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The Inventory Control Problem for a Supply Chain

With a Mixed Type of Demand Uncertainty

Elena Chausovaa

Abstract

This paper is concerned with a dynamic inventory control system de-
scribed by a network model where the nodes are warehouses and the arcs
represent production and distribution activities. We assume that an uncer-
tain demand may take any value in an assigned interval and we allow that the
system is disturbed by noise inputs. These assumptions yield a model with a
mix of interval and stochastic demand uncertainties. We use the method of
model predictive control to derive the control strategy. To deal with interval
uncertainty we use the interval analysis tools and act according to the inter-
val analysis theory. The developed results are illustrated using a numerical
example.

Keywords: inventory control, supply chain, network model, model predic-
tive control, interval-stochastic uncertainty, interval analysis, multiobjective
optimization, quadratic programming

1 Introduction

Nowadays, most supply chains are multi-echelon and have a complex network struc-
ture. Such a network consists of suppliers, manufacturing plants, warehouses, cus-
tomers, and distribution channels that are organized efficiently to get raw materials,
convert them to finished products, and distribute the products to customers. The
structure of any multi-echelon supply chain depends on the configuration and loca-
tion of various echelons with respect to each other. It can be described by a directed
network in which the nodes represent warehouses and the arcs are controllable and
uncontrollable flows in the network. The controllable flows can be controlled by a
system manager. They redistribute resources between the network nodes, possibly
process them, and plan deliveries from outside. The uncontrollable flows represent
a demand in the network nodes that can be made both by other nodes and from
the outside. Supply chain managers always seek to find best decisions to provide
products or services for customers in the right quantities, at the right places, and
at right times.

aNational Research Tomsk State University, Tomsk, Russia, E-mail: chauev@mail.ru, ORCID:
0000-0003-2379-5224

DOI: 10.14232/actacyb.295044

mailto:chauev@mail.ru
https://orcid.org/0000-0003-2379-5224
https://doi.org/10.14232/actacyb.295044


36 Elena Chausova

This paper deals with the inventory control problem in a multi-echelon supply
chain network. In the classical inventory control theory uncertainty of demand
is regarded as stochastic uncertainty. However, in many real cases, there are not
enough historical data to estimate parameters of distributions of random variables
that affect the system. This fact gives rise to the need to use other approaches to
describing uncertainty. An interesting approach based on unknown-but-bounded
inputs is proposed in [2, 3]. The studies are devoted to the inventory control prob-
lem under an uncertain demand. Unlike the classical stochastic approach, they
model demand uncertainty in an unknown-but-bounded way assuming that an un-
certain demand may take any values in an assigned set, and nothing else is known
about demand behaviour. This makes sense because in practice the upper and
lower bounds for an uncertain demand can be inferred from the decision maker’s
experience or available historical data much more easily and with much more con-
fidence than empirical probability distribution. At the same time, the efficiency
of the control strategy strongly depends on the width of the interval of uncertain
demand and this interval should be as narrow as possible. To reduce the width
of the interval we can use a mixed form of model uncertainty. This is reasonable,
for example, when we have partial information about demands. Indeed, for some
products we do not have historical demand data, while for others we do. In addi-
tion, we can have quite stable orders within given limits from some consumers and
random orders from others. In such cases, an uncertain aggregate demand can be
decomposed in two sub-vectors, one of which is unknown-but-bounded (interval),
and the other is stochastic. These assumptions lead to a mixed interval-stochastic
uncertainty which is used further in this study.

