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Abstract

Probabilistic programs that can represent both probabilistic and non-
deterministic choices are useful for creating reliability models of complex
safety-critical systems that interact with humans or external systems. Such
models are often quite complex, so their analysis can be hindered by state-
space explosion. One common approach to deal with this problem is the appli-
cation of abstraction techniques. We present improvements for an abstraction-
refinement scheme for the analysis of probabilistic programs, aiming to im-
prove the scalability of the scheme by adapting modern techniques from qual-
itative software model checking, and make the analysis result more reliable
using better convergence checks. We implemented and evaluated the improve-
ments in our Theta model checking framework.

Keywords: probabilistic systems, stochastic games, abstraction, reliability
analysis

1 Introduction

Probabilistic programs are models specified using a software source code syntax,
extended with special statements that sample values from probability distributions.
Their similarity to program source code makes them easy to use to describe complex
probabilistic systems, especially for engineers already familiar with programming.
Probabilistic programs are able to describe both probabilistic and proper non-
deterministic behavior, which is useful for creating models for reliability analysis of
complex safety-critical systems that interact with humans or external systems with
unknown behavior. In such models, the probabilistic behavior described using sam-
pling statements comes from the uncertainty inherent in the physical environment
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of the system and the uncertain failures of hardware components of the system.
Proper non-determinism comes from the behavior of humans and external systems
interacting with the system under analysis, for which we do not have statistical
information to base probabilistic modeling on.

There are two main use cases for formulating reliability models as probabilistic
programs:

e The expressivity makes it comfortable to use programs for describing the
reliability model when the engineers are already familiar with standard pro-
gramming languages. The advantages of program code compared to other
formalisms (like the compositional language of the PRISM tool [23]) are es-
pecially apparent when the process described by the model is more complex
than the compositional structure of the model.

e The program-based approach can be advantageous when a modeling formal-
ism for which standard code generation is already available is extended with
probabilistic semantics. As an example, our Gamma tool [14] supports mod-
eling by statecharts and offers program code generation from these models.
Extending the statecharts with stochastic concepts for dependability model-
ing leads to the generation of probabilistic programs that fit for analysis.

The analysis of such models is often hindered by state-space explosion: even
when the program describing the model is relatively short, its actual state space
can become intractable large. Abstraction is a widespread approach to counteract
this problem: instead of analyzing the original model, an abstract model is created
by ignoring some information present in the original. As the abstract model is
constructed as a conservative approximation of the original, proving that a property
is satisfied by the abstract model also proves satisfaction for the original model.

The most successful implementation of the idea of abstraction is a scheme called
Counterexample-Guided Abstraction Refinement (CEGAR) [10], which automati-
cally finds the appropriate level of abstraction. It starts with a very coarse model,
analyzes it, and in case the property is violated, it generates an abstract counterex-
ample. This counterexample is checked to decide whether it appeared only because
of ignoring some information (spurious counterexample), or it actually proves vio-
lation in the original model (concretizable counterexample). In the spurious case,
a refinement of the abstraction is computed based on the counterexample, and the
CEGAR loop starts over.

In this work, we focus on the game-based framework proposed in [25] and ex-
tended in [18], and present improvements to it. We chose this approach because of
its relative success and its ability to provide both upper and lower bounds for the
analysed numeric property, giving a metric for measuring how precise the current
abstraction is with respect to the property we are trying to check. [13] extended this
scheme to domains used in classic abstract interpretation while also switching to
an abstract interpretation framework instead of the CEGAR loop. We stayed with
the original CEGAR-like refinement loop scheme. Most of the enhancements we
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implemented are based on our experiences in qualitative software model checking
[28, 15].

The game-based abstraction scheme is applicable to any analysis question that
can be formulated as computation of expected total rewards on a Markov Deci-
sion Process, which is the underlying low-level formalism we use for the semantics
probabilistic programs in this work. Our proposed changes do not constrain the
generality of this scheme any further, but in this paper, we will only focus on check-
ing probabilistic reachability properties, i.e. computing the probability of reaching
a specific set of target states.

Our contributions are the following:

1. We improved the scalability of the scheme by adapting modern techniques
from qualitative software model checking:

a) Adapted a version of Large Block Encoding to the probabilistic case.

b) Adapted the usage of inezxact transition functions and formally proved
that the abstraction scheme remains sound when employing them.

¢) Extended the possible abstract domains with the explicit value domain
(also known as visible variables domain).

2. We tackled the problem of convergence checking for the abstract model using
bounded wvalue iteration, and gave an example where using standard value
iteration can lead to problems with the refinement loop.

3. We performed numerical measurements to answer research questions related
to how our improvements and extensions affect performance.

