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On Some Convergence Properties for

Finite Element Approximations to the

Inverse of Linear Elliptic Operators∗

Takehiko Kinoshitaa, Yoshitaka Watanabeb, and Mitsuhiro T. Nakaoc

Abstract

This paper deals with convergence theorems of the Galerkin finite ele-
ment approximation for the second-order elliptic boundary value problems.
Under some quite general settings, we show not only the pointwise conver-
gence but also prove that the norm of approximate operator converges to the
corresponding norm for the inverse of a linear elliptic operator. Since the
approximate norm estimates of linearized inverse operator play an essential
role in the numerical verification method of solutions for non-linear elliptic
problems, our result is also important in terms of guaranteeing its validity.
Furthermore, the present method can also be applied to more general elliptic
problems, e.g., biharmonic problems and so on.

Keywords: linear elliptic problems, finite element approximation, norm es-
timation of the inverse operator, convergence theorem

1 Introduction

In this section, we describe the background of the present study with notations
of related function spaces, including finite elements, and the formulation of the
problem. We will also mention the previous results that motivated this article.

1.1 Notations

We now introduce some function spaces necessary to consider the concerned prob-
lems.
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Let Ω ⊂ Rd be a bounded polygonal or polyhedral domain where d ∈ {1, 2, 3}.
For a non-negative integer m, let Hm(Ω) be the real L2 Sobolev space with order
m on Ω. We define

H1
0 (Ω) :=

{
u ∈ H1(Ω)

∣∣u = 0 on ∂Ω
}

then H1
0 (Ω) is a Hilbert space with respect to the inner product (u, v)H1

0 (Ω) :=

(∇u,∇v)L2(Ω)d and its norm is given by ‖u‖H1
0 (Ω) :=

√
(u, u)H1

0 (Ω) where ( · , · )L2

is the usual L2 inner product on Ω. Let H−1(Ω) be the dual space of H1
0 (Ω).

For a given non-linear function f : H1
0 (Ω) → H−1(Ω) with certain properties,

we often consider the existence and local uniqueness of the solution u satisfying the
following non-linear elliptic boundary value problem of the form (e.g. [6] etc.):{

−4u = f(u) in Ω

u = 0 on ∂Ω.

(1a)

(1b)

To prove the existence of the solution of (1a)-(1b), the information on the linearized
operator L := −4 − f ′(uk) : H1

0 (Ω) → H−1(Ω) and its inverse play important
roles where uk is a suitable approximation of u and f ′(uk) is the Fréchet derivative
of f at uk. Moreover, we assume that f ′(uk) ∈ L

(
H1

0 (Ω), L2(Ω)
)

for uk with suit-

able regularities and the weak Laplace operator −4 ∈ L
(
H1

0 (Ω), H−1(Ω)
)

where
L(X,Y ) is the linear space of all bounded linear operators from X to Y . As well
known, by the Riesz representation lemma, the Poisson equation with homogeneous
Dirichlet boundary condition is uniquely solvable. Namely, there exists a bounded
inverse operator of −4 such that (−4)−1 ∈ L

(
H−1(Ω), H1

0 (Ω)
)
. Then, L can

be represented as L = (−4)
(
I − (−4)−1f ′(uk)

)
where I is the identity map on

H1
0 (Ω). We denote A := (−4)−1f ′(uk) ∈ L

(
H1

0 (Ω)
)
. Note that A is a compact

operator on H1
0 (Ω).