We use the model predictive control [4, 14] (MPC) to derive the optimal control
strategy. The MPC approach is widely applied in the practice of control and allows
for solving complex control problems for systems with various types of uncertainty.
For example, the papers [15, 18] consider supply chain networks under conditions
of stochastic uncertainty, and the MPC approach allows the authors to develop a
control strategy in order to achieve the system robustness, performance and high
levels of service. The paper [1] studies stochastic hybrid systems and shows the
effectiveness of suggested techniques for a problem of supply chain management.
The paper [8] addresses the problem of the model predictive control for discrete
systems with random dependent parameters and its possible application to invest-
ment portfolio optimization. The papers [6, 12, 17] examine the MPC problem for
systems with a polytopic uncertainty description on state-space matrices under di-
verse input-output constraints. The problem is solved using the minmax approach
to the MPC based on linear matrix inequalities. The paper [7] discusses the case
of uncertain linear dynamic systems with interval assigned parameters and multi-
plicative noises in system matrices. By using the minmax MPC based on linear
matrix inequalities, the optimal robust control strategy providing the system with
stability in the mean-square sense is obtained. But the lack of constraints does not
allow the use of the obtained results for inventory management directly, where, as
a rule, there are various capacity constraints. The paper [5] is concerned with the
inventory control problem under hard constraints in storage levels and controls. A
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linear objective criterion is used to find the optimal control strategy that minimizes
the worst-case storage cost under interval demand uncertainty, but the cost of con-
trol actions is not taken into account here. The problem is converted into a linear
programming problem with constraints to be solved online that gives the optimal
control strategy without a shortage and backlogged demand. However, additional
stochastic uncertainty is not assumed here.

This paper considers an inventory control system with mixed additive uncer-
tainty in the presence of constraints in the states of the system and control actions.
An uncertain demand is estimated by an interval without any distribution infor-
mation, and the system is assumed to be disturbed by white noise. To deal with
the interval uncertainty we use the interval analysis tools and act according to the
interval analysis theory [13]. The influence of stochastic uncertainty leads to the
minimization of the conditional expected value of the MPC objective under soft
constraints in the states of the system. We transform the system control problem
with mixed model uncertainty to a deterministic quadratic programming problem
for which there are efficient solution methods and commercial software packages
(we used the quadprog function provided by the software Optimization Toolbox
in the MATLAB environment). Solving this problem online, we get a feedback
inventory control strategy with a minimum expected level of storage, but a high
level of service.

The paper is organized as follows. Section 2 introduces the problem to be solved.
Section 3 presents the main results concerning the optimal control under interval-
stochastic demand uncertainty. A numerical example showing the results obtained
is presented in Section 4 and conclusions are given in Section 5.

2 Problem statement

We consider a dynamic inventory control system with a network structure (supply
chain). The evolution of the network is described by the equation:

x(k + 1) = x(k) +Bu(k) + Cd(k) + Cw(k), k = 0, 1, 2, . . . (1)

Here x(k) ∈ Rn is the system state whose components represent storage levels in
the network nodes at the time k, the initial state x(0) is assumed to be fixed and
given; u(k) ∈ Rm is the control representing the controllable flows between the
network nodes at the time k; d(k), w(k) ∈ Rl are the uncertain demand vectors
describing the uncontrollable flows in the network nodes at the time k; the matrices
B ∈ Rn×m and C ∈ Rn×l describe the network structure. As the unit of time k we
can take, for example, a day, a week, a month, or a longer period.

Interval uncertainty in the system is represented by the vector d(k). We know
that d(k) takes its values within a given interval but the rest is unknown:

d(k) ∈D, k = 0, 1, 2, . . . , (2)

where D ∈ IRl, D =
[
D,D

]
≥ 0.
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In the paper we follow the notation of the informal international standard [11].
Intervals and interval objects (vectors, matrices) are denoted in bold, x, x are the
lower and upper bounds of the interval x, IRn = {x = [x, x] , x ≤ x, x, x ∈ Rn} is
the set of all n-dimensional intervals in the classical interval arithmetic IR, KRn =
{x = [x, x] , x, x ∈ Rn} is the set of all n-dimensional intervals in the Kaucher com-
plete interval arithmetic KR [10, 16].

The uncertain vector w(k) describes white noise with a zero mean and the
covariance matrix E{w(k)w>(k)} = W . This forms stochastic uncertainty in the
system.

