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Comparing Structural Constraints for
Accelerated Branch and Bound Solver of

Process Network Synthesis Problems∗

Emília Heincab and Balázs Bánhelyiac

Abstract

The P-Graph methodology can be used to find the optimal solution for
large processing system. This methodology solves the combinatorial part of
the problem more efficiently than the traditional branch and bound method
due to the utilized relationships inherent in the structure. However, reducing
the number of possibilities developed in the constraint functions also plays
a major role in this algorithm. In this publication, we present a new con-
straint function that also takes into account the minimum cost structure and
compares it with earlier versions.
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1 Introduction

The task of process network synthesis is to determine the optimal structure of a
process system, the optimal configurations, and operating sizes of the functional
units that make up the system and perform various operations [12]. Process syn-
thesis plays a critical role in reducing material, energy consumption, and negative
environmental impacts, thereby increasing profitability. Several examples in the
literature demonstrate that efficient process synthesis can reduce energy consump-
tion by up to 50% and costs by 35% [13]. Ideally, the structure of a process and the
operational configurations that make up the process could be designed and synthe-
sized simultaneously because their performance interacts. In practice, however, it
is extremely difficult due to the simultaneous continuous and discrete nature of the
task. The discrete nature is caused by the structure of the process, which leads to
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the combinatorial complexity of the problem that makes it complex to find an opti-
mal solution to the problem. The process network synthesis problems formulate a
MILP problem with many binary variables. Finding the optimal subnetwork is an
NP-hard problem. Combinatorial analysis can be applied to this type of problem.
The method is used to reduce the number of possible solutions by exploiting the
unique properties of the so-called PNS (Process Network Synthesis) problems is the
ABB (Accelerated Branch and Bound) method [10]. It is based on the branch and
bound method, i.e. the method uses a lower bound submethod to exclude solutions
that cannot provide a better solution than the currently known best solution. It
is critical for the computation time of solving the problem with the B&B method
to find a tighter lower bounding submethod. The currently available implementa-
tions and the previous studies do not exploit all the information, considering only
the continuous part of the problem by calculating the LP relaxation of the MILP
problem. In this article, we introduce a better lower bounding sub-method taking
into consideration not just the continuous but also the structural nature of the PNS
problem.

2 The Process Network Synthesis

2.1 P-Graph and basic notations methodology

The P-Graph (Process Graph) methodology was developed in the early 1990s for
the complex chemical production system to model and optimize. Its name de-
rives from a directed graph obtained by P-Graph, which provides the ability to
use combinatorially feasible solution structures to determine the optimum for large
tasks [8]. The P-Graph methodology based on graph theory and combinatorial
techniques provides a solution to facilitate finding the optimal Process Network
Synthesis (PNS) subproblem. The P-Graph can be described with (M,O) struc-
tures, where the M is the finite set of materials, and the finite set of operating
units, O ∈ ℘(M)× ℘(M). The two sets are disjoint, i.e. M ∩O = ∅.

Definition 1. The P-Graph(M ′, O′) is the subgraph of the P-Graph(M,O), i.e.
P-Graph(M ′, O′) ⊆ P-Graph(M,O) if M ′ ⊆M and O′ ⊆ O.

The Process Network Synthesis problems, or PNS problems, in short, are defined
as (P,R,O) triplets, where P stands for the set of products, R stands for the set
of resources or raw materials and O is the set of operating units, where P ∩R = ∅,
P ⊆M , R ⊆M , andM ∩O = ∅. If (α, β) ∈ O, then α is the input-set, and β is the
output-set of (α, β). The sets of input and output materials of set o of operating
units are denoted by matin(o) and matout(o) separately, which are defined as:

matin(o) =
⋃

(α,β)∈o α and matout(o) =
⋃

(α,β)∈o β.

Let the either consumed or produced materials by the operating unit o be:

mat(o) = matin(o) ∪matout(o).
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M is the set of materials in the PNS problem that are used (consumed or produced)
by at least one operating unit from the set O, i.e. M =

⋃
o∈Omat(o).

In the methodology, a directed bipartite graph was used to represent the struc-
ture of a process system. We distinguish two kinds of nodes, the material (set of
M) and operating units (set of O) in the graph. The directed edges represent the
connection between the operating units and materials. The edges from the mate-
rials to the operating units mark the relation of the operating units that consume
the materials. The edges from the operating units to the materials represent the
relation of producing the given materials. In the PNS problems, costs can be as-
signed to the operating units and raw materials. In the following sections, the fix,
installation cost is denoted by fix_cost(O′) : ℘(O)→ R≥0 and the operating cost
is marked by op_cost(O′) : ℘(O)→ R≥0.

Definition 2. The P-Graph(m, o) is a combinatorially feasible structure or solution
structure, in short of the PNS problem (P, R, O) if it satisfies the following five
listed axioms:

(S1) P ⊂ m

(S2) ∀X ∈ m,X /∈ matout(o) if and only if X ∈ R

(S3) o ⊆ O

(S4) ∀y0 ∈ o,∃ path[y0, yn], where yn ∈ P

(S5) ∀X ∈ m, ∃(α, β) ∈ o such that X ∈ (α ∪ β)

The aim of the problem is that the solution structure with the optimal summed
cost is found, i.e. to produce all of the products from the raw materials at minimum
cost. The algorithm that finds all the possible solution structures, will be the SSG
algorithm, and the method that finds the solution structures with the optimal
summed cost will be the ABB algorithm.

To solve this problem, we have to first find the maximum solution structure
which contains all combinatorially feasible process structures. This method is called
the MSG method (Maximal Structure Generation) [7].

Definition 3. Let ∆ : M → ℘(O), where ∆(X) = {(α, β) : (α, β) ∈ O and X ∈ β}
i.e. determines the set of operating units producing all materials X ∈M .

Definition 4. Let the decision mapping δ(X) be the subset of ∆(X), i.e. δ(X) ∈
∆(X) X ∈M .

Definition 5. Expanding the decision mapping definition for the set of materials
let the δ[m] = (X, δ(X) |X ∈ m).

Let the set of operating units of decision-mapping δ[m] be marked as op(δ[m]),
where

op(δ[m]) =
⋃
X∈m δ(X).
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Let the complement of decision-mapping δ[m] defined by

δ[m] = {(X,Y ) |X ∈ m and Y = ∆(X) \ δ(X)}.

Let δ(X) be a set of operating units not included in δ(X):

δ(X) = ∆(X) \ δ(X).

