 2.3 is a non-trivial generalization of Theorem 2.2.
In Section 6, we state some remarks. In Section 7, we state related work.

We assume that the reader is familiar with Regular languages and semigroup
theory. For basic information about these topics, see, e.g., [10].

3 Some lemmas related to monoids
In this section, we provide some lemmas related to monoids.

Definition 3.1. Let X be a monoid. Then L ⊆ X is said to be dense in X iff
XsX ∩L 6= ∅ for any s ∈ X, and L is said to be thin in X iff L is not dense in X.

Lemma 3.1. Let X be a monoid. Let n ≥ 1 and A1, · · · , An ⊆ X. If ∪ni=1Ai is
dense in X, then Ai is dense in X for some i ∈ [1, n].

Proof. The proof is essentially the same as [4, Proposition 2.2.1].

Lemma 3.2. Let A1, A2 ⊆ Σ∗. If A1A2 is dense in Σ∗, then Ai is dense in Σ∗ for
some i ∈ {1, 2}.

Proof. Suppose that A1 and A2 are thin. Then Σ∗viΣ
∗ ∩ Ai = ∅ for some vi ∈

Σ∗ (i = 1, 2). Since A1A2 is dense, we have Σ∗v1v2Σ∗ ∩ A1A2 6= ∅, so there exists
x, y ∈ Σ∗ and ai ∈ Ai (i = 1, 2) such that xv1v2y = a1a2. Then, v1 is a substring
of a1, or v2 is a substring of a2. This contradicts the definition of v1 and v2.

Lemma 3.3. Let M be a finite monoid. Then we have the following:
(i) Let t, x, y ∈M satisfy t = xty. Then xmt = t = tym for some m ≥ 1.
(ii) Let t, u, x, y ∈ M satisfy t = xtuty. Then (tu)pt = t for some p ≥ 1. In
particular, for any n ≥ 1 we have (tu)pnt = t.
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Proof. (i): Since M is finite, we have ∃m ≥ 1, ∀z ∈ M [ zm is idempotent ] (see
[10, Proposition 6.33]). Now assume that t = xty. Then t = xty = x2ty2 = · · · =
xmtym, so xmt = (xm)2tym = xmtym = t. Similarly, tym = t.
(ii): If t = xtuty, then t = (x)t(uty), so t = t(uty)m for some m ≥ 1 by (i). Then
t = t(uty)(uty)m−1 = (tu)t(y(uty)m−1), so (tu)pt = t for some p ≥ 1 by (i).

Lemma 3.4. Let M be a finite monoid. Let X be a monoid. Let η : X →M be a
monoid homomorphism. Let S ⊆M . Let R := η−1(S) (⊆ X). If R is dense in X,
then we have the following:

∀u, v ∈ X, ∃z ∈ XvX, ∃p ≥ 1, ∀n ≥ 0 [ (zu)pnz ∈ R ].

Proof. Since R is dense in X, we have R 6= ∅. In view of R = η−1(S), we have
S 6= ∅. Next, we have R = η−1(S) = ∪t∈Sη−1({t}). Since R is dense, ∪t∈Sη−1({t})
is also dense. Since “∪t∈S” is a non-empty finite union, we can apply Lemma 3.1,
so η−1({t}) is dense for some t ∈ S. Now let u, v ∈ X be arbitrary. Since η−1({t})
is dense in X, we have XvX ∩ η−1({t}) 6= ∅, so xvy ∈ η−1({t}) for some x, y ∈ X.
Let z := xvy. Then z ∈ XvX and η(z) = t. Next, since η−1({t}) is dense, we
have XzuzX ∩ η−1({t}) 6= ∅, so x′zuzy′ ∈ η−1({t}) for some x′, y′ ∈ X. Then
η(x′zuzy′) = t, i.e., η(x′)η(z)η(u)η(z)η(y′) = t. Keeping in mind η(z) = t, we
have η(x′)tη(u)tη(y′) = t. By assumption on M , we can apply (ii) of Lemma 3.3,
so there exists p ≥ 1 such that (tη(u))pnt = t (∀n ≥ 1). Since η(z) = t, we have
η((zu)pnz) = (tη(u))pnt = t (∀n ≥ 1), so (zu)pnz ∈ η−1({t}) ⊆ R (∀n ≥ 1). In
addition, if n = 0, then (zu)pnz = z ∈ η−1({t}) ⊆ R. In summary,

z ∈ XvX, p ≥ 1, (zu)pnz ∈ R (∀n ≥ 0).

Thus we complete the proof.