Additionally, we assume that both expected storage levels and controls must be
non-negative and bounded:

E
{
x(k + 1)

∣∣ x(k)
}
∈X, k = 0, 1, 2, . . . , (3)

u(k) ∈ U , k = 0, 1, 2, . . . , (4)

where E {·|·} denotes the conditional expectation; X ∈ IRn, X =
[
0, X

]
;

U ∈ IRq, U =
[
0, U

]
. The bounds of the constraints given in (3), (4) define

the system’s capacities, such as storage limit and order quantity limit. In (3),
the lower bound equal to zero means that a shortage of stock is undesirable, but
possible. The shortage reduces the service level that is defined as the proportion
of demand satisfied. The ideal case is 100% service level. In order to maintain a
high service level under the uncertain demand a safety stock is formed. The level
of the safety stock for real-life complex, lean, and agile networks can be efficiently
determined by the method of the dynamic simulation.

We define the MPC performance index (cost function) as follows:

J(k + p|k) = E

{ p∑
i=1

((
x(k + i|k)− x0

)>
Q
(
x(k + i|k)− x0

)
−Q1

(
x(k + i|k)− x0

)
+ u(k + i− 1|k)>Ru(k + i− 1|k)

) ∣∣∣ x(k)

}
,

(5)

where x(k + i|k) is the state at the time k + i which is predicted at the time k,
x(k) or x(k|k) denotes the state measured at the time k; x0 is the target level that
defines a desired storage level; u(k+ i|k) is the predictive control at the time k+ i
which is computed at the time k; p is the prediction horizon; Q ∈ Rn×n, Q1 ∈ R1×n

and R ∈ Rm×m are the weighting matrices such that Q,R are symmetric positive
definite matrices and Q1 ≥ 0.

The control goal generally is to keep the state of the system close to the target
using little control efforts. But taking into account the fact that we deal with a
storage level it is necessary to specify the goal so that the state of the system is
close but preferably not below the target level x0. In cost function (5) the first

term
(
x(k + i|k) − x0

)>
Q
(
x(k + i|k) − x0

)
penalizes the state deviation from the

target level, the second linear term Q1

(
x(k+ i|k)−x0

)
penalizes the state negative

deviation from the target level, and the last term u(k + i − 1|k)>Ru(k + i − 1|k)
penalizes the control efforts.
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The problem to be solved is to compute a sequence of the predictive controls
u(k|k), u(k + 1|k), . . . , u(k + p− 1|k) which minimizes cost index (5):

min
u(k|k),u(k+1|k),...,u(k+p−1|k)

J(k + p|k),

subject to system dynamics (1) and constraints (2), (3), (4).
We reduce the above problem to an interval quadratic programming problem

where the uncertain inputs are represented by intervals. Since the input data are in-
terval, the objective value is also interval. We calculate the lower and upper bounds
of the objective values of the interval quadratic programming problem analytically
using the interval analysis and formulate a two-objective optimization problem. We
then transform the problem into a conventional quadratic programming problem
with a single objective by using the multi-objective optimization technique [9].

As is standard in the MPC, at the time k we calculate the sequence of predictive
controls u(k|k), u(k + 1|k), . . . , u(k + p − 1|k), but use only the first of them and
obtain the feedback control u(k) = u(k|k) as a function of the state x(k). Then the
state x(k+1) is measured, the control horizon is moved by one, and the optimization
is repeated at the next time k + 1. The result is the feedback inventory control
strategy Φ = {u(k) = u (x(k), k) , k ≥ 0}.

3 Main results

The following theorem gives the sequence of predictive controls {u(k|k), u(k +
1|k), . . . , u(k + p− 1|k)} at the time k.

Theorem. The vector of predictive controls

ũ(k) =
(
u(k|k)>, u(k + 1|k)>, . . . , u(k + p− 1|k)>

)>
that minimizes performance index (5) under constraints (2), (3), (4) on the tra-
jectories of system (1) is defined at each time k as a solution to the quadratic
programming problem with the criterion

Y (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k) (6)

under the constraints(
B 0n×m 0n×m . . . 0n×m

)
ũ(k) ∈X 	CD − x(k), (7)

ũ(k) ∈ Ũ . (8)

Here H,G(k) are the block matrices of the type

H =


H11 H12 . . . H1p

H21 H22 . . . H2p

...
. . .