Definition 6. Decision mapping δ[m] is consistent if |m| ≤ 1, or (δ(X) ∩ δ(Y )) ∪
(δ(X) ∩ δ(Y )) = ∆(X) ∩∆(Y )∀X,Y ∈ m.

Definition 7. Let δ1[m1] and δ2[m2] be consistent decision-mappings. Then δ1[m1]
is an extension of δ2[m2], i.e. δ1[m1] ≥ δ2[m2] if m2 ⊆ m1 and δ1(X) = δ2(X) for
X ∈ m2.

It can easily be proved that there is a bijective transition between the consistent
decision mapping δ[m] and the P-Graph (m, o), where m =

⋃
(α,β)∈o(α ∪ β) and

o =
⋃
X∈m δ(X) [6].

Definition 8. Let the set of included operating units in δ[m] decision mapping be
noted as OI , where then

OI = op(δ[m]).

Let the set of excluded operating units in the δ[m] decision mapping be OE, where

OE = op(δ[m]).

2.2 Solution Structure Generation algorithm

Further investigation is aided by the SSG (Solution Structure Generation) algo-
rithm, which generates each combinatorially feasible structure exactly once. The
algorithm is based on decision mappings. Decision mappings involve deciding which
operating units produce the materials, i.e. which operating units are involved in a
given solution structure [9]. Consequently, during decision mapping, we also de-
cide which operating units will be excluded from the given structure. We must
be consistent in our decisions because even if it has already been decided that an
operating unit for one material should not be included in the structure, we cannot
choose again when deciding on another material. All output materials for an oper-
ating unit, if included in the structure, must be specified, an inconsistent decision
would result in certain substances being produced and certain substances not. The
SSG implementation of the decision mapping-based algorithm calls itself recursively
[6, 5].

As we see in the Algorithm 1, the procedure returns with all possible decision
mappings over the PNS(P, R, O) problem. In the further section, the ABB algo-
rithm will be introduced which is based on the SSG algorithm as working over all
the possible decision mappings in the input PNS(P, R, O) problem but it returns
with the optimal cost decision mapping.
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Algorithm 1 Main and recursive part of SSG algorithm
Input M,PNS(P,R,O)

procedure SSG(M,PNS(P,R,O))
if P = ∅ then If there is nothing to produce
Stop

end if
SSGD(p, ∅, ∅)
return
procedure SSGD(p, m, δ[m])
if p = ∅ then
write δ[m] δ[m] defines a solution-structure
return

end if
let x ∈ p
C := ℘(∆(x)) \ ∅
for ∀c ∈ C do
if ∀y ∈ m, (c ∩ δ(y) = ∅ and (∆(x) \ c) ∩ δ(y) = ∅) then
δ[m ∪ {x}] := δ[m] ∪ (x, c)
SSGD

((
p ∪matin(c)

)
\ (R ∪m ∪ {x}),m ∪ {x}, δ[m ∪ {x}]

)
end if

end for
return

2.3 Mathematical model for P-Graph

The continuous variables of the model are denoted by x and the binary variables
by y.

These variables are assigned to operating units. The continuous variable xi
indicates the operational size of the operating unit Oi(∈ O), and the binary variable
yi indicates whether the unit is in the structure or not: if the value of the binary
variable yi ∈ {0, 1} is 0, then the operating unit Oi is not in the structure, and if it
is 1, then it is involved. If the operation unit Oi is part of the structure, i.e. yi = 1,
then the operation size of the operation unit, which is a continuous variable xi, can
take any value from 0, and the operation unit between its upper capacity limit, Ui.
Formally: xi ≤ yiUi, where Ui is the upper bound of the capacity of the operating
unit Oi. If nothing of the sort is defined in the task boundary, an arbitrarily large
number M can be used instead of Ui.

The objective function is to minimize cost. The cost is composed of the in-
vestment cost, the operating cost of the operating units, and the price of the raw
material. These components cover the full cost of the network, i.e. the process to
be synthesized considers the full cost. In the model, the costs of the operating units
are simply entered with the relationship a + bx, where x is the size or capacity of
each operating unit, a is the fixed cost, and b is the proportional cost which contains
the price of the raw material.
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In addition to the capacity constraints listed above, additional constraints are
imposed on material balances, products, and raw materials. For products, we
usually set lower limits to determine how much we need to produce at least of a
given product, while for raw materials we may set upper limits if these types of
raw material quantities are not available in unlimited amounts. Material balance
conditions should be defined for intermediate products. These conditions state that
at least as much of each intermediate product must be produced as is necessary
for the operation of the operating units that use it, otherwise the manufacturing
process would come to a standstill.

2.4 Accelerated Branch and Bound method

Since this is a mixed-integer programming problem, a general branch-and-bound-
type method can be used to solve this model. Although the optimal solution to
the problem can also be determined by using these methods, their efficiency can
be further improved since the special properties of the synthesis tasks are not
taken into account in the search for a solution. Accordingly, the P-Graph method
for determining the optimal solution is a special algorithm of the Constraint and
Separation type, ABB is used.

This algorithm uses the previously described decision mappings of the SSG al-
gorithm for binary variables in the branch-and-bound tree. Earlier on, the branch-
and-bound method used continuous relaxation of the mathematical model in ad-
dition to the structural constraints of the constraint SSG. In this relaxed model,
the binary variables (yi) were not considered, and the model was limited to de-
termining the optimal values of the continuous variables (xi). This optimization
task provided a lower bound on the operating costs. In the following section, when
the lower bounds are defined precisely for our branch-and-bound method, the re-
laxation type of the bound is nominated as Lower_Boundrelaxed (see Algorithm
2).

Algorithm 2 Relaxed lower bound algorithm
Input PNS(P,R,O) problem, OI , OE
procedure Lower_Boundrelaxed(PNS(P,R,O), OI , OE)
return LPSolver(PNS(P,R,O), OI , OE)

The ABB algorithm is given as Algorithm 3 below. The method’s inputs
are the PNS(P,R,O) problem in which the algorithm is running over, and the
Lower_Bound function that will be used to prune the branch-and-bound tree.
The M and neutralExtension variables are used implicit by ABB algorithm. The
M denotes the set of materials that will be considered, and the neutralExtension
is a Boolean variable that decides whether the neutral extension acceleration will
be used or not.