Lemma 3.5. Let X be a monoid. Let X0 ⊆ X be a submonoid. Let Q be a
non-empty finite set. Let L ⊆ X and s ∈ X. Let R : (Q×Q)→ 2X . Assume that

(i) ∀n ≥ 1, ∀x1, · · · , xn ∈ X0, ∃p0, · · · , pn ∈ Q, ∀i ∈ [1, n] [ xi ∈ R(pi−1, pi) ],

(ii) ∀p, q ∈ Q, ∃t0, t1 ∈ X0 [ t0sR(p, q)st1 ⊆ L ],

(iii) ∀p, q, r ∈ Q [ R(p, q)sR(q, r) ⊆ R(p, r) ].

Then we have the following:

∀x, y ∈ X0, ∃z ∈ XyX, ∃p ≥ 1, ∀n ≥ 0 [ (zx)pnz ∈ L ]. (2)

Proof. STEP1: Let cx (∀x ∈ X0) be new distinct symbols, and let Σ0 := {cx | x ∈ X0}.
Note that Σ0 can be an infinite set (of distinct symbols). We can trivially verify

∀n ≥ 1, ∀v = v1v2 · · · vn ∈ Σn0 , ∃x1, · · · , xn ∈ X0, ∀i ∈ [1, n] [ vi = cxi
].

Next, let M be the set of all maps from 2Q to 2Q. For any f, g ∈ M , we define
f ◦ g ∈ M as (f ◦ g)(U) := g(f(U)) (∀U ∈ 2Q). We also define id2Q ∈ M as
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id2Q(U) := U (∀U ∈ 2Q). Note that (M, ◦, id2Q) is a finite monoid. We define a
monoid homomorphism η : Σ∗0 → M as follows: Let ε ∈ Σ∗0 be the empty string.
We first define η(ε) := id2Q . Next, for x ∈ X0, we define η(cx) ∈M as

η(cx)(U) := {q ∈ Q | ∃p ∈ U [ x ∈ R(p, q) ] } for U ∈ 2Q. (3)

Next, for n ≥ 2 and v = v1v2 · · · vn ∈ Σn0 , we define η(v) := η(v1) ◦ η(v2) ◦ · · · η(vn).
By this definition, we can easily show that η : Σ∗0 →M is a monoid homomorphism.
Moreover, by induction on |v| ≥ 0, we can easily verify the following:

∀v ∈ Σ∗0, ∀U1, U2 ∈ 2Q [ U1 ⊆ U2 ⇒ η(v)(U1) ⊆ η(v)(U2) ]. (4)

STEP2: For any p, q ∈ Q, we define Ap,q := {v ∈ Σ∗0 | q ∈ η(v)({p})}. Note that
ε ∈ Ap,p for any p ∈ Q. Moreover, we can trivially verify that

∀v, w ∈ Σ∗0 [ η(v) = η(w)⇒ ∀p, q ∈ Q [ v ∈ Ap,q ⇔ w ∈ Ap,q ] ]. (5)

Next, we show

∀p, q, r ∈ Q [ Ap,qAq,r ⊆ Ap,r ]. (6)

Let v ∈ Ap,q and w ∈ Aq,r be arbitrary. Then q ∈ η(v)({p}) and r ∈ η(w)({q}).
In particular, {q} ⊆ η(v)({p}). By (4), we have η(w)({q}) ⊆ η(w)(η(v)({p})) =
(η(v)◦η(w))({p}) = η(vw)({p}). In view of r ∈ η(w)({q}), we have r ∈ η(vw)({p}),
so vw ∈ Ap,r. Thus we obtain (6). Next, we show

∀v ∈ Σ∗0, ∃p, q ∈ Q [ v ∈ Ap,q ]. (7)

Since ε ∈ Ap,p for any p ∈ Q, we have only to show

∀v ∈ Σ+
0 , ∃p, q ∈ Q [ v ∈ Ap,q ].

Let n ≥ 1 and v = v1 · · · vn ∈ Σn0 be arbitrary. There exists x1, · · · , xn ∈ X0

such that vi = cxi
(∀i ∈ [1, n]). By (i), there exists p0, · · · , pn ∈ Q such that

xi ∈ R(pi−1, pi) (∀i ∈ [1, n]). For any i ∈ [1, n], it follows from (3) that

η(cxi
)({pi−1}) = {q ∈ Q | ∃p ∈ {pi−1} [ xi ∈ R(p, q) ] }

= {q ∈ Q | xi ∈ R(pi−1, q)} 3 pi,

i.e., pi ∈ η(cxi
)({pi−1}), so cxi

∈ Api−1,pi . In view of (6), we have

v = cx1
cx2
· · · cxn

∈ Ap0,p1Ap1,p2 · · ·Apn−1,pn ⊆ Ap0,pn .