...
Hp1 Hp2 . . . Hpp

 , Hij =


(p− j + 1)B>QB, i < j,

R+ (p− j + 1)B>QB, i = j,

(p− i+ 1)B>QB, i > j,

(9)

G(k) =

((
x(k)− x0

)>
Q− 1

2
Q1

)
BK + midDF , (10)
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where

K =
(
K1 K2 . . . Kp

)
, Ki = (p− i+ 1)Im,

F =


F11 F12 . . . F1p

F21 F22 . . . F2p

...
. . .

...
Fp1 Fp2 . . . Fpp

 , Fij =

{
(p− j + 1)C>QB, i ≤ j,
(p− i+ 1)C>QB, i > j,

0n×m is the zero matrix of the dimension n × m, Im is the unit matrix of the

dimension m, Ũ =
(
U> U> . . .U>

)>
, D̃ =

(
D> D> . . .D>

)>
, CD is the result

of multiplying the real matrix C by the interval vector D, DF is the result of

multiplying the interval vector D̃
>

by the real matrix F , midx is the midpoint of
the interval x, x	 y =

[
x− y, x− y

]
is the internal subtraction in KR.

Proof. Let us consider performance index (5). By using the fact that the summand

(x(k + i|k)− x0)
>
Q (x(k + i|k)− x0)−Q1 (x(k + i|k)− x0)

+u(k+ i−1|k)>Ru(k+ i−1|k) = x(k+ i|k)>Qx(k+ i|k)−
(
2x>0 Q+Q1

)
x(k+ i|k)

+
(
x>0 Q+Q1

)
x0 + u(k + i− 1|k)>Ru(k + i− 1|k),

(5) turns into

J(k + p|k) = E
{ p∑

i=1

(
x(k + i|k)>Qx(k + i|k)−

(
2x>0 Q+Q1

)
x(k + i|k)

+ u(k + i− 1|k)>Ru(k + i− 1|k)
) ∣∣∣ x(k)

}
+ p

(
x>0 Q+Q1

)
x0.

To deal with the conditional expectation, we rewrite the index as:

J(k + p|k) = E

{
x(k + 1|k)>Qx(k + 1|k)−

(
2x>0 Q+Q1

)
x(k + 1|k)

+ u(k|k)>Ru(k|k) + E
{
x(k + 2|k)>Qx(k + 2|k)

−
(
2x>0 Q+Q1

)
x(k + 2|k) + u(k + 1|k)>Ru(k + 1|k) + . . .

+ E
{
x(k + p|k)>Qx(k + p|k)−

(
2x>0 Q+Q1

)
x(k + p|k)

+ u(k + p− 1|k)>Ru(k + p− 1|k)
∣∣ x(k + p− 1)

}
. . .∣∣∣ x(k + 1)

} ∣∣∣∣ x(k)

}
+ p

(
x>0 Q+Q1

)
x0.
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We introduce the notation

Jk+i = E

{
x(k + i+ 1|k)>Qx(k + i+ 1|k)−

(
2x>0 Q+Q1

)
x(k + i+ 1|k)

+ u(k + i|k)>Ru(k + i|k) + E
{
x(k + i+ 2|k)>Qx(k + i+ 2|k)

−
(
2x>0 Q+Q1

)
x(k + i+ 2|k) + u(k + i+ 1|k)>Ru(k + i+ 1|k) + . . .

+ E
{
x(k + p|k)>Qx(k + p|k)−

(
2x>0 Q+Q1

)
x(k + p|k)

+ u(k + p− 1|k)>Ru(k + p− 1|k)
∣∣ x(k + p− 1)

}
. . .∣∣∣ x(k + i+ 1)

} ∣∣∣∣ x(k + i)

}
.

Now it is clear that

Jk+i = E
{
x(k + i+ 1|k)>Qx(k + i+ 1|k)−

(
2x>0 Q+Q1

)
x(k + i+ 1|k)

+ u(k + i|k)>Ru(k + i|k) + Jk+i+1

∣∣ x(k + i)
}
, i = 0, . . . , p− 1,

(11)

with Jk+p = 0 and
J(k + p|k) = Jk + p

(
x>0 Q+Q1

)
x0. (12)

Using the method of mathematical induction we prove that the following relation-
ship is valid:

Jk+p−t = tx(k + p− t|k)>Qx(k + p− t|k)