The ABBD sub-method is called recursively in the ABB algorithm. It can be
defined as a node from the branch-and-bound tree when it is called. The decision-
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Algorithm 3 Main and recursive part of ABB algorithm
Input PNS(P,R,O), Lower_Bound
Global variables R,∆(x), (x ∈M), U, currentbest

procedure ABB(PNS(P,R,O), Lower_Bound)
U :=∞; currentbest :=∞
O := MSG(PNS(P,R,O))
ABBD(P, ∅, δ[∅])
return
procedure ABBD(p, m, δ[m])
if neutralExtension then

let δ̂[m̂] be the maximal neutral extension of δ[m]

p := (matin(op(δ̂[m̂])) ∪ P ) \ (m̂ ∪R)

OI := op(δ̂[m̂])

OE = op(δ̂[m̂])
end if
bound = Lower_Bound(PNS(P,R, 0), OI , OE)
if p = ∅ then Halting condition.
if U ≥ bound then
U = bound;
update currentbest;

end if
return

end if
if bound ≥ U then Cutting the branch.
return

end if
x ∈ p;
C := ℘(∆(x)) \ {∅};
for ∀c ∈ C do
if ∀y ∈ m, c ∩ δ(y) = ∅&(∆(x) \ c) ∩ δ(y) = ∅ then
m′ := m ∪ {x};
if S(δ[m′]) = ∅ then
Continue;

end if
δ[m′] := δ[m] ∪ {(x, c)};
p := (matin(op(δ[m′])) ∪ P ) \ (m′ ∪R);
OI := op(δ[m′]);
OE := op(δ[m′]);
ABBD(p,m′, δ[m′])

end if
end for
return
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mapping is the fundamental tool for finding the optimal solution structure, as it
defines obviously the node, or partial problem, S of the branch-and-bound tree.
First, the partial problem has to be defined precisely for the algorithm. The defi-
nition of the S will be:

Definition 9. Let S(δ[mi]) be the partial problem of ABB in solving PNS problem
(P,R,O):

S(δ[mi]) := {δ[mk] : δ[mk] ≥ δ[mi] and graph(δ[mk]) ∈ PNS(P,R,O)},
where graph(δ[mk]) ∈ PNS(P,R,O) means that δ[mk] is the combinatorially fea-
sible structure of PNS(P,R,O).

The ABBD(P, ∅, δ[∅]) or S(∅) is called for the root node in the tree. The
first parameter is the set of materials that are obligatory to produce. In the root
node, it is the products from the PNS problem. The second parameter is the set
of materials that have been produced already. The third parameter is the decision
mapping which is valid in the current branch. As there is no material produced in
the root node, the last two parameters are zero in the root node.

As an acceleration of the algorithm, the neutral extension of the current decision
mapping, δ[m] can be used. The method extends the decision mapping with the
materials that have to be produced. If we have one possible way to produce it, then
the decision of which operating unit will produce these materials is straightforward
[10]. It could be either that (1) all of the operating units are included and excluded,
i.e. ∆(m)∩(OI∪OE) = ∆(m), or (2) it is not decided which operating units produce
it, but there is one possible operating unit that could produce it, the other operating
units have already been excluded, i.e.(OI ∩∆(m) = ∅) & (|∆(m) \OE | = 1).

The halting condition has been defined in the ABBD algorithm. If there aren’t
any obligatory products then the algorithm returns with the currently best cost. In
this case from the validity of the lower bound sub-method, the return value equals
the optimal cost of the current examined branch.

In the ABBD sub-method, as we calculate the minimal cost of the sub-tree in
the branch-and-bound tree, the lower bound has to be calculated for the summed
cost. The Lower_Bound must be a valid lower bound sub-method. The validity
of the newly introduced lower bound will be proved in Theorem 1.

If the lower bound is greater than the actual best solution then the branch is
going to be cut because the optimal solution can’t be better than the current best
solution.

After the examination of the halting conditions, the branching part is executed:
as it is introduced in the SSG algorithm, we select a material x from the set of
mandatory products, p that hasn’t been decided which operating units produce
yet. The son of the current partial problem will be the recursive sub-problem.
The recursively called method’s parameter is the decision mapping that consists of
the material x and it is consistent with the current decision mapping in the main
problem. Formally defined as:

son(S(δ[m]), x) := {S(δ′[m′]) : S(δ′[m′]) 6= ∅ & δ′[m′] = δ[m]∪{ (x, c) }
for c ∈ (℘(∆(x))) \ ∅ & δ′[m′] is consistent} .



Comparing Structural Constraints for Accelerated Branch and Bound Solver 9

3 Lower bound submethods in ABB algorithm

In each of our relaxed models in our ABB algorithm with a new lower bound,
the minimum cost of the structurally feasible part of the residual was determined
by the modified SSG algorithm for the free part of the P-Graph. The modified
SSG algorithm is similar to the ABB method that has been called recursively with
the sum of the fixed costs as the lower bound. The combination of these two
optimization models gives a better lower bound for the sub-problems of B&B. Of
course, operational and structural lower bounds need not necessarily come from
the same feasible structure. The general Lower_Bound function inputs are the
PNS(P,R,O) problem the algorithm is running over, and the currently included
and excluded operating units in the branch by the decision mapping δ[m].

3.1 Relaxed lower bound

Let us first consider the well-known and commonly used relaxed model, which is
typically used for B&B algorithms and basic P-Graph solutions.

Definition 10. LPSolver(PNS(P,R,O), OI , OE) is the optimal value of PNS prob-
lem with yi = 0, where oi ∈ OE and yi = 1, where oi ∈ OI .

The most obvious lower bound will be the optimum of the relaxation of the
current MILP model derived from the decision mapping. The relaxed optimum of
the current MILP problem is denoted as LPSolver(PNS(P,R,O), OI , OE), where
OI is the included operating unit, which means that also in the relaxed problem
the yi = 1 | ∀oi ∈ OI is set. As the xi ≤ yiUi constraints have been set for the
operation number of operating unit i.

The same is true for OE which denotes the excluded operating units also in the
relaxed problem, i.e. yi = 0 | ∀oi ∈ OE . In this case, the operating unit i has not
been installed so from the constraints also listed above the operating unit cannot
do any operation. (Also it has been excluded.)

The xi ≤ yiUi relation is excluded from the constraints for all the free operating
units. It means that the yi for the free operating units will be set to 0 in the
optimal solution as all the y variables have non-negative coefficients in the objective
function.

To obtain the optimum of the relaxed LP problem that is get from the trans-
formation of the current decision mapping, δ[m] to an LP problem is essential to
choose a reliable LP solver. These LP solvers could be CPLEX [4], XPress [3], or
Gurobi [11]. The Gurobi was used in our implementation.