For an arbitrary w ∈ H1
0 (Ω), we set u := Aw ∈ H1

0 (Ω). Then, u satisfies the
following variational equation:

(∇u,∇v)L2(Ω)d =
(
Ieg
)
(v) ∀v ∈ H1

0 (Ω) (2)

where Ie : L2(Ω) ↪→ H−1(Ω) is an embedding operator and g := f ′(uk)w ∈
L2(Ω). By some standard arguments using the Riesz representation theorem, we
can rewrite (2) simply as

(∇u,∇v)L2(Ω)d = (g, v)L2(Ω) ∀v ∈ H1
0 (Ω). (3)

In general, the regularity of the solution (3) is smoother than H1
0 (Ω). Particularly,

u ∈ H
(
4;L2(Ω)

)
holds where H

(
4;L2(Ω)

)
:=
{
u ∈ H1

0 (Ω)
∣∣4u ∈ L2(Ω)

}
.

Note that, if there exists a bounded inverse of I−A, then L also has an inverse:
L −1 = (I−A)−1(−4)−1, and that

∥∥L −1
∥∥
L
(
H−1(Ω),H1

0 (Ω)
) =

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

holds (also see [4, Remark 1.3]).
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Nakao et al. [5, 7] proposed numerical verification approaches for computing upper
bounds of

∥∥L −1
∥∥
L
(
H−1(Ω),H1

0 (Ω)
) (cf. [9, 10, 12, 3]).

Now, in order to define the approximation to the inverse operator L −1, we
introduce the finite element space in the most general way possible. Let Sh(Ω) be
a finite-dimensional subspace of H1

0 (Ω) depending on the discretization parameter
h > 0 corresponding to the mesh size. We define the H1

0 -projection Ph from H1
0 (Ω)

to Sh(Ω) such that

(u− Phu, vh)H1
0 (Ω) = 0 ∀vh ∈ Sh(Ω). (4)

Let {φi}ni=1 ⊂ H1
0 (Ω) be the set of basis functions in Sh(Ω) where n := dimSh(Ω).

Let Dφ and Gφ be n-by-n matrices whose (i, j) elements are defined by

Dφ,i,j = (∇φj ,∇φi)L2(Ω)d ,

Gφ,i,j = (∇φj ,∇φi)L2(Ω)d − (f ′(uk)φj , φi)L2(Ω) ,

where matrix Gφ is the corresponding representation to the Galerkin approxima-
tion of operator L . Since Dφ is a positive definite matrix, it can be Cholesky
decomposed as Dφ = EφE

T
φ where Eφ is a lower triangular matrix and ETφ is

the transposed matrix of Eφ. We define the Galerkin approximation of I − A by
[I −A]h := Ph(I −A)|Sh(Ω) : Sh(Ω)→ Sh(Ω) where (I −A)|Sh(Ω) is the restriction

of I − A on Sh(Ω) and let [I − A]−1
h :=

(
Ph(I −A)|Sh(Ω)

)−1
, if the inverse exists.

Then,
∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

) =
∥∥∥ETφG−1

φ Eφ

∥∥∥
2

=: rh holds where ‖ · ‖2 is the matrix

2-norm / the spectral matrix norm (see [5]). Since the non-singularity of the ma-
trix can be verified by computational procedure (see, e.g., [11]), the existence of
[I −A]−1

h is usually assumed to be valid([5]).

1.2 Motivation and preliminary results

In this subsection, we describe the previous results mainly obtained in [4], which is
the motivation of this study.

Suppose that Ph defined by (4) has the following convergence property

lim
h→0
‖Phu− u‖H1

0 (Ω) = 0, ∀u ∈ H1
0 (Ω) (5)

and that there exists a positive constant C̃(h) such that C̃(h) → 0 as h → 0 and
satisfying

‖∇(u− Phu)‖L2(Ω)d ≤ C̃(h) ‖4u‖L2(Ω) , ∀u ∈ H
(
4;L2(Ω)

)
. (6)

The conditions (5) and (6) are satisfied for usual finite element subspaces (see, e.g.,
[1, 2, 8] etc.). Also, note that the following estimates hold for arbitrary u ∈ H1

0 (Ω):

‖(I − Ph)Au‖H1
0 (Ω) ≤ C̃(h) ‖4Au‖L2(Ω)