+
(

2
(
x(k + p− t|k)− x0

)>
Q−Q1

)
×
( t∑

i=1

iBu(k + p− i|k) +

t∑
i=1

iCd(k + p− i)
)

+

t∑
i=1

u(k + p− i|k)>
(

2

i−1∑
j=1

jB>QBu(k + p− j|k)

+ (iB>QB +R)u(k + p− i|k)

)
+ 2

t∑
i=1

( i∑
j=1

jd(k + p− j)>

+

t∑
j=i+1

id(k + p− j)>
)
C>QBu(k + p− i|k)

+

t∑
i=1

d(k + p− i)>C>QC
(

2

i−1∑
j=1

jd(k + p− j) + id(k + p− i)
)

+ tr

{
t(t+ 1)

2
C>QCW

}
− t(2x>0 Q+Q1)x(k + p− t|k), t = 1, . . . , p,

(13)

where tr{·} is the trace of a matrix.
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At first, let us consider the case for p = 1. From (11) for i = p− 1 we have

Jk+p−1 = E
{
x(k + p|k)>Qx(k + p|k)−

(
2x>0 Q+Q1

)
x(k + p|k)

+ u(k + p− 1|k)>Ru(k + p− 1|k)
∣∣ x(k + p− 1)

}
.

(14)

Substituting x(k+ p|k) by its expression in terms of x(k+ p− 1|k) from (1) in (14)
and taking the conventional mathematical expectation, we get

Jk+p−1 = x(k + p− 1|k)>Qx(k + p− 1|k) +
(

2
(
x(k + p− 1|k)− x0

)>
Q−Q1

)
×
(
Bu(k + p− 1|k) + Cd(k + p− 1)

)
+ u(k + p− 1|k)>(B>QB +R)u(k + p− 1|k)

+ 2d(k + p− 1)>C>QBu(k + p− 1|k) + d(k + p− 1)>C>QCd(k + p− 1)

+ tr{C>QCW} −
(
2x>0 Q+Q1

)
x(k + p− 1|k),

and this coincides with (13) if t = 1.
Now let us suppose that relationship (13) is valid for some t, and show that (13) is
valid for t+ 1. Indeed, from recursive expression (11) we obtain

Jk+p−t−1 = E
{
x(k + p− t|k)>Qx(k + p− t|k)−

(
2x>0 Q+Q1

)
x(k + p− t|k)

+ u(k + p− t− 1|k)>Ru(k + p− t− 1|k) + Jk+p−t
∣∣ x(k + p− t)

}
.

(15)

Now we will substitute x(k+p− t|k) by its expression in terms of x(k+p− t−1|k)
from (1) in (15) and Jk+p−t by its expression from (13). Expanding the conventional
expectation and transforming the expression, we obtain that

Jk+p−t−1 = (t+ 1)x(k + p− t− 1|k)>Qx(k + p− t− 1|k)

+
(

2
(
x(k + p− t− 1|k)− x0

)>
Q−Q1

)
×
(t+1∑

i=1

iBu(k + p− i|k) +

t+1∑
i=1

iCd(k + p− i)
)

+

t+1∑
i=1

u(k + p− i|k)>
(

2

i−1∑
j=1

jB>QBu(k + p− j|k)

+ (iB>QB +R)u(k + p− i|k)

)
+ 2

t+1∑
i=1

( i∑
j=1

jd(k + p− j)>

+

t+1∑
j=i+1

id(k + p− j)>
)
C>QBu(k + p− i|k)

+

t∑
i=1

d(k + p− i)>C>QC
(

2

i−1∑
j=1

jd(k + p− j) + id(k + p− i)
)

+ tr

{
(t+ 1)(t+ 2)

2
C>QCW

}
− (t+ 1)(2x>0 Q+Q1)x(k + p− t− 1|k).