Thus we obtain (7).
STEP3: We define g : Σ+

0 → X as follows: For any x ∈ X0, we define g(cx) := x.
For any n ≥ 2 and v = v1v2 · · · vn ∈ Σn0 , we define g(v) := g(v1)sg(v2)s · · · sg(vn).
Note that we have g(vw) = g(v)sg(w) for any v, w ∈ Σ+

0 . Then we can easily verify

∀v, w ∈ Σ+
0 , ∀n ≥ 1 [ g(vnw) = (g(v)s)ng(w) ]. (8)
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Next, we show

∀v ∈ Σ+
0 , ∀p, q ∈ Q [ v ∈ Ap,q ⇒ g(v) ∈ R(p, q) ]. (9)

The proof is by induction on |v| ≥ 1. We first show the case |v| = 1. Let v ∈ Σ1
0

and p, q ∈ Q satisfy v ∈ Ap,q. We have v = cx for some x ∈ X0. In view of v ∈ Ap,q,
we have q ∈ η(v)({p}). In addition,

η(v)({p}) = η(cx)({p}) = {q′ ∈ Q | ∃p′ ∈ {p} [ x ∈ R(p′, q′) ] }
= {q′ ∈ Q | x ∈ R(p, q′)} ,

so q ∈ {q′ ∈ Q | x ∈ R(p, q′)}, i.e., x ∈ R(p, q). Since g(v) = g(cx) = x, we obtain
g(v) ∈ R(p, q). Thus we obtain (9) for |v| = 1. Next, let n ≥ 1 be arbitrary.
Assume that (9) holds for |v| = n. Let v ∈ Σn+1

0 and p, q ∈ Q satisfy v ∈ Ap,q. We
can write v = wcx for some w ∈ Σn0 and x ∈ X0. In view of v ∈ Ap,q, we have

q ∈ η(v)({p}) = η(wcx)({p}) = (η(w) ◦ η(cx))({p}) = η(cx)(η(w)({p}))
= {q′ ∈ Q | ∃p′ ∈ η(w)({p}) [ x ∈ R(p′, q′) ] } ,

so there exists p′ ∈ η(w)({p}) such that x ∈ R(p′, q). In view of p′ ∈ η(w)({p}),
we have w ∈ Ap,p′ . By inductive hypothesis, we have g(w) ∈ R(p, p′). Then
g(v) = g(wcx) = g(w)sg(cx) = g(w)sx ∈ R(p, p′)sR(p′, q). By (iii), we have
R(p, p′)sR(p′, q) ⊆ R(p, q), so g(v) ∈ R(p, q). Thus we obtain (9) for |v| = n + 1.
By induction, we obtain (9).
STEP4: Let F := η(Σ∗0) ⊆ M . Then F is a non-empty finite set. Moreover, we
trivially have η : Σ∗0 → F , so Σ∗0 = ∪f∈F η−1({f}). In particular, ∪f∈F η−1({f})
is dense in Σ∗0. By Lemma 3.1, η−1({f}) is dense in Σ∗0 for some f ∈ F . At this
point, we obtain the following:

• M is a finite monoid, Σ∗0 is a monoid, η : Σ∗0 →M is a monoid homomorphism,
{f} ⊆M , and η−1({f}) ⊆ Σ∗0 is dense in Σ∗0.

Then we can apply Lemma 3.4, and we obtain

∀u, v ∈ Σ∗0, ∃z ∈ Σ∗0vΣ∗0, ∃p ≥ 1, ∀n ≥ 0 [ (zu)pnz ∈ η−1 ({f}) ].

Since f ∈ F = η(Σ∗0), we have f = η(w) for some w ∈ Σ∗0. Then, for any w′ ∈
η−1({f}), we trivially have η(w′) = η(w). Thus we obtain

∀u, v ∈ Σ∗0, ∃z ∈ Σ∗0vΣ∗0, ∃p ≥ 1, ∀n ≥ 0 [ η((zu)pnz) = η(w) ]. (10)

Next, by (7), we have w ∈ Ap,q for some p, q ∈ Q. By (ii), we have t0sR(p, q)st1 ⊆ L
for some t0, t1 ∈ X0. Now let x′, y′ ∈ X0 be arbitrary. Let x := t1x

′t0. Since
x′, t0, t1 ∈ X0 and X0 is a monoid, we have x ∈ X0. Then cx, cy′ ∈ Σ0 ⊆ Σ∗0, so we
can apply (10), i.e., there exists z ∈ Σ∗0cy′Σ

∗
0 and p ≥ 1 such that η((zcx)pnz) =

η(w) (∀n ≥ 0). Since w ∈ Ap,q, we obtain (zcx)pnz ∈ Ap,q (∀n ≥ 0) by (5).
Since z ∈ Σ∗0cy′Σ