≤ C̃(h) ‖f ′(uk)‖
L
(
H1

0 (Ω),L2(Ω)
) ‖u‖H1

0 (Ω) . (7)



74 Takehiko Kinoshita, Yoshitaka Watanabe, and Mitsuhiro T. Nakao

We now suppose that the linearized operator f ′(uk) is represented as f ′(uk)u =
−b · ∇u− cu for some functions such that b ∈ W 1,∞(Ω)d and c ∈ L∞(Ω). And we
set the following non-negative constants:

C1 := ‖b‖L∞(Ω)d + Cp ‖c‖L∞(Ω) ,

C2 := ‖b‖L∞(Ω)d + C̃(h) ‖c‖L∞(Ω) ,

K(h) := C̃(h)
(
Cp ‖∇ · b‖L∞(Ω) + C1

)
where Cp is the Poincaré constant satisfying

‖u‖L2(Ω) ≤ Cp ‖∇u‖L2(Ω)d ∀u ∈ H1
0 (Ω).

Then we already obtain the following existential condition and estimates of the
linearized inverse operator (I −A)−1:

Theorem 1 ( [7, Theorem 2] ). If κh := C̃(h)
(
rhK(h)C1 +C2

)
< 1, then I −A is

invertible and the following estimate holds:

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
) ≤ 1

1− κh

∥∥∥∥(rh(1− C2C̃(h)
)

rhK(h)

rhC1C̃(h) 1

)∥∥∥∥
2

.

Moreover, by using the above theorem, if {rh}h>0 is a convergent sequence,
then we have∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ≤ lim

h→0

1

1− κh

∥∥∥∥(rh(1− C2C̃(h)
)

rhK(h)

rhC1C̃(h) 1

)∥∥∥∥
2

=

∥∥∥∥∥
(

lim
h→0

rh 0

0 1

)∥∥∥∥∥
2

= max

{
lim
h→0

rh, 1

}
. (8)

In our previous paper [4], by using (8), we presented the following relation:

1 ≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ≤ lim

h→0

∥∥[I −A]−1
h

∥∥
L
(
H1

0 (Ω)
) , (9)

provided that the limit in (9) actually exists. However, the question remains
whether the second inequality of (9) becomes equality. In this paper, we prove
that such equality holds true as well as clarify the condition for the existence of
[I −A]−1

h .

2 Main results

In this section, based on the notations and the preliminaries introduced in previous
sections, we present the main result on the convergence property for finite element
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approximations of an inverse elliptic operator. To proceed with the argument, in
the following, although it may be duplicated, some new definitions and assumptions
are made again. It should also be noted that the intended purpose is achieved under
a very common setting of the finite element space and approximation scheme. Let
L
(
H1

0 (Ω)
)

be a Banach space constituting of a set of bounded linear operators on

H1
0 (Ω) with norm ‖Q‖

L
(
H1

0 (Ω)
) := sup

0 6=u∈H1
0 (Ω)

‖Qu‖H1
0 (Ω)

‖u‖H1
0 (Ω)

for each Q ∈ L
(
H1

0 (Ω)
)
.

Therefore, Sh(Ω) is considered as a finite-dimensional subspace of H1
0 (Ω) depending

on the discretization parameter h > 0 with the same inner product and norm as
H1

0 (Ω).

Assumption 1. Operator I − A is invertible. Namely, there exists (I − A)−1 ∈
L
(
H1

0 (Ω)
)
.

Let Ph ∈ L
(
H1

0 (Ω), Sh(Ω)
)

be an orthogonal projection defined in (4). Then
note that ‖Ph‖L

(
H1

0 (Ω),Sh(Ω)
) ≤ 1 holds. We now assume the following two conver-

gence properties:

Assumption 2. For an arbitrary u ∈ H1
0 (Ω), Phu converges to u in H1

0 (Ω) as
h→ 0.