(16)



The Inventory Control Problem for a Supply Chain 43

Formula (16) coincides with (13) if t is replaced by t + 1, and hence, according to
the mathematical induction rule, formula (13) is valid for all t = 1, . . . , p.
Using the fact that (13) gives an expression for Jk with t = p, we get from (12):

J(k + p|k) = px(k|k)>Qx(k|k) +
(

2
(
x(k|k)− x0

)>
Q−Q1

)
×
( p∑

i=1

iBu(k + p− i|k) +

p∑
i=1

iCd(k + p− i)
)

+

p∑
i=1

u(k + p− i|k)>
(

2

i−1∑
j=1

jB>QBu(k + p− j|k)

+
(
iB>QB +R

)
u(k + p− i|k)

)
+ 2

p∑
i=1

( i∑
j=1

jd(k + p− j)>

+

p∑
j=i+1

id(k + p− j)>
)
C>QBu(k + p− i|k)

+

p∑
i=1

d(k + p− i)>C>QC
(

2

i−1∑
j=1

jd(k + p− j) + id(k + p− i)
)

+ tr

{
p(p+ 1)

2
C>QCW

}
− p

(
2x>0 Q+Q1

)
x(k|k) + p

(
x>0 Q+Q1

)
x0.

Eliminating all the terms that do not depend on the controls u and do not influence
the optimum, we obtain

J (k + p|k) =
(

2
(
x(k|k)− x0

)>
Q−Q1

) p∑
i=1

iBu(k + p− i|k)

+

p∑
i=1

u(k + p− i|k)>
(

2

i−1∑
j=1

jB>QBu(k + p− j|k)

+
(
iB>QB +R

)
u(k + p− i|k)

)
+ 2

p∑
i=1

( i∑
j=1

jd(k + p− j)>

+

p∑
j=i+1

id(k + p− j)>
)
C>QBu(k + p− i|k).

(17)

Expression (17) can be rewritten in a matrix form as:

J (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k), (18)

where ũ(k) =
(
u(k|k)>, u(k + 1|k)>, . . ., u(k + p− 1|k)>

)>
, H is given by (9),

G(k) =

((
x(k)− x0

)>
Q− 1

2
Q1

)
BK + d̃(k)>F,
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and

d̃(k) =
(
d(k)>, d(k + 1)>, . . . , d(k + p− 1)>

)>
, d̃(k) ∈ D̃. (19)

Now we will consider constraints (3), (4). It is clear that (4) leads to constraint
(8). Using the expression in terms of x(k) from (1) instead of x(k + 1) in (3) we
get

E
{
x(k + 1)

∣∣ x(k)
}

= E
{
x(k) +Bu(k) + Cd(k) + Cw(k)

∣∣ x(k)
}

= x(k) +Bu(k) + Cd(k) ∈X.
(20)

Under constraint (2), condition (20) turns into the next inclusion:

x(k) +Bu(k) + CD ∈X,

that is valid if and only if

x(k) +Bu(k) ∈X 	CD.

Then for the observed state of the system x(k) at each sampling time k the control
u(k) must satisfy

Bu(k) ∈X 	CD − x(k),

which is consistent with (7).
We come to the problem of minimizing quadratic function (18) with interval data

(19) subject to constraints (7), (8). To handle the interval data in (18) we convert
the problem of interval quadratic programming into the following two-objective
optimization problem:

min
ũ(k)
J (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k),

min
ũ(k)
J (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k),

(21)

subject to (7), (8),

where the first objective function is the lower bound of interval quadratic function
(18) over the interval D̃, and the second is its upper bound. In (21)

G(k) =
((
x(k)− x0

)>
Q− 1

2
Q1

)
BK +DF,

G(k) =
((
x(k)− x0

)>
Q− 1

2
Q1

)
BK +DF,

and DF,DF are the lower and upper bounds of the possible values of d̃(k)>F over
the interval D̃.