3.2 Defining the new lower bound of ABB algorithm

Our aim is to introduce a new lower bound which gives a tighter bound to the
optimum value than the current relaxed lower bound, and the LP solver calling
number is not greater than the total LP callings in the case with the relaxed bound.
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The new lower bound has been improved to take into consideration not only
the currently summed included operating units’ cost, but the remained operating
units’ fix costs as well.

The main idea was that the same ABB algorithm can be used for the calcu-
lation of the free or remained operating units with modified parameters. Both
parameters of ABB, the PNS problem, and the lower bound have been modi-
fied to make the algorithm calculate the optimal structural value. A modified
PNS problem is used to calculate the lower bound of the MILP model’s integer
part. Let PNSδ[m]

IP (P ′, R′, O′) be the new PNS problem derived from the original
PNS(P,R,O) problem, where

• R′ = matout(OI) ∪R

• P ′ =
(
P ∪matin(OI)

)
\R′

• O′ = {(α′, β′) : α′ = α, β′ = β \matout(OI), (α, β) ∈ O \OE}.

In the previously introduced ABB algorithm, the PNSδ[m]
IP problem was formulated

by the get_IP_problem(PNS(P,R,O), OI , OE) method, where OI = op(δ[m])
and OE = op(δ[m]) and δ[m] is the current decision mapping in the original prob-
lem. The second parameter is changed to the Summed_Weight lower bound (listed
in Algorithm 4), which returns the summed cost of the included units. This lower
bound cost gives a lower bound to the actual optimal structural cost of the free
operating units. It will be proved in the Lemma 4.

Algorithm 4 The current summed structural cost
Input PNS(P ′, R′, O′) problem, OI , OE
procedure Summed_Weight(PNS(P,R,O), OI , OE)
return

∑
o∈OI

fix_cost(o)

The optimal free operating units’ structural cost will be added to the previously
defined remained graph’s optimal operating cost.

The detailed method is listed in Algorithm 5. In the rest of the section, the
validity of our new lower bound will be proved.

Definition 11. Let the A be all the possible extensions of decision mapping δ[m]
over arbitrary PNS(P,R,O) problem.

A(δ[m]) = {δ∗[m∗] | δ∗[m∗] ≥ δ[m] and ∃δ+[m+], graph(δ+[m+]) ∈
PNS(P,R,O) where δ∗[m∗] ≤ δ+[m+]}.

Definition 12. Let the δ′ be all the possible decision of materials, and A′ be all δ′

decision mapping over the problem PNS
δ[m]
IP (P ′, R′, O′), i.e. A′ = A(δ′[∅]).

Definition 13. Let the bijective transition F from O\OE to O′\OE be F ((α, β)) =

(α, β \matout(OI)), where O′ is the operating unit set of PNSδ[m]
IP problem, and O

is the operating unit set of the PNS problem.
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Algorithm 5 New lower bound algorithm
Input PNS(P,R,O) problem, OI , OE
procedure Lower_Boundnew(PNS(P,R,O), OI , OE)
PNS

δ[m]
IP (P ′, R′, O′) :=get_IP_problem(PNS(P,R,O), OI , OE)

O′ :=MSG(PNSδ[m]
IP (P ′, R′, O′))

IPCurrentBest:=0
if P ′ 6= ∅ ||O′ 6= ∅ then

IPCurrentBest:=
ABB(PNSδ[m]

IP (P ′, R′, O′), Summed_Weight).currentbest
end if
return LPSolver(PNS(P,R,O), OI , OE) + IPCurrentBest

Definition 14. Let the F transition be the following: F : ℘(O \OE)→ ℘(O′ \OE)
F(Op) =

⋃
o∈Op F (o).

Definition 15. Let PNSδ[m]
IP (P ′, R′, O′) derived from PNS(P,R,O) problem,

where the current decision mapping is δ[m], i.e.

PNS
δ[m]
IP (P ′, R′, O′) = get_IP_problem(PNS(P,R,O), op(δ[m]), op(δ[m])).

Definition 16. Let the f be a transition between the PNS(P,R,O) problem’s set of
decision mappings and the PNSδ[m]

IP (P ′, R′, O′) problem’s set of decision mappings.
f is derived from the F in the following way:

fδ[m] : A(δ[m])→ A′, fδ[m](δ
∗[m∗]) := {(X,F(δ∗(X))) | ∃(X,Op) ∈ δ+[m+] and

X ∈ m∗, where graph(δ+[m+]) ∈ PNSδ[m]
IP (P ′, R′, O′)} and Op ⊆ O′.

where δ∗[m∗] ≥ δ[m] and PNSδ[m]
IP (P ′, R′, O′) is calculated over δ[m] and δ[m] ∈

A(δ[∅]) and also the (S4) axiom is satisfied in δ[m].

Example 1. In the example shown in Figure 1, produce D are {o1}, {o2}, {o1, o2}.
If the D is produced by o1, then δ[m] = {(D, {o1})}. If the o1 operating

unit is included, then o2 gets in the excluded unit set. δ∗[m∗] can be {(D, {o1})}
or {(D, o1), (E, o3)}. fδ[m]({(D, {o1})}) := ∅, fδ[m]({(D, o1), (E, o3)}) :=
{(E, {F(o3)})}.

If the D is produced by o2, then δ[m] = {(D, {o2})}. The OE is {o1}. The
δ∗[m∗] can be {(D, {o2})} or {(D, {o2}), (E, {o2})} or {(D, {o2}), (E, {o2, o3})}. In
the last two cases, f returns with ∅ since in the original δ[m], all products have
already been produced by o2, and R′ includes the OI outputs. In the first case,
since all materials have also been produced from m∗, return with ∅.

If the D is produced by o1 and o2, then δ[m] := {(D, {o1, o2})}. The δ∗[m∗]
can be {(D, {o1, o2})}, {(D, {o1, o2}), (E, {o2})}, {(D, {o1, o2}), (E, {o2, o3})}. In
all cases, f returns with ∅ for the same reasons as in the previous case.
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A B C

o1 o2 o3

D E

Figure 1: The illustration of an example for representing all possible cases of
fδ[m](δ

∗[m∗]).

Lemma 1. Let’s suppose that δ∗[m∗] and δ∗∗[m∗∗] are ∈ A(δ[m]) and δ∗∗[m∗∗] ≥
δ∗[m∗](≥ δ[m]). Then fδ[m](δ

∗∗[m∗∗]) ≥ fδ[m](δ
∗[m∗]).