Assumption 3. For each h, there exists a positive constant C(h), which converges
to 0 as h→ 0, satisfying

‖(I − Ph)Au‖H1
0 (Ω) ≤ C(h) ‖u‖H1

0 (Ω) , ∀u ∈ H1
0 (Ω).

Assumptions 2 and 3 correspond to (5) and (7), respectively, in the previous
section. Therefore, as mentioned in subsection 1.2, these assumptions are quite
reasonable conditions for usual finite element subspace Sh(Ω) ⊂ H1

0 (Ω).

Remark 1. From the assumptions 1 and 3, there exists a constant δA > 0 such
that, for all h ∈ (0, δA),

C(h) <
1

‖(I −A)−1‖
L
(
H1

0 (Ω)
) . (10)

Due to the compactness of operator PhA ∈ L
(
H1

0 (Ω), Sh(Ω)
)
, we have the

following properties.

Lemma 1. Let δA be the same constant in Remark 1. Then, for all h ∈ (0, δA),
there exists a bounded inverse of I − PhA with estimates

∥∥(I − PhA)−1
∥∥
L
(
H1

0 (Ω)
) ≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) . (11)
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Proof. For an arbitrary f ∈ H1
0 (Ω), we consider the solution u ∈ H1

0 (Ω) satisfying:

(I − PhA)u = f. (12)

From assumption 1, it is readily seen that (12) is equivalent to the following fixed
point equation:

u = −(I −A)−1(I − Ph)Au+ (I −A)−1f =: Th,f (u). (13)

Hence, by using assumption 3, for arbitrary v, w ∈ H1
0 (Ω), we have

‖Th,f (v)− Th,f (w)‖H1
0 (Ω) =

∥∥(I −A)−1(I − Ph)A(v − w)
∥∥
H1

0 (Ω)

≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) C(h) ‖v − w‖H1

0 (Ω) .

If h is sufficiently small that (10) holds, then Th,f is a contraction map. Therefore,
Th,f has a unique fixed point u ∈ H1

0 (Ω) satisfying (12) by Banach’s fixed point
theorem. Furthermore, the arbitrariness of f implies that I−PhA is a bijection on
H1

0 (Ω) for such an h.
Also, by some simple calculation using (13) with assumption 3, we obtain

∥∥(I − PhA)−1f
∥∥
H1

0 (Ω)
≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− ‖(I −A)−1‖
L
(
H1

0 (Ω)
) C(h)

‖f‖H1
0 (Ω) ,

which yields the desired estimates (11).

Note that
(I − PhA)uh = Ph(I −A)uh, ∀uh ∈ Sh(Ω)

holds. This fact means that I − PhA is equal to Ph(I − A) on Sh(Ω), namely,
(I−PhA)|Sh(Ω) = Ph(I−A)|Sh(Ω) holds. Therefore, let define [I−A]h ∈ L(Sh(Ω))
by [I−A]h := Ph(I−A)|Sh(Ω). The following lemma gives an invertibility condition

of [I −A]h, and estimates for the norm of [I −A]−1
h .

Lemma 2. Under the same conditions as in Lemma 1, for all h ∈ (0, δA), there
exists a inverse of [I −A]h and the following estimate holds∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

) ≤ ∥∥(I − PhA)−1
∥∥
L
(
H1

0 (Ω)
) . (14)

Proof. For an fh ∈ Sh(Ω), if Ph(I −A)fh = 0, then

fh = PhAfh

= −(I − Ph)Afh +Afh.

Hence we have
(I −A)fh = −(I − Ph)Afh.
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Namely,

fh = −(I −A)−1(I − Ph)Afh.