According to the multi-objective optimization technique [9], problem (21) can
be transformed into a quadratic programming problem with a single objective.
Based on the scalarization method (the weighting objectives method), we obtain
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an equivalent compromise single objective optimisation problem where the objective
is chosen as a weighted sum of the original criteria:

min
ũ(k)

Y (k + p|k) = λ1J (k + p|k) + λ2J (k + p|k)

subject to (7), (8),

where λ1, λ2 ≥ 0 are the weighting coefficients that represent the relative impor-
tance of each criterion, λ1 + λ2 = 1. At various weights, we can express varies
preferences to estimate the performance objective. For example, λ1 = 1 means the
optimistic estimate, λ2 = 1 states the pessimistic estimate, λ1 = λ2 = 0.5 indi-
cates the neutral estimate. It can be tuned manually until the controller reflects
the desired behaviour. From our experience, if the demand values are more or less
evenly distributed within its intervals, the equal weights give quite good results.
Assuming equal weights in objective functions (21) we obtain the following result:

Y (k + p|k) =
(
J (k + p|k) + J (k + p|k)

) /
2

= ũ(k)>Hũ(k) + 2
1

2

(
G(k) + G(k)

)
ũ(k) = ũ(k)>Hũ(k)

+ 2
((

(x(k)− x0)>Q− 1

2
Q1

)
BK +

1

2

(
DF +DF

))
ũ(k),

that is consistent with (6) and (10).

At this point, it is worth noting that, due to the interval uncertainty in the
system, we can only steer the state to a tube sufficiently close to the target level
x0, and keep the state trajectory on average within the target tube. The target
tube is a sequence of the sets that at each time contain all the states whose future
trajectory can be kept inside the constraints, for all admissible disturbances [2].
It is clear, the width of this tube depends on the width of the initial uncertainty
intervals. Indeed, the problem of keeping the state x(k), on average, in some tube
X(a, b) = [a, b] has a solution if and only if, for all x(k) ∈X(a, b), there is a control
u(t) ∈ U so that

E
{
x(k + 1)

∣∣ x(k)
}

= x(k) +Bu(k) + Cd(k) ∈X(a, b)

is valid for all d(k) ∈D. That takes place if and only if

x(k) +Bu(k) + CD ∈X(a, b),

and then
x(k) +Bu(k) ∈X(a, b)	CD.

It makes sense if and only if X(a, b) 	 CD ∈ IR, that is a − CD ≤ b − CD. We
can argue that CD − CD ≤ b − a, and widCD ≤ widX(a, b). Therefore, the
minimum width of the tube, within which on average the state x(k) can be kept
for all possible values of the demand, is given by

widCD = CD − CD.
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Evidently, under an excessive storage level any system must pay a high storage
cost. But if the storage level is too low, the system will have a low service level
due to the shortage, resulting in lost profits and loss of customer loyalty. To find
the trade-off, we need to maintain the minimum level of storage without violating
state constraints for all possible realizations of model uncertainty. This is why we
suggest setting the target level at zero during the first simulation and waiting for
the tube X(0,widCD) to be received. In this case, the control is obtained by
pointing to the order-up-to-level in the sense that

x(k) +Bu(k) = −CD (22)

because of X(0,widCD) 	 CD = −CD. Thus, the developed feedback control
turns out to be a periodic review, order-up-to-level (R,S) strategy, where the review
interval R is the unit of time, and the order-up-to-level S is equal to −CD. If the
levels of service in the network nodes are high enough, there is no need to raise the
target level x0. Otherwise, we can gradually increase the target level and form a
safety stock until the required levels of service are received.

4 Numerical Problem

Now we will apply the results obtained in Section 3 to an example. Let us consider
the fictional production-distribution system represented by Figure 1.

A

B

AB

1

2

3

u1

u2

u4

u3

d1, w1

d2, w2

d4, w4

d5, w5

d3, w3

Figure 1: The network structure of a production-distribution system with three
nodes and controllable (solid) and uncontrollable (dashed) flows between them

The system has three interdependent production-distribution centres, repre-
sented by three nodes. Nodes 1 and 2 make products A and B, these products are
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used later for making product AB in node 3. The controllable flows u1, u2 describe
the production levels of A in node 1 and B in node 2, respectively, per unit of time,
u3 describes a production line in node 3 which takes some amount of products A
and B to produce the same amount AB in node 3. The arc u4 models an additional
flexible capacity present in the system which can be split in any proportion between
two production lines A and B. If the arc u4 works at full force, the flexible capacity
is fully used to produce B, while if it works at zero force, the flexible capacity is fully
used to produce A. The uncontrollable flows represent the demand in the network
nodes that can arise from outside and other nodes. The arcs d1, d2, d3 represent
demands for products A, B and AB. And there are the redistribution arcs d4, d5
which represent demands that may unpredictably require A or AB, and B or AB,
respectively.
The structural matrices B and C for the system have the form:

B =

1 0 −1 −1
0 1 −1 1
0 0 1 0

 , C =

−1 0 0 −1 0
0 −1 0 0 −1
0 0 −1 1 1

 .