∗
0 ⊆ Σ+

0 , we have (zcx)pnz ∈ Σ+
0 (∀n ≥ 0), so g((zcx)pnz) ∈
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R(p, q) (∀n ≥ 0) by (9). Then t0sg((zcx)pnz)st1 ∈ t0sR(p, q)st1 ⊆ L (∀n ≥ 0). In
short,

∀n ≥ 0 [ t0sg((zcx)pnz)st1 ∈ L ]. (11)

Let z′ := t0sg(z)st1. We show t0sg((zcx)pnz)st1 = (z′x′)pnz′ (∀n ≥ 0). If n = 0,
then t0sg((zcx)pnz)st1 = t0sg(z)st1 = z′ = (z′x′)pnz′. If n ≥ 1, then keeping in
mind x = t1x

′t0 and (8), we have

g((zcx)pnz) = (g(zcx)s)png(z) = (g(z)sg(cx)s)png(z)

= (g(z)sxs)png(z) = (g(z)st1x
′t0s)

png(z),

so

t0sg((zcx)pnz)st1 = t0s(g(z)st1x
′t0s)

png(z)st1

= (t0sg(z)st1x
′)pnt0sg(z)st1 = (z′x′)pnz′.

Thus we obtain t0sg((zcx)pnz)st1 = (z′x′)pnz′ (∀n ≥ 0). Combining this with (11),
we obtain (z′x′)pnz′ ∈ L (∀n ≥ 0). Moreover, since z ∈ Σ∗0cy′Σ

∗
0, we can write

z = αcy′β for some α, β ∈ Σ∗0. If α, β ∈ Σ+
0 , then g(z) = g(α)sy′sg(β) ∈ Xy′X.

Similarly, we obtain g(z) ∈ Xy′X in the case of α = ε or β = ε. Then z′ =
t0sg(z)st1 ∈ Xy′X. In summary, we obtain

∀x′, y′ ∈ X0, ∃z′ ∈ Xy′X, ∃p ≥ 1, ∀n ≥ 0 [ (z′x′)pnz′ ∈ L ].

Thus we complete the proof.

4 Proof of Main Theorem 2.3
In this section, we prove Main Theorem 2.3. For L ⊆ Σ∗, we define H1(L) as

H1(L) : ∀u, v ∈ Σ∗, ∃z ∈ Σ∗vΣ∗, ∃p ≥ 1, ∀n ≥ 0 [ (zu)pnz ∈ L ].

Note that H1(L) is exactly the same statement as (1). Next, we define

M1 := TL ∪ {L ⊆ Σ∗ | H1(L)} .

As for thisM1, we can show the following Lemma:

Lemma 4.1. M1 is closed under regular operations, i.e., we have L1 ∪ L2, L1L2,
L∗1 ∈M1 for any L1, L2 ∈M1.

Once we have obtained this lemma, we can show Main Theorem 2.3 as follows:

Proof. We prove Main Theorem 2.3, provided that Lemma 4.1 is already proved.
First, we trivially obtain TL ⊆M1. Moreover,M1 is closed under regular opera-
tions by Lemma 4.1. By the minimality of Γ(TL), we obtain Γ(TL) ⊆ M1. Now
let L ∈ Γ(TL) be dense. Since Γ(TL) ⊆ M1, we have L ∈ M1. Then L ∈ TL or
H1(L). Since L is dense, we must have H1(L), i.e., L satisfies (1).
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At this point, we have only to show Lemma 4.1. Therefore, the rest of this
section is devoted to showing Lemma 4.1. First, one can trivially verify the closure
ofM1 under union by applying Lemma 3.1 and the following basic fact:

∀A,B ⊆ Σ∗ [ [ A ⊆ B, H1(A) ]⇒ H1(B) ]. (12)

Next, we show the closure under concatenation:

Proof. We first show the following:

∀L1, L2 ⊆ Σ∗ [ [ H1(L1) ∨H1(L2) ]⇒ [ L1L2 = ∅ ∨H1(L1L2) ] ]. (13)

Let L1, L2 ⊆ Σ∗ satisfy H1(L1) ∨H1(L2). If L1L2 = ∅, then we obtain (13). Now
we may assume L1L2 6= ∅. Then L1 6= ∅ and L2 6= ∅, so we can take l1 ∈ L1