Therefore, by assumption 3, we have

||fh||H1
0 (Ω) ≤ ||(I −A)−1||

L
(
H1

0 (Ω)
)||(I − Ph)Afh||H1

0 (Ω)

≤ ||(I −A)−1||
L
(
H1

0 (Ω)
)C(h)||fh||H1

0 (Ω),

which yields fh = 0 from (10). Taking notice that the existence and uniqueness of
the solution are equivalent for the finite dimensional linear equation on Sh(Ω), the
invertibility of [I −A]h follows immediately.
Next, observe that

∥∥(I − PhA)−1
∥∥
L
(
H1

0 (Ω)
) = sup

0 6=f∈H1
0 (Ω)

‖f‖H1
0 (Ω)

‖(I − PhA)f‖H1
0 (Ω)

≥ sup
0 6=fh∈Sh(Ω)

‖fh‖H1
0 (Ω)

‖(I − PhA)fh‖H1
0 (Ω)

= sup
0 6=fh∈Sh(Ω)

‖fh‖H1
0 (Ω)

‖Ph(I −A)fh‖H1
0 (Ω)

=
∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

) ,
which completes the proof of (14).

On the convergence of (I − PhA)−1, we have the following lemma:

Lemma 3. The following convergence property holds:

lim
h→0

∥∥(I − PhA)−1 − (I −A)−1
∥∥
L
(
H1

0 (Ω)
) = 0

Proof. Let δA be the same constant defined above. Therefore, for each h ∈ (0, δA),
I − PhA is invertible on H1

0 (Ω) by lemma 1. For an arbitrary f ∈ H1
0 (Ω), we set

u := (I −A)−1f ∈ H1
0 (Ω) and w(h) := (I − PhA)−1f ∈ H1

0 (Ω). Then we have

(I −A)u = f and (I − PhA)w(h) = f.

Hence, we obtain

(I −A)
(
u− w(h)

)
= (I − PhA)w(h)− (I −A)w(h),

which is rewritten as

u− w(h) = (I −A)−1(I − Ph)Aw(h).
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From assumption 3, we obtain

‖u− w(h)‖H1
0 (Ω) ≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
) C(h) ‖w(h)‖H1

0 (Ω)

≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) C(h)

(
‖u− w(h)‖H1

0 (Ω) + ‖u‖H1
0 (Ω)

)
.

Hence we have(
1− C(h)

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)) ‖u− w(h)‖H1

0 (Ω) ≤

C(h)
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ‖u‖H1

0 (Ω) .

Taking notice of (10),

‖u− w(h)‖H1
0 (Ω) ≤

C(h)
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) ‖u‖H1

0 (Ω) .

Namely, it holds that∥∥(I −A)−1f − (I − PhA)−1f
∥∥
H1

0 (Ω)

≤
C(h)

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) ∥∥(I −A)−1f

∥∥
H1

0 (Ω)

≤
C(h)

∥∥(I −A)−1
∥∥2

L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) ‖f‖H1

0 (Ω) .

Therefore, we obtain the following convergence property:

∥∥(I − PhA)−1 − (I −A)−1
∥∥
L
(
H1

0 (Ω)
) ≤ C(h)

∥∥(I −A)−1
∥∥2

L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) → 0

as h→ 0, which yields the desired conclusion.

Theorem 2. The following convergence property holds for each f ∈ H1
0 (Ω).

lim
h→0

∥∥[I −A]−1
h Phf − (I −A)−1f

∥∥
H1

0 (Ω)
= 0. (15)

Proof. Let δA be a positive constant satisfying condition (10) and let h be a fixed
parameter in (0, δA). Then, there exists [I − A]−1

h ∈ L
(
Sh(Ω)

)
by lemma 2. For

each f ∈ H1
0 (Ω), we set u := (I−A)−1f ∈ H1

0 (Ω) and uh := [I−A]−1
h Phf ∈ Sh(Ω).