Proof. If δ∗∗[m∗∗] ≥ δ∗[m∗], then m∗ ⊆ m∗∗ and ∀X ∈ m∗ : δ∗(X) = δ∗∗(X). Let’s
suppose that X ∈ m∗ and (X,F(δ∗(X))) ∈ fδ[m](δ

∗[m∗]). Because of the definition
of fδ[m], exists at least one δ+[m+], where δ+[m+] ∈ graph(PNS

δ[m]
IP (P ′, R′, O′))

and X ∈ m+. As X also ∈ m∗∗, then it is also will be produced in fδ[m](δ
∗∗[m∗∗]).

Because δ∗(X) = δ∗∗(X), as (X,F(δ∗∗(X))) ∈ fδ[m](δ
∗∗[m∗∗]), then (X,F(δ∗(X)))

∈ fδ[m](δ
∗∗[m∗∗]).

Lemma 2. Let suppose that δ∗[m∗] ∈ A(δ[m]) and graph(δ∗[m∗]) ∈ PNS(P,R,O).
Then graph(fδ[m](δ

∗[m∗])) ∈ PNSδ[m]
IP (P ′, R′, O′).

Proof. It is wanted to be proven that graph(fδ[m](δ
∗[m∗])) is a solution struc-

ture of the PNSδ[m]
IP (P ′, R′, O′) problem if graph(δ∗[m∗]) is a solution structure

in the PNS(P,R,O) problem. A P-Graphs is considered a solution structure if
and only if it satisfies the five axioms listed previously. In the proof, it is shown
that graph(fδ[m](δ

∗[m∗])) satisfies all the five axioms in the PNSδ[m]
IP (P ′, R′, O′)

problem.
The first axiom is satisfied if P ′ ⊂ matout(fδ[m](δ

∗[m∗])). The P ′ is equal to
(P ∪matin(OI))\ (matout(OI)∪R). The P ′ set is equivalent to (P \matout(OI))∪
(matin(OI) \ (matout(OI) ∪R)), as P ∩R = ∅. It can be divided into two disjoint
sets, P \ matout(OI) and (I ∩ matin(OI)) \ (matout(OI)), where I is the set of
intermediate materials from the original problem (I = M \ (R ∪ P )). Since all
connections to matout(OI) were eliminated in the PNSδ[m]

IP problem, none of the
previously produced materials (i.e. matout(OI)) are chosen in fδ[m](δ

∗[m∗]). All
materials that are in both I and matin(OI) had to be produced. In addition,
all elements of P have already been produced. Therefore, all elements from (P \
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matout(OI)) ∪ (matin(OI) \ (matout(OI) ∪ R)) are produced in the resulting P-
Graph.

The second axiom states that ∀X ∈ mf , X /∈ matout(of ) if and only if X ∈ R′.
From the proof of the first axiom, it is known that the elements of matout(OI) are
not in matout(fδ[m](δ

∗[m∗])). Based on the second axiom, it can be concluded that
R is also not in the set of produced materials.

The third axiom is satisfied if op(fδ[m](δ
∗[m∗])) ⊆ O′. It is trivially sat-

isfied since the operating units in the P-Graph are determined as (F (o) | ∀o ∈
fδ[m](δ

∗[m∗]).
The fourth axiom states that ∀y0 ∈ op(fδ[m](δ

∗[m∗])),∃ path[y0, yn], where
yn ∈ P ′, i.e. for all operating units there is a path to at least one product. All con-
nections to any operating unit to the previously produced materials (matout(OI))
are eliminated in fδ[m](δ

∗[m∗]). It induced that, if an operating unit only produces
these materials, then it will be left out in fδ[m], as none of the solution structures
in the PNSδ[m]

IP problem contains it. If the operating unit is not eliminated in
the resulting decision mapping, then whether it has a path to a product from P ,
because δ∗[m∗] is a solution structure in the original problem, or if it does not
have a path to any original product, then it has at least one path to material from
matin(OI). From this material from matin(OI) as the fourth axiom also applied
for δ[m], originally, in the δ∗[m∗] has a path to a product from P .

The fifth axiom states that for all materials, there is at least one operating unit
that either produces or consumes them. This axiom is trivially satisfied because
the materials in the P-Graph correspond to the consumed and produced materials
of the decision mapping.

Lemma 3. Images of all extension of δ[m] in the PNS problem are possible decision
mapping in PNSδ[m]

IP problem, i.e. fδ[m](δ
∗[m∗]) ∈ A′ ∀δ∗[m∗] ≥ δ[m].

Proof. The lemma claims that ∃δ+[m+] where δ+[m+] ∈ PNSδ[m]
IP (P ′, R′, O′) and

fδ[m](δ
∗[m∗]) ≤ δ+[m+]. As δ∗[m∗] ∈ A(δ[m]), this implies that ∃δ+PNS [m+

PNS ]

where graph(δ+PNS [m+
PNS ]) ∈ PNS(P,R,O) and δ∗[m∗] ≤ δ+PNS [m+

PNS ]. Because
of Lemma 2, graph(fδ[m](δ

+
PNS [m+

PNS ]) ∈ PNSδ[m]
IP (P ′, R′, O′).

From Lemma 1 and δ∗[m∗] ≤ δ+PNS [m+
PNS ], fδ[m](δ

∗[m∗]) ≤ fδ[m](δ
+
PNS [m+

PNS ]).
As graph(fδ[m](δ

+
PNS [m+

PNS ])) ∈ PNSδ[m]
IP (P ′, R,O′), the δ+[m+] is looking for will

be fδ[m](δ
+
PNS [m+

PNS ]).

Lemma 4. The summed weight of included units of fδ[m](δ
∗[m∗]) always is a value

less than the summed weight of δ∗[m∗], i.e. Summed_Weight(OI(fδ[m](δ
∗[m∗]))) ≤

Summed_Weight(OI(δ
∗[m∗])).

Proof. Derived from the definition of fδ[m](δ
∗[m∗]), if (X,Op′) ∈ fδ[m](δ

∗[m∗]),
then ∃Op ⊆ O where F(Op) = Op′ and (X,Op) ∈ δ∗[m∗]. It is previously
known from the definition of F that the costs of the operating units have not
been changed by the transition. It induces that the Summed_Weight(Op) =
Summed_Weight(Op′).
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Lemma 5. If there is an optimal solution to the PNS(P,R,O) problem, and sup-
pose it is δ∗[m∗], then fδ[m](δ

∗[m∗]) is also the optimal solution among all possible
fδ[m](δ

∗∗[m∗∗]) where δ∗∗[m∗∗] ∈ A(δ[m]), if the aim of the optimization problem
is to find the minimal fix costed solution structure, i.e. P-Graphs that satisfy only
the axioms.