and l2 ∈ L2. If H1(L1) holds, then let u, v ∈ Σ∗ be arbitrary. We apply H1(L1)
with l2u and v. Then there exists z ∈ Σ∗vΣ∗ and p ≥ 1 such that (z(l2u))pnz ∈
L1 (∀n ≥ 0). Let z′ := zl2. Then z′ ∈ Σ∗vΣ∗. Moreover, (z′u)pnz′ = (zl2u)pnzl2 =
((zl2u)pnz)l2 ∈ L1l2 ⊆ L1L2 (∀n ≥ 0). Thus we obtain H1(L1L2). Next, if H1(L2)
holds, then let u, v ∈ Σ∗ be arbitrary. We apply H1(L2) with ul1 and v. Then there
exists z ∈ Σ∗vΣ∗ and p ≥ 1 such that (z(ul1))pnz ∈ L2 (∀n ≥ 0). Let z′ := l1z.
Then z′ ∈ Σ∗vΣ∗. In general, we have (xy)nx = x(yx)n for any x, y ∈ Σ∗ and
n ≥ 0, so (z′u)pnz′ = (l1zu)pnl1z = l1(zul1)pnz ∈ l1L2 ⊆ L1L2 (∀n ≥ 0). Thus
we obtain H1(L1L2), and we complete the proof of (13). Now the closure of M1

under concatenation trivially follows from (13), Lemma 3.2, and ∅ ∈ TL.

Finally, we show the closure under Kleene star. For that, we need the following:

Lemma 4.2. Let A ⊆ Σ∗. If A is thin and A∗ is dense, then we have H1(A∗).

Proof. STEP1: Let ε ∈ Σ∗ be the empty string. Let A ⊆ Σ∗. Assume that A
is thin, A∗ is dense, and ε /∈ A. We show H1(A∗) in this case.1 If A = ∅, then
A∗ = {ε}. However, since A∗ is dense, this is a contradiction. Thus we obtain
A 6= ∅. Next, since A is thin, we have Σ∗tΣ∗ ∩ A = ∅ for some t ∈ Σ∗. If t = ε,
then Σ∗Σ∗ ∩ A = ∅, so we must have A = ∅, which is a contradiction. Thus we
obtain t 6= ε. Since A∗ is dense, we have Σ∗tΣ∗ ∩ A∗ 6= ∅, so t′tt′′ ∈ A∗ for some
t′, t′′ ∈ Σ∗. Let s := t′tt′′. Then s 6= ε and s ∈ A∗. If Σ∗sΣ∗ ∩ A 6= ∅, then in
view of Σ∗sΣ∗ ⊆ Σ∗tΣ∗, we have Σ∗tΣ∗ ∩ A 6= ∅, which is a contradiction. Thus
we obtain Σ∗sΣ∗ ∩A = ∅. Next, let Spre be the set of all prefixes of s and Ssuf be
the set of all suffixes of s. Note that we have ε ∈ Spre and ε ∈ Ssuf . Let

S′pre := {β ∈ Spre | ∃w ∈ Σ∗ [ wβ ∈ A ] } ,
S′suf := {γ ∈ Ssuf | ∃w ∈ Σ∗ [ γw ∈ A ] } .

Since A 6= ∅, it is easy to verify that ε ∈ S′pre and ε ∈ S′suf . Next, let

Q :=
{

(β, α, γ) | β ∈ S′pre, γ ∈ S′suf , α ∈ A∗, βαγ = s
}
.

1In fact, the additional assumption ε /∈ A is not essential, but we adopt this assumption for
simplicity.
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Note that Q is a finite set. In addition, since s ∈ A∗, we have (ε, s, ε) ∈ Q, so
Q 6= ∅. Next, for p = (β, α, γ) ∈ Q and q = (β′, α′, γ′) ∈ Q, we define R(p, q) :=
{x ∈ Σ∗ | γxβ′ ∈ A∗}. Let X := Σ∗, X0 := Σ∗, and L := A∗. We show (i), (ii),
and (iii) of Lemma 3.5.
(i): Let n ≥ 1 and x1, · · · , xn ∈ X0. We have to show there exists p0, · · · , pn ∈ Q
such that xi ∈ R(pi−1, pi) (∀i ∈ [1, n]). We first deal with the case n = 1. Then
x1 ∈ X0 is given, and we have to show there exists p0, p1 ∈ Q such that x1 ∈
R(p0, p1). First, since A∗ is dense, we have Σ∗sx1sΣ

∗ ∩A∗ 6= ∅, so usx1sv ∈ A∗ for
some u, v ∈ Σ∗. This implies that we can decompose the whole string usx1sv into
concatenations of strings in A. Keeping in mind Σ∗sΣ∗∩A = ∅, the decomposition
for each s (in usx1sv) is like Fig. 1. Therefore, the decomposition for usx1sv is
like Fig. 2, so p0 := (β, α, γ) ∈ Q and p1 := (β′, α′, γ′) ∈ Q in Fig. 2 satisfies
x1 ∈ R(p0, p1). See also Fig. 3.

s

� �
β

α

γ

s

� �
β

α = ε

γ

s

� �
β

α

γ

s

� �
β

α
γ = ε

s

� �α
β = ε

γ

s

� �α
β = γ = ε

Figure 1: Six examples of decomposition for each s in usx1sv.

u s x1 s v

� � � �
β

α

γ β′

α′

γ′

u s x1 s v

� � � �
β

α = ε

γ β′

α′ = ε

γ′

Figure 2: Two examples of decomposition for usx1sv.

u s
ε

s v

� � � �
β

α

γ β′

α′

γ′

u s
ε

s v

� �� �β = γ = β′ = γ′ = ε
α α′

u s
ε

s v

� � � �
β

α = ε

γ β′

α′ = ε

γ′

Figure 3: Three examples of decomposition for usx1sv with x1 = ε.