The constraints in the states and controls are given as follows

X =
(
[0, 130] [0, 120] [0, 150]

)>
,

U =
(
[0, 170] [0, 50] [0, 100] [0, 70]

)>
.

The demand d(k) takes values within the interval vector

D =
(
[5, 25] [20, 30] [60, 80] [0, 20] [0, 10]

)>
.

This example is an adapted version of the example from [2]. The system contains
the white noise w(k) with a zero mean and the covariance matrix

W = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
l

)
, σ2

i = 0.25 widDi.

We assume that the demand cannot be backlogged and that demands during stock-
outs are completely lost. The initial storage level is x(0) = (130 120 150)

>
and

the target storage level is x0 = (0 0 0)>. The weighting matrices are chosen as
Q = In, Q1 = (1 1 1)>, R = Im, the prediction horizon is p = 6, the problem is
solved for 100 time steps. We carried out modelling and simulation in MATLAB.
The simulation results are presented in Figures 2, 3, 4, 5.

Figure 2 shows the time behaviour of demands in the network. Normally, they
fluctuate inside the given intervals, but there are some peaks lying outside their
lower and upper bounds. This is the influence of random disturbances that can
cause the demand to leave the predicted interval. We take them into account only
in the expected way, and this is reflected in customer service levels. But in our
case, decrease in the service levels is insignificant. As the simulation showed, we
received high levels of service in the network nodes. They are maintained at the
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Figure 2: The dynamics of di +wi (solid blue) and the lower and upper bounds of
the demand intervals

[
Di, Di

]
(dashed red), i = 1, . . . , 5

level of 98.72% in node 1, 99.98% in node 2, and 99.67% in node 3. In this case,
there is no need to increase the target level x0 to form a safety stock.

Figure 3 demonstrates the controls in the network. The average time required
to compute the control actions within a time step using the quadprog function was
about 0.005 seconds. It is worth noting that the arc u2 works at full force. The
flexible capacity is divided between the production lines A and B (u4 > 0). This
means that the constraint in u2 is limiting.

Figure 4 presents the inventory dynamics in the network nodes under the op-
timal control strategy. In all the nodes, a decreasing trend of the storage lev-
els can be observed. In our case, CD = ([−45,−5] [−40,−20] [−80,−30])

>
and

widCD = (40 20 50)
>

. Figure 4 shows that starting from some timestep, the
state trajectory on average lies within the minimal tube X(0,widCD).
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Figure 3: The trajectories of the controls u1, u2, u3, u4 (solid blue) and its con-
straints (dashed red)
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Figure 4: The trajectories of the states xi (solid blue) and the levels widCDi

(dashed red), i = 1, 2, 3
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Figure 5 shows the order-up-to-levels which starting from some point in time
are constant and equal to −CD = (45 40 80)

>
. This fact is consistent with (22).

0

45

(x
+
B
u
) 1

0

40

(x
+
B
u
) 2

0 20 40 60 80 100

Timestep k

0

80

(x
+
B
u
) 3

Figure 5: The order-up-to-levels (solid blue) and −CD (dashed red)

5 Conclusions and further research

In this study, we considered a supply chain network under interval and stochastic
uncertainties. The mixed type of uncertainty is preferred in many cases since it is
close to real life. We used the integrated approach to inventory control, with all
the network nodes optimized simultaneously. We applied the MPC approach and
reduced the problem to a constrained quadratic programming problem which can
be solved using efficient techniques. As a result, we developed a feedback inventory
control strategy with a high level of service.

However, there are still a number of issues that need to be addressed, such as the
case of nonstationary demand, multiplicative noise, storage loss, and the conditions
for the existence of controls to fulfill any values of possible demands under interval-
stochastic uncertainty. These are the points of possible future research.
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