Proof. The statement that fδ[m](δ
∗[m∗]) is the optimal solution among all pos-

sible fδ[m](δ
∗∗[m∗∗]) where δ∗∗[m∗∗] ∈ A(δ[m]) can be proved indirectly. Sup-

pose that, ∃δopt[mopt](∈ A) where fδ[m](δ
opt[mopt]) is the optimal solution among

the fδ[m](δ
∗∗[m∗∗]) in the sense of summed fix cost. In this case, the materials

from M can be divided into three disjoint categories. The three parts are (1)
m previously produced materials, (2) bp = matout(OI) ∩m set of byproducts, (3)
np = (M \matout(OI)) non-produced materials. It is obvious that np∪bp∪m = m∗,
and the three sets are disjoint.

(1) If mat ∈ m. It is known that δ[m] ≤ fδ[m](δ
∗[m∗]) and also δ[m] ≤

fδ[m](δ
opt[mopt]). This part of the material production will be the same in the

two possible solution structures.
(2) If mat ∈ bp. In this case, the mat can be produced neither in fδ[m](δ

∗[m∗]),
nor in fδ[m](δ

opt[mopt]), as mat ∈ matout(OI) and it implies that none of any
operating units from the possible arbitrary fδ[m](δ

∗∗[m∗∗]) can produce mat. If
δ∗[m∗] is the optimal solution in the PNS problem, then none of any mat from bp
will be produced, as mat ∈ matout(OI), and only the installation costs count when
the objective function was calculated.

(3) If mat ∈ np. In this case, the input and the output materials are remained
the same compared to the F mapping of the operating units from ∆(mat). In
other words, if op ∈ ∆(mat), then matin(op) = matin(F (op)) and matout(op) =
matout(F (op)). This means that the operating units, that can produce the mat
have remained the same in the sense that they can be defined by the same pair
of material sets. It is known that only the materials from np can be produced in
fδ[m](δ

opt[mopt]) and fδ[m](δ
∗[m∗]) because only these materials are produced in

the arbitrary fδ[m] mapping from the possible three categories.
The δ∗[m∗] is the optimal solution of the PNS problem, and op(fδ[m](δ

∗[m∗])) ⊆
F(op(δ∗[m∗])). If the objective function is also divided into three part accord-
ing to the three previously defined disjoint finite sets of materials (m, bp, and
np), then the Summed_Weight(op(δ∗[m∗])) = Summed_Weight(op(δ[m])) +
Summed_Weight(op(δ∗[np ∩ m∗])), as none of any materials from bp has been
produced. Summed_Weight(op(δopt[mout])) = Summed_Weight(op(δ[m])) +
Summed_Weight(op(δopt[bp ∩ mopt])) + Summed_Weight(op(δopt[np ∩ mopt])).
The Summed_Weight(op(δ∗[np∩m∗])) > Summed_Weight(op(δopt[np∩mopt]))
is known from the indirect statement. Only the materials from np are produced
in the fδ[m] mappings, and the summed weight of δ∗∗[m∗∗ ∩ np] is equal to the
summed weight of fδ[m](δ

∗∗[m∗∗ ∩ np]) for arbitrary δ∗∗[m∗∗] ∈ A(δ[m]). It is a
contradiction because ∃δ′[m′] ∈ A(δ[m]) where Summed_Weight(op(δ′[m′])) <
Summed_Weight(op(δ∗[m∗])) and δ′[m′] = δ[m]∪δopt[np∩mopt] is also a possible
solution structure in the PNS problem because bp ⊆ matout(OI). It follows that
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bp ⊆ m′.

Lemma 6. ABB(PNS
δ[m]
IP (P ′, R′, O′), Summed_Weight) always returns with a

valid lower bound for the PNSδ[m]
IP (P ′, R′, O′) problem.

Proof. Let’s suppose that, running the ABB algorithm over PNS(P,R,O) problem,
δ[m] is the decision mapping in the current branch, i.e. the PNSδ[m]

IP (P ′, R′, O′)
problem is derived from δ[m]. From Lemma 3 is known that, for all possible sub-
nodes of the current branch-and-bound node δ∗[m∗] (i.e. δ∗[m∗] ≥ δ[m]), the
fδ[m](δ

∗[m∗]) is a possible decision mapping in the PNSδ[m]
IP problem.

It is also known from Lemma 5 that, the optimal solution structure among the
possible fδ[m](δ

∗[m∗]) decision mappings is at least the optimal solution structure
of the PNSδ[m]

IP problem.
From the definition of fδ[m], it is known that, when a (X,F(op(X))) is added to

decision mapping of the current branch, δ∗[m∗] where X ∈M and op(X) ∈ ∆(X),
then in fδ[m](δ

∗[m∗]∪(X, op(X))) is equal to either fδ[m](δ
∗[m∗]) or fδ[m](δ

∗[m∗])∪
(X,F(op(X))).

From Lemma 4 is known that for each step, the summed weight of fδ[m](δ
∗[m∗])

is less than the summed weight of δ∗[m∗].
Summing up the previous claims, it implies that, the decision mappings that

the fδ[m] function returns with are possible decision mapping over the PNSδ[m]
IP

problem. It is also known that among the possible solution structure, there is
an optimal solution structure according to the minimal summed cost. The ABB
algorithm always managed to find it over the PNSδ[m]

IP problem only if the ABB
algorithm over the PNS problem can find the optimal solution, i.e. the optimal
solution exists among the possible fδ[m](δ

∗[m∗]). And it is also known, that solution
structure always gives a lower bound for the optimal solution structure in the
original PNS problem, i.e. it provides a lower bound for all possible solution
structures in the original problem.

Theorem 1. The new lower bound is correct, so

Lower_Boundnew(PNS(P,R,O), OI , OE) :=

ABB(PNS
δ[m]
IP (P ′, R′, O′), Summed_Weight)+

LPSolver(PNS(P,R,O), OI , OE),

if P ′ is not empty, otherwise LPSolver(PNS(P,R,O), OI , OE).