In general case n ≥ 1, we have Σ∗sx1s · · · sxns ∈ Σ∗∩A∗ 6= ∅, so usx1s · · · sxnsv ∈
A∗ for some u, v ∈ Σ∗. This implies that we can decompose the whole string
usx1s · · · sxnsv into concatenations of strings in A. Keeping in mind Σ∗sΣ∗∩A = ∅,
we can easily show that there exists p0, · · · , pn ∈ Q such that xi ∈ R(pi−1, pi) (∀i ∈
[1, n]). See also Fig. 4 and Fig. 5.
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u s x1 s x2 s x3 s v

�
� � � � � � � �

β

α

γ β′

α′ = ε

γ′ β′′

α′′ γ′′ = ε

β′′′

α′′′ = ε

γ′′′

Figure 4: An example of decomposition.

u s x1 s x2 s x3 s v

Figure 5: Decomposition like above is impossible due to Σ∗sΣ∗ ∩A = ∅.

(ii): Let p = (β, α, γ) ∈ Q and q = (β′, α′, γ′) ∈ Q be arbitrary. Since β ∈ S′pre
and γ′ ∈ S′suf , we have t0β, γ′t1 ∈ A for some t0, t1 ∈ Σ∗ (= X0). Let x ∈ R(p, q)
be arbitrary. Then γxβ′ ∈ A∗, so (t0β)α(γxβ′)α′(γ′t1) ∈ A∗. Since βαγ = s
and β′α′γ′ = s, we obtain t0sxst1 ∈ A∗. Since x ∈ R(p, q) is arbitrary, we have
t0sR(p, q)st1 ⊆ A∗ (= L), so we obtain (ii).
(iii): Let p = (β, α, γ) ∈ Q, q = (β′, α′, γ′) ∈ Q, and r = (β′′, α′′, γ′′) ∈ Q be
arbitrary. Let x ∈ R(p, q) and y ∈ R(q, r). Then γxβ′ ∈ A∗ and γ′yβ′′ ∈ A∗.
In particular, (γxβ′)α′(γ′yβ′′) ∈ A∗. Since β′α′γ′ = s, we have γxsyβ′′ ∈ A∗, so
xsy ∈ R(p, r). This implies R(p, q)sR(q, r) ⊆ R(p, r). Thus we obtain (iii).
Consequently, we can apply Lemma 3.5, and we obtain (2). In other words,

∀x, y ∈ Σ∗, ∃z ∈ Σ∗yΣ∗, ∃p ≥ 1, ∀n ≥ 0 [ (zx)pnz ∈ A∗ ].

This implies H1(A∗).
STEP2: Let A ⊆ Σ∗. Assume that A is thin and A∗ is dense. Let B := A − {ε}.
In general, we have (A − {ε})∗ = A∗, so B∗ = A∗. Since A∗ is dense, it follows
that B∗ is dense. If B is dense, then in view of B ⊆ A, it follows that A is dense,
which is a contradiction. Therefore, B is thin. Moreover, we have ε /∈ B. Hence,
by STEP1, we have H1(B∗). Since B∗ = A∗, we obtain H1(A∗).

The closure ofM1 under Kleene star trivially follows from Lemma 4.2 and (12).
Hence, we complete the proof of Lemma 4.1.

5 On Theorem 2.2 and Main Theorem 2.3

In this section, we prove the following theorem:

Theorem 5.1. Let Σ = {a, b}. Then there exists a dense L ∈ Γ(TL) such that
there is no dense R ∈ REG with R ⊆ L.

In view of this theorem, we can say that Main Theorem 2.3 is a non-trivial
generalization of Theorem 2.2.
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Proof. Let N be the set of all positive integers. Let I =
{

(pqn)4 + q | p, q, n ≥ 1
}
⊆

N. We show the following:

(i) ∀p, q ≥ 1 [ pm+ q ∈ I for infinitely many m ≥ 1 ].

(ii) ∀p, q ≥ 1 [ pm+ q ∈ N− I for infinitely many m ≥ 1 ].

(i): This is obvious.
(ii): For any t ≥ 1, we can easily show I ∩ [1, t] ⊆

{
(pqn)4 + q | 1 ≤ p, q, n ≤ t1/4

}
.