These enhancements make the probabilistic analysis of a larger set of complex
safety-critical systems possible. As these techniques are heuristic, they do not
promise to enhance performance on every reliability model used in practice, but
they give new options, which perform better on a set of practical models, some of
which are not analysable without them.

The application of bounded value iteration is a semi-exception to this: the over-
all analysis result will always be more reliable, than with standard value iteration,
while the potential performance gain from performing better refinements matters
only for some (non-empty, as we show in our measurements) subset of analysis
cases, similarly to the other enhancements.

We implemented enhancements these as a probabilistic extension of our open-
source Theta model checking framework'. The implementation only supports prob-
abilistic reachability properties for now, and for this reason, the benchmarks we
performed are also constrained to this analysis task.

Section 2 introduces the necessary mathematical and formal modeling back-
ground along with the game-based abstraction refinement scheme. Section 3 de-
scribes the main idea of bounded value iteration and shows why a reliable conver-
gence check is especially important in the abstraction refinement scheme. Section
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4 describes the technique of Large Block Encoding in general and how we incorpo-
rated it for probabilistic program analysis. Section 5 describes the Explicit Value
abstract domain and elaborates on our adaptation method. Section 6 introduces
the general idea of inexact abstract transition functions, and proposes a way to ap-
ply them in the game-based scheme. Section 7 describes our numerical experiments
and the related research questions, along with plots of the results and answers to
the research questions. Conclusions and proposals for future work can be found at
the end of the paper. The appendix contains proofs for the soundness theorems
stated in Section 6.

1.1 Related work

Here, we present the general relations between our contributions and previous
works. The formalisms used in this work are presented in Section 2. Details regard-
ing the background algorithms can be found in their respective sections (Sections
3,4, 5 and 6).

Several different abstraction approaches have been proposed for probabilistic
systems [12, 21, 27, 17, 9, 25, 29]. Our work builds on the game-based abstraction
refinement algorithm presented in [25, 18§].

Cartesian abstraction and explicit abstraction have already been applied suc-
cessfully to non-probabilistic model checking in [4] and [7, 15] respectively. We
build on these results and adapt the corresponding algorithms to the analysis of
probabilistic systems. We incorporate ideas from [19] to prove the soundness of
using these domains (the proofs can be found in the appendix). [13] extended
the same abstraction refinement algorithm to numerical abstract domains used in
abstract interpretation, similarly to our extensions. While they switched to an ab-
stract interpretation approach, we stayed with the original abstraction refinement
loop.

Large block encoding has been used in non-probabilistic model checking for
example in [6]. We use a simpler version of it to make sure that the resulting model
satisfies the constraints required by the abstraction refinement algorithm of [18].

It has been shown in [3], that employing the classic stopping criterion of value
iteration can lead to arbitrarily wrong results. We build on this result to show
that this stopping criterion can even lead to performance degradation when the
MDP is analysed using abstraction refinement. [3, 24] proposed a bounded ver-
sion of value iteration to solve the problem of convergence checking, which [20]
extended to stochastic games. We incorporated this algorithm in our abstraction
refinement implementation, and evaluated its impact on the overall performance of
the analysis.

2 General Background and Formalisms

This section introduces the necessary mathematical and formal modeling back-
ground and describes the abstraction framework that the paper builds upon.
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2.1 Probabilistic Programs

Probabilistic programs are syntactically similar to standard structured program
code with basic features, like ANSI C or lisp, but are extended with features making
them suitable for the description of random processes and probabilistic models.

The most important such feature is sampling, which draws a sample from a given
probability distribution - syntactically similar to calling pseudorandom number gen-
erators, but with different semantics. When analyzing a probabilistic program, a
sampling statement is treated as a random variable with the given distribution, and
can be either discrete or continuous with any support, even an infinite one. Prob-
abilistic program interpreters and analyzers can then simulate sample trajectories,
compute moments of expressions over program variables, etc.

In our current work, we use a probabilistic extension of ANSI C to specify
probabilistic programs. The extension means that there are some predefined func-
tions with special semantics: these functions are interpreted as proper probabilistic
sampling when analyzed.

Only discrete distributions with finite support are in the scope of this work.
Handling infinite and continuous distributions are possible future extensions planned
to be implemented in the probabilistic module of our Theta framework.

Some modern probabilistic programming constructs, like higher-order proba-
bilistic functions and observe statements are out of scope for this paper, our current
work focuses on a basic set of features that cover the most important aspects.