Proof. Let X∗ ∈ Rn≥0 and Y ∗ ∈ {0, 1}n, where (X∗, Y ∗) is the optimal solu-
tion of the PNS(P,R,O) problem and n stands for the number of operating
units when the δ[m] is the current decision mapping in the branch, i.e. OI =
op(δ[m]) and OE = op(δ[m]). Here Y ∗ stands for the selected operating units,
and X∗ marks the operational size in the solution. From Lemma 3 we have that
ABB(PNS

δ[m]
IP (P ′, R′, O′), Summed_Weight) ≤ fix_cost(O)

T
Y ∗. It is known

that LPSolver(PNS(P,R,O), OI , OE) ≤ op_cost(O)
T
X∗. A valid lower bound
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for the proportional part of the cost is given by LPSolver(PNS(P,R,O), OI , OE)
because (1) the excluded units’ proportional costs are not included due to the
constraints x ≤ yM and y = 0, (2) the included units’ proportional costs are
included because of the above-listed constraint with y = 1, (3) the free units’
variables will be set to 0 during the optimization as all the coefficients of the x-s
and y-s are nonnegative numbers in the objective function. Because of the state-
ments above, ABB(PNS

δ[m]
IP (P ′, R′, O′)) + LPSolver(PNS(P,R,O), OI , OE) is a

valid lower bound for the optimal cost in the PNS(P,R,O) problem with OI in-
cluded and OE excluded sets.

Corollary 1. As the fix costs are always non-negative values, our new lower bound
always gives a tighter bound than the relaxed version, i.e.

Lower_Boundnew(PNS(P,R,O), OI , OE) ≥
Lower_Boundrelaxed(PNS(P,R,O), OI , OE)

3.3 Illustration of new constraint and relaxed constraint
The following simple example illustrates the efficiency of our algorithm. In our
example, we want to produce one product (D) from the raw material (A), using
the operating units O1, O2, . . . , O5.

The final product (D) can be produced by either O1 or O2 or both operating
units. If the machine O1 chooses to produce the D final product, the O1 unit
consumes only the A raw material. The total production cost will be the sum of
the fixed and proportional costs of the O1 operating unit. The optimal solution is
y1 = 1, x1 = 1, and the other variables are 0.

Consider another branch that chooses O2. In this case, our previous production
cost is 1 + 4, because y2 = 1 and x2 = 1. In the original version, the operating
cost of producing C is added to this cost. The optimal solution for x3 = 1 and
x6 = 1 is 2 (see Figure 2b). For the lower bound, we obtain a value of 7, which
is smaller than the previous value of 8. That is, this branch is explained by the
previous constraints. However, structurally, the minimum cost of the operating
units needed to produce C is 2, which is the minimum in the y4 = 1 and y5 = 1
case (see Figure 2c). Then the installation cost of 1 + 1 is added to 5 + 2. So, in
total, the lower bound is 9, which is already worse than 8. With this new lower
bound, the ABB algorithm is not explained this case.

The third branch includes both the O1 and O2 operating units. In this case,
the considered inputs of the included units, A and C will be the new materials to
be produced. The recursively called ABB method with modified fix costs for the
C material, as it has been calculated in the second branch, returns 2. The optimal
relaxed operational configuration for the current whole branch is x1 = 1. The sum
with the fixed cost of the included units will be 11 so it is fathomed.
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(c) Optimal fix cost

Figure 2: A simple P-Graph in which the fixed and proportional costs are given
above the operating units.

4 Results

To test our new lower bound calculating algorithm running time, we have to gener-
ate some test cases. There are many aspects to examine the performance of our new
development. It is obvious that the CPU time could be taken into consideration
but in this case teh solution of the LP relaxation problem should be added to the
computational time. In a further development, it is not fixed whether we use an
efficient LP solver method or use LP at all. The relationship between the produced
and consumed materials does not have to be linear. It could be nonlinear as well.
Because of these reasons, we preferably examine the total number of LP_solver
executions and not the actual CPU time.

4.1 Result for P-Graphs without circle cases

Firstly, test cases have to be generated according to some predefined metrics to
compare the number of LP_solvers calls in the case of ABB called with the
Lower_Boundrelaxed and Lower_Boundnew. The metrics in the first case will
be the height and the width of the P-Graph. The whole structure of the graph
will be a (height × width) matrix of the operating units. Before the first level of
operating units, there is a level of width the number of raw materials. Between the
operating unit levels, there are also material levels which consist only of the width
number of intermediate materials, and after the last level of operating units, there
is also the width number of products.

In each nth operating unit level (n ∈ {1, . . . , weight}) operating unit consumes
at least one material from the nth material level. In the nth material level (n ∈
{1, . . . , weight}) all the materials consumed by at least one operating unit from the
nth operating unit level.
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The same is true for the produced materials by the operating units in the nth
level: each nth operating unit produces at least one material from the (n + 1)th

material level and each material from the (n + 1)th level is produced at least by
one operating unit from the nth level. Alongside these connections listed above all
the following layers’ nodes (the nth operating unit layer with the nth and (n+ 1)th

material layers) are connected with p probability.
In Figure 4’s first plot this kind of P-Graph is illustrated. It is obvious that

by running the ABB algorithm over these classes of P-Graphs the MSG algorithm
won’t exclude any operating unit from the original graph. It is also evident that
the graph doesn’t contain any operating unit circle because it doesn’t hold edges
that point to previous layers’ elements.

The experiment of running the ABB algorithm and calculating the average
number of LP solver calls according to the lower bound methods was completed,
and the results are summarized and plotted in Figure 3.

The results are grouped by height. If we examine the branching method from
the ABB algorithm, then it is straightforward that the algorithm has to examine all
the possible operating unit combinations which can produce all the x ∈ P material.
The cutting can’t be done on the first level of the tree, all the sub-branches have to

Figure 3: Comparing the ABB algorithm with different lower bounds by the average
number of executed LP-solver calls over 30 generated P-Graphs without circles.
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(a) A general example for the P-Graph
without circles with the parameter

setting p = 0.5

(b) A general example for the P-Graph
with circles with the parameter setting

p = 0.5 and pcirc = 0.1

Figure 4: Examples for the randomly generated P-Graphs

be calculated for the cutting, which is in this case one of the first chosen product
production with all the possible cases. The possibility of an operating unit in the
nth level producing the x ∈ P material is constant p beside one operating unit
which surely can produce it. It implies that E(|∆(x)|) = p ∗ width + 1. It means
that beside the same heights, the number of the branch grows as Ω(2width) with
any lower bound.

As the Lower_Boundnew gives a tighter lower bound than the relaxed type of
lower bound with the same height and width, Lower_Boundnew always outper-
forms the Lower_Boundrelaxed. It implies that in all cases the number of LPsolver
function calling in the ABB algorithm is always smaller with the Lower_Boundnew
lower bound, than with the Lower_Boundrelaxed. The reason for it is that the cal-
culation of the structural optimization of the free operating units in our new lower
bound does not call the LPsolver method, and the solver is called exactly once in
the lower bound method. It is also true for the relaxed version of the lower bound.