By the definition, we have

f − Phf = (I −A)u− Ph(I −A)uh

= (I − PhA)(u− uh) + (I −A)u− (I − PhA)u

= (I − PhA)(u− uh)− (I − Ph)Au.
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Noting that there also exists (I − PhA)−1 ∈ L
(
H1

0 (Ω)
)

by lemma 1, from the
assumption 3 and (11), we obtain, by using the above equality,

‖u− uh‖H1
0 (Ω) =

∥∥(I − PhA)−1(f − Phf + (I − Ph)Au
)∥∥

H1
0 (Ω)

≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) (
‖f − Phf‖H1

0 (Ω) + C(h) ‖u‖H1
0 (Ω)

)

≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) (‖f − Phf‖H1

0 (Ω)

+ C(h)
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ‖f‖H1

0 (Ω)

)
. (16)

The right-hand side of (16) converges to 0 as h → 0 by the assumptions 2 and 3.
Thus, (15) is proved.

Now we present the norm convergence theorem, which is the main result of this
paper.

Theorem 3. The following norm convergence property holds:

lim
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

) =
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) .

Proof. First, note that, for each fixed f ∈ H1
0 (Ω), we have by Theorem 2∥∥(I −A)−1f

∥∥
H1

0 (Ω)
= lim
h→0

∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

.

Therefore, it holds that∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
) = sup

||f ||
H1

0(Ω)
=1

∥∥(I −A)−1f
∥∥
H1

0 (Ω)

= sup
||f ||

H1
0(Ω)

=1

lim
h→0

∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

. (17)

Moreover, for each h ∈ (0, δA) and f ∈ H1
0 (Ω) with ‖f‖H1

0 (Ω) = 1, observe that by

using Lemma 2∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

≤
∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

) ||Phf ||Sh(Ω)

≤
∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

)
≤ ||(I − PhA)−1||

L
(
H1

0 (Ω)
).

(18)

(19)

On the other hand, by Lemma 3, it holds that the right-hand side of (19) converges
to
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) as h→ 0. Combining this fact with (17)-(19) we can show
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that lim
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

) exists and equals
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
). Indeed, we

take the limit inferior and limit superior of (18) and (19),

lim
h→0

∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

≤ lim inf
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

)
≤ lim sup

h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

)
≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) (20)

holds. Here, the last inequality follows from Lemma 3. Taking notice that the
inequalities, except for the first left-hand sides in (20) is independent of f , we
obtain from (17)∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) = sup

||f ||
H1

0(Ω)
=1

lim
h→0

∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

≤ lim inf
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

)
≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
)

Combining the above with (20), we have

lim inf
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

) = lim sup
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

) =
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ,

which yields the desired conclusion.

Remark 2. Note that the result of Theorem 3 does not mean
[I −A]−1

h Ph → (I −A)−1 as h→ 0 in L
(
H1

0 (Ω)
)
.

Actually, if lim
h→0

∥∥[I −A]−1
h Ph − (I −A)−1

∥∥
L
(
H1

0 (Ω)
) = 0 holds, then considering

the particular case: A ≡ 0, it implies that lim
h→0
‖Ph − I‖L

(
H1

0 (Ω)
) = 0. From the fact

that Ph is a finite dimensional operator, this contradicts that the identity operator
I is not compact on the infinite dimensional space L

(
H1

0 (Ω)
)
.

3 Conclusion

We presented the convergence theorem of [I − A]−1
h Ph to (I − A)−1 as h → 0 in

Theorem 2, and we also established the norm convergence theorem in Theorem 3.
Moreover, Lemma 2 is important as a theoretical result for the existence of the
Galerkin approximation for (I − A)−1. It is also expected that these results can
be extended for the more general linear compact operator A, e.g., corresponding to
the biharmonic problems, under similar assumptions to 1, 2, and 3.

Acknowledgment

The authors heartily thank the anonymous referee for her/his thorough reading
and valuable comments.



Convergence Properties for Finite Element Approximations 81

References

[1] Brenner, Susanne C. and Scott, L. Ridgway. The Mathematical Theory of
Finite Element Methods. Springer, New York, second edition, 2002.