In particular, |I ∩ [1, t]| ≤ t3/4, so limt→+∞ |I ∩ [1, t]|/t = 0. Now let p, q ≥ 1. We
show pm+q ∈ N−I for infinitely manym ≥ 1. Supposing the contrary, there exists
m0 ≥ 1 such that pm+ q ∈ I (∀m ≥ m0). Let J := {pm+ q | m ≥ m0}, for short.
Then we have J ⊆ I. Combining this inclusion with limt→+∞ |I ∩ [1, t]|/t = 0, we
have limt→+∞ |J ∩ [1, t]|/t = 0. However, since J = {pm+ q | m ≥ m0}, we have
limt→+∞ |J ∩ [1, t]|/t = 1/p. This is a contradiction. Thus we obtain (ii).
Next, we define f : aΣ∗b∪{ε} → N∪{0} as follows: For any v ∈ aΣ∗b, there exists
unique k ≥ 1 and unique n1,m1, · · · , nk,mk ≥ 1 such that v = an1bm1 · · · ankbnk .
Then we define f(v) := | {i ∈ [1, k] | ni ∈ I} |. We also define f(ε) := 0. As for this
f , we can easily verify the following:

∀v, w ∈ aΣ∗b ∪ {ε} [ vw ∈ aΣ∗b ∪ {ε} , f(vw) = f(v) + f(w) ]. (14)

Next, let r ∈ {0, 1} be arbitrary. We define

Lr := {v ∈ aΣ∗b ∪ {ε} | f(v) ≡ r (mod 2)} ⊆ aΣ∗b ∪ {ε} .

We show Lr satisfies the desired property. We first show that Lr is dense in Σ∗.
Take an n1 ∈ I, and let α := an1b. Let v ∈ Σ∗ be arbitrary. Then α, avb ∈ aΣ∗b.
By (14), we have f(avbαk) = f(avb) + kf(α) = f(avb) + k (∀k ≥ 1). In particular,
we have f(avbαk1) ≡ r (mod 2) for some k1 ∈ {1, 2}. Then avbαk1 ∈ Lr, i.e.,
we have Σ∗vΣ∗ ∩ Lr 6= ∅. Hence, Lr is dense. Next, suppose that there exists a
dense R ∈ REG such that R ⊆ Lr. Let G be a deterministic finite automaton
which represents R. Let t ≥ 1 be the number of all states of G. Since R is
dense, we have Σ∗b2at+9ba2Σ∗ ∩R 6= ∅. Then we have u′b2at+9ba2v′ ∈ R for some
u′, v′ ∈ Σ∗. Let u := u′b and v := av′. Then u, v ∈ Σ+ and ubat+9bav ∈ R.
By the definition of t ≥ 1, we can apply a standard pumping argument, and we
can show that there exists p, q ≥ 1 such that ubapn+qbav ∈ R (∀n ≥ 1). Since
R ⊆ Lr, we have ubapn+qbav ∈ Lr (∀n ≥ 1). Since Lr ⊆ aΣ∗b ∪ {ε}, we have
ubapn+qbav ∈ aΣ∗b (∀n ≥ 1). Then, the first character of u must be a, and the last
character of v must be b. In particular, we have ub, av, apn+qb ∈ aΣ∗b. By (14),
we have f(ubapn+qbav) = f(ub) + f(apn+qb) + f(av). Since ubapn+qbav ∈ Lr, we
have f(ubapn+qbav) ≡ r (mod 2), so f(ub) + f(apn+qb) + f(av) ≡ r (mod 2). By
(i) and (ii), there exists m,m′ ≥ 1 such that pm + q ∈ I and pm′ + q ∈ N − I.
Then f(ub) + 1 + f(av) ≡ r (mod 2) and f(ub) + 0 + f(av) ≡ r (mod 2), which is a
contradiction. Hence, there is no dense R ∈ REG with R ⊆ Lr. Finally, we show
Lr ∈ Γ(TL). Let

A := {anbm | n ∈ I, m ≥ 1} , B := {anbm | n ∈ N− I, m ≥ 1} .
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Consider the following language equations:

X0 = AX1 ∪BX0 ∪ {ε} , X1 = AX0 ∪BX1. (15)

Let Y0, Y1 ⊆ Σ∗ be the least solution of (15). In fact, we can explicitly write
Y0 = (AB∗A ∪ B)∗ and Y1 = B∗A(AB∗A ∪ B)∗. Since A,B ∈ TL ⊆ Γ(TL), we
have Y0, Y1 ∈ Γ(TL). Moreover, we can easily show that L0, L1 is also the least
solution of (15). Hence, we must have L0 = Y0 and L1 = Y1, so Lr ∈ Γ(TL).