If the submethod gives a tighter lower bound for the actual optimal value then
the method would be called fewer times. It also means that the LPsolver is called
fewer times.
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4.2 Results for the P-Graphs with circle cases

Considering the previous generated test cases, the P-Graph with circle cases hasn’t
been examined yet. The cases with circles are when the previous P-Graph includes
some directed edges that point to the previous levels. For example, there is an
operating unit in the nth level which produces at least one material in the mth(m ≤
n) level with the probability pcirc. It is easy to prove that a dependency chain
can be formulated when an infinite number of materials should be produced. An
example of the generation logic is shown in Figure 4’s second plot. These chains
evolved when there is no raw materials being part of the chain, just products,
and intermediate materials. As a consequence, the chain will be excluded from
the graph when the MSG algorithm is running over the PNS(P,R,O) problem.
The executions’ results with the parameter settings are pcirc = 0.1 and p = 0.5.
This means that a portion of ≈ 0.1 is erased from the P-Graph while the MSG
algorithm has been running over. The randomly generated summed average LP
solver calling results grouped by the height and width is demonstrated in Figure 5.
Similar to the previous non-circle running comparison, the average number of calls
grows exponentially by increasing the width of the graph. The growth is distorted
by the fact that some operating units are erased randomly because of the circle
cases.

4.3 Result for a specific P-Graph

To test the new lower bound performance on a specific graph, the graph depicted in
Figure 6 is used. The concrete P-Graph is also the maximal structure, as the MSG
algorithm running over it doesn’t exclude any operating unit. The graph has 65
materials, and 35 operating units. The ABB algorithm has been run over the graph
both with our new lower bound, and the relaxed lower bound. The comparison of
the performances is listed in Table 1. To make an extended comparison, the fix
and operating costs are multiplied with constant values. The constant values are
different for the cost types. The first column contains these values. The second
column contains the summed LP_Solver calling number during the running of the
ABB algorithm. If all the constants are 0 then it equals to the case when there
is no costs. In this case the lower bound sub method can’t cut on any branch
at all, because the branch-and-bound algorithms, also like the ABB, always take
advantage of the costs when a cutting is performed. As it is listed in the table’s
first row, all the possible structures are examined. If the fixed cost is multiplied
by 0 and the operational cost by 1, then the ABB algorithm could prune just with
the optimal summed operating cost which is calculated by the LP_Solver in both
lower bounds.

The two constants which are used to multiply the costs control that algorithm
ABB(PNSδ[m]

IP (P ′, R′, O′), Summed_Weight) or LPSolver(PNS(P,R,O), OI , OE)
is more dominant than the fix cost or op cost multiplier was increased in the new
lower bound. As the table shows, the basic case is when the costs are not multiplied
then with the relaxed bound the number of LP calls is 48, and with the new lower
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Figure 5: Comparing the ABB algorithm with different lower bounds by the average
executed LP-solver numbers over 30 generated P-Graphs with circles, where pcirc =
0.1 and p = 0.5.

bound the number of calls is 31. That means the number of calls is reduced by
≈ 35% with our new lower bound. With increasing the operational multiplier con-
stant compared to the fix cost multiplier as the fix cost remains the same, but the
operational cost is increased by the multiplication of 101, 102, . . . , 105 the number
of LP calls remains the same. It has happened because the P-Graph costs aren’t
modified to the level when the differences between the structural cost and opera-
tional cost are so large that the algorithm could cut the branches according to the
operational cost. If the operational cost would be significantly larger compared to
the structural cost, the LP calls with the relaxed and the new lower bound converge
to the same value, 1023.

If the fix cost multiplier constant is 1, and the operational cost multiplier is 0
(plotted in the last row in the table) then the free operating units’ summed cost is
0. As a consequence of that, the branch can be cut down by the summed cost of
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Table 1: Comparison of the running of ABB algorithm with different lower bound
functions: in the first columns are the results of running with relaxed LP model
bound, in the second columns are the results with our new lower bound.

Ratio LP Time Comparing the
LP ratio

(fix cost/ Relaxed New lower Relaxed New lower (New lower
op. cost) bound bound bound bound /Relaxed)

0/0 2099 2099 13478 24532 1

0/1 1023 1023 7271 19857 1

1/101...5 48 31 361.6 464.8 0.65

1/1 48 31 352 460 0.65

101/1 48 31 378 475 0.65

102/1 44 27 420 453 0.61

103/1 91 60 837 948 0.66

104/1 95 70 763 1037 0.74

105/1 83 57 669 835 0.69

1/0 80 57 577 740 0.71

already included operating units’ total cost added to the remained graph optimal
structural cost. Then due to this, the relaxed bound functions as Summed_Weight
(Algorithm 4) bound and the newly introduced lower bound uses also the remained
part’s optimal structural cost for the cut branch. This case is interesting when the
structure was to be optimized, and the network wasn’t used, or only rarely [1, 2].

In the previous rows in the table the cases are examined when the fix cost is
multiplied by 10, 100, . . . 105. In these cases the results converge to the case, when
the fix cost has remained the same, and the operating cost was erased.

From the examined cases in the table, the 102/1 case gives the optimal number
of LP solver calls with both kinds of lower bounds, and also the LP ratio is the
smallest in this case. The 1/0 case doesn’t give the optimal ratio. It is caused by
the acceleration of the algorithm with the natural extension.

The next column in the table lists the running time of the algorithm in CPU
seconds multiplied by 1000. Examining this column shows, that the algorithm with
a relaxed lower bound gives almost always a better result than the running with the
new lower bound. It is the case since it is not worth to call the LP solver fewer times
as the calculation of free operating units’ optimal cost is more time-consuming. It
isn’t the case if the calculation of the derived model is more time-consuming. An
example is when the P-Graph isn’t linear.
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Figure 6: A specific graph with 65 materials and 35 operating units. The graph
has been generated with the MSG algorithm.
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5 Conclusion
We have created a new constraint calculation procedure for the ABB algorithm
that gives a better one than the previously applied constraints. The computational
cost of the new constraint is higher than the previous one, but we show that the
overall number of linear programming problem solver calls will be reduced. It is
advantageous to run the derived problem solver fewer times if in the operating unit
model, the connection between the consumed and produced materials is nonlinear,
or the variables are stochastic.
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