[2] Ciarlet, P.G. and Lions, J.L., editors. Handbook of Numerical Analysis Volume
II, Finite Element Methods (Part 1). Elsevier Science B.V., 1990.

[3] Kinoshita, Takehiko, Watanabe, Yoshitaka, and Nakao, Mitsuhiro T. Some
remarks on the rigorous estimation of inverse linear elliptic operators. In
International Symposium on Scientific Computing, Computer Arithmetic, and
Validated Numerics, Volume 9553 of Lecture Notes in Computer Science, pages
225–235. Springer, 2016. DOI: 10.1007/978-3-319-31769-4_18.

[4] Kinoshita, Takehiko, Watanabe, Yoshitaka, and Nakao, Mitsuhiro T. Some
lower bound estimates for resolvents of a compact operator on an infinite-
dimensional Hilbert space. Journal of Computational and Applied Mathemat-
ics, 369, 2020. DOI: 10.1016/j.cam.2019.112561, 112561.

[5] Nakao, Mitsuhiro T., Hashimoto, Kouji, and Watanabe, Yoshitaka. A nu-
merical method to verify the invertibility of linear elliptic operators with
applications to nonlinear problems. Computing, 75(1):1–14, 2005. DOI:
10.1007/s00607-004-0111-1.

[6] Nakao, Mitsuhiro T., Plum, Michael, and Watanabe, Yoshitaka. Numerical
Verification Methods and Computer-Assisted Proofs for Partial Differential
Equations. Springer, Singapore, 2019. DOI: 10.1007/978-981-13-7669-6.

[7] Nakao, Mitsuhiro T., Watanabe, Yoshitaka, Kinoshita, Takehiko, Kimura,
Takuma, and Yamamoto, Nobito. Some considerations of the invertibility ver-
ifications for linear elliptic operators. Japan Journal of Industrial and Applied
Mathematics, 32:19–31, 2015. DOI: 10.1007/s13160-014-0160-6.

[8] Oden, John T. and Reddy, Junuthula N. An Introduction to the Mathematical
Theory of Finite Elements. John Wiley & Sons, New York, 1976.

[9] Oishi, Shin’ichi. Numerical verification of existence and inclusion of solutions
for nonlinear operator equations. Journal of Computational and Applied Math-
ematics, 60:171–185, 1995. DOI: 10.1016/0377-0427(94)00090-N.

[10] Plum, Michael. Eigenvalue inclusions for second-order ordinary differential
operators by a numerical homotopy method. Zeitschrift für angewandte Math-
ematik und Physik (ZAMP), 41:205–226, 1990. DOI: 10.1007/BF00945108.

[11] Rump, Siegfried M. INTLAB — INTerval LABoratory. In Csendes, Tibor,
editor, Developments in Reliable Computing, pages 77–104. Kluwer Academic
Publishers, Dordrecht, 1999. URL: http://www.ti3.tuhh.de/rump/.

https://doi.org/10.1007/978-3-319-31769-4_18
https://doi.org/10.1016/j.cam.2019.112561
https://doi.org/10.1007/s00607-004-0111-1
https://doi.org/10.1007/978-981-13-7669-6
https://doi.org/10.1007/s13160-014-0160-6
https://doi.org/10.1016/0377-0427(94)00090-N
https://doi.org/10.1007/BF00945108
http://www.ti3.tuhh.de/rump/


82 Takehiko Kinoshita, Yoshitaka Watanabe, and Mitsuhiro T. Nakao

[12] Watanabe, Yoshitaka, Kinoshita, Takehiko, and Nakao, Mitsuhiro T. A pos-
teriori estimates of inverse operators for boundary value problems in linear
elliptic partial differential equations. Mathematics of Computation, 82:1543–
1557, 2013. DOI: 10.1090/S0025-5718-2013-02676-2.

https://doi.org/10.1090/S0025-5718-2013-02676-2

	Introduction
	Notations
	Motivation and preliminary results

	Main results
	Conclusion