6 Some remarks

In this section, we give some remarks.

6.1 On Lemma 4.1

Let H2(L) be a statement defined as

H2(L) : ∃z ∈ Σ+, ∃p ≥ 1, ∀n ≥ 0 [ zpn+1 ∈ L ].

Let M2 := TL ∪ {L ⊆ Σ∗ | H2(L)}. It is natural to consider M2 instead of M1

in Lemma 4.1. We would like to show thatM2 is closed under regular operations.
However, M2 is not closed under concatenation. For example, let Σ = {a, b},
L1 :=

{
va10|v| | v ∈ Σ+

}
, and L2 := {b}. We can show that L1, L2 ∈ M2 and

L1L2 /∈M2. This is why we have considered H1(L) instead of H2(L).

6.2 On Main Theorem 2.3

For any L ⊆ 2Σ∗ , consider the following claim:

Claim 6.1. Let R ∈ L be dense. Then there exists z ∈ Σ+ and p ≥ 1 such that
zpn+1 ∈ R (∀n ≥ 0).

Note that Claim 6.1 with L = REG is exactly Theorem 2.2. Moreover, Claim
6.1 with L = Γ(TL) is also true, as we have already shown. Keeping in mind
Dömösi-Horváth-Ito conjecture, it is desirable to prove Claim 6.1 for L = CFL,
because in this case we trivially obtain Dömösi-Horváth-Ito conjecture (by consid-
ering R = QΣ). However, in fact, Claim 6.1 does not hold even if L = DCFL
(deterministic context-free languages). Here we provide a counter-example. Let
Σ = { 〈 , 〉 }. Let L ⊆ Σ∗ be the Dyck language over Σ. Let R := { v〉 | v ∈ L}.
It is easy to show that R is dense, R ⊆ QΣ, and R ∈ DCFL. Therefore, this R is
a counter-example of Claim 6.1 for L = DCFL. This fact implies that extending
Theorem 2.2 is a hard problem in general. This situation is already indicated in
our proofs: we have proved non-trivial lemmas to obtain Main Theorem 2.3.
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7 Related work

In this section, we briefly state some related work. For L ⊆ Σ∗, let ∼L be the
syntactic equivalence of L, and let Σ∗/ ∼L be the syntactic monoid of L. By
Myhill-Nerode Theorem, we can easily show that L is a regular language iff Σ∗/ ∼L
is a finite monoid (see also [10, Proposition 3.18]).

7.1 Related work for dense and disjunctive language

A language L ⊆ Σ∗ is said to be disjunctive iff ∀u, v ∈ Σ∗[ u ∼L v ⇔ u = v ]. In
particular, if L is a disjunctive language, then Σ∗/ ∼L is an infinite set.

The concept of disjunctive languages is closely related to dense languages. For
example, it is shown in [11, PROPOSITION 2.5] that a language L is dense iff there
exists a disjunctive language L′ such that L′ ⊆ L. Many properties of disjunctive
languages are already known (e.g., [11, 14]). Moreover, many connections between
dense and disjunctive languages are known (e.g., [5, 6]).

7.2 Related work for Theorem 1.1, 2.2, and Main Theorem
2.3

As for Theorem 1.1, 2.2, and Main Theorem 2.3, we refer to [6, 9] as direct related
works. Theorem 2.2 is exactly the same as [9, Corollary 4.6]. Next, it is shown in
[6] that if R ⊆ Σ∗ is a dense regular language, then R ∩QΣ and R− (R ∩QΣ) are
disjunctive. Note that this result implies the following:

Proposition 7.1. If R ∈ REG is dense, then R contains infinitely many non
primitive words.

This is because of the following reasons: let R ∈ REG be dense. By [6],
L := R− (R ∩QΣ) is disjunctive. In particular, Σ∗/ ∼L is an infinite set. If L is a
finite set, then L is regular, so Σ∗/ ∼L is a finite monoid. Then Σ∗/ ∼L is a finite
set, which is a contradiction. Thus, L is an infinite set, i.e., R contains infinitely
many non primitive words, so we obtain Proposition 7.1.

Note that Proposition 7.1 is almost the same as Theorem 2.2 (and Theorem
1.1). The only difference is that Theorem 2.2 (and Theorem 1.1) tells us specific
examples of non primitive words, i.e., R contains infinitely many non primitive
words of the form zpn+1, while Proposition 7.1 does not tell us such examples. As
for Main Theorem 2.3, we have proved that if L ∈ Γ(TL) is dense, then we have
the condition (1), so there exists z ∈ Σ+ and p ≥ 1 such that zpn+1 ∈ L (∀n ≥ 0).
In addition, Main Theorem 2.3 is a non-trivial generalization of Theorem 2.2, as
we have already proved in Section 5.
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