Example. The code of a simple running example we will use throughout this paper
can be seen in Listing 1. The program has two integer variables, z and y, both
initially set to 0. When we show different kinds of state spaces for this program,
we will restrict their domain to the set {0, 1,2, 3}, instead of the complete set of
integers.
main () {
int x = 0, y = 0;
while(y <= x) {
//probabilistic assignment with a biased coin-flip
x = x + coin(0.4);

if(x > 2) {
//havoc: assignment to a non-deterministic value
y o= %
}
}

assert (! (x < 3));

Listing 1: Probabilistic C code of a simple probabilistic program

These variables are repeatedly changed in a loop while the value of y is less than
or equal to the value of z. In this loop, we first “flip a biased coin” by calling a
sampling function, and increment x by the result (1 with probability 0.4, 0 with the
remaining probability 0.6). If x is greater than 2, we set y to a non-deterministic
value from its domain. In software model checking, this action is called havoc, and
we denote it as y = = here.
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After exiting the loop, we assert that x is less than 3. Assert calls lead to
an error state if the expression they contain evaluates to false. When analysing
this probabilistic program, we will be interested in the probability of violating this
assertion.

2.2 The Probabilistic Control Flow Automaton formalism

The control flow automaton (CFA) formalism is a widespread formal model used
for the qualitative analysis of software source code. Probabilistic programs have
similar structure to classical source code, but some functions are equipped with
special probabilistic semantics. To enable the analysis of such programs, we use
an extension of the CFA formalism: the Probabilistic Control Flow Automaton
(PCFA).

The definition we give for this formalism is similar to the definition of proba-
bilistic programs in [18], but we would like to keep the notion of the program itself,
and the analysis formalism used for model checking separate, as is standard in
classical software model checking. Treating it as an extension of the classical CFA
formalism also makes the relationship between techniques used in this paper and
techniques of classical software model checking clearer.

Definition 1 (Probabilistic Control Flow Automaton). A Probabilistic control
flow automaton (PCFA) is a tuple P = ((L, E), Linit, Var, vy, S, Stmt), where:

o (L, E) is a finite directed control-flow graph; the nodes of the graph are called
the locations of the PCFA, and the edges represent successor relationships
between them

® linit € L is the initial location

e Var is a finite set of variables

® Vinit € Uy, is the initial valuation (described below)

e S is a set of statements (described below)

e Stmt: E — S is a function mapping each edge to an associated statement

The definition uses a set of variables to represent the data state of the program.
Each variable v has a type, or equivalently, a countable domain denoted by Dom(v),
which is the set of values it can take. The set of valuations Uy, for the variable
set Var consists of functions mapping every variable v € Var to an element of their
domain Dom(v).

Although this definition allows only a single initial valuation, non-deterministic
variable initialization can be modeled by using HAVOC statements at the beginning
of the program.

A statement s : Uyqy — 2PWUvar) ig g probabilistic valuation transformer: given
the current valuation, it returns a set of distributions of resulting valuations after
applying the statement. It is a partial function, which is how we handle conditional
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statements (ASSUMEs, see below): a statement is enabled by a valuation v, if it is
defined at v. The result is a set of valuations, to make the representation of non-
deterministic statements possible. In this paper, this is only used in the case of
HAVOC statements, which result from calling functions with unknown results (e.g.
asking for user input).

We use the following types of statements:

e ASSIGN(v € Var,e : Uyqar — Dom(v)): The result is a singleton set of a dirac
distribution of a single resulting valuation. This valuation maps the variable
v to the result of applying the function e to the original valuation, and maps
all other variables to their value in the original valuation. Used for assign-
ment statements, where the right-hand side can be any (type-compatible)
expression.

e ASSUME(e : Uyq, — {T,L1}): The partial function is defined exactly for those
valuations that the function e maps to T. For these valuations, it is basically
an identity function, the returned set is a singleton set of a dirac distribution of
the original valuation. Used for conditions in the program, like if statements
and loop condition checks.

e HAVOC(v € Var): The resulting valuation set is { dirac(U[v_)vi]) | v; € Dom(v) },

orig
where U gﬁ; Uil is a valuation that maps v to v; and any other variable to its

value in the original valuation. This statement is used for assigning a to-
tally non-deterministic value to a variable from its domain. Combined with
an assume statement, it can be used to assign non-deterministic values to a
variable from a constrained set of its full domain.

o PROB(d : D(Sge:)): This is the only statement that produces a distribution
that is not a dirac distribution. It is parameterized by a distribution over
other deterministic statements — Sy, is the set of statements that map only to
singleton sets. This is needed as we defined the result of applying a statement
as a set of distributions, not distributions of sets. The resulting set has a single
distribution in it. This distribution over valuation sets can be derived from
the parameter distribution by computing the resulting valuation set from
each statement with non-zero probability in the parameter distribution, and
assigning the same probability to the resulting valuation as the statement.
If multiple substatements lead to the same valuation, their probabilities are
summed.

e SKIP: Enabled in any valuation, and does not change the valuation. Used for
simplifying control flow structures like loops.

In most cases the code under analysis contains assert calls, which check the
truth of a Boolean expression. If it evaluates to true, the program continues nor-
mally. If the expression is false, an error is raised. When transforming the code to
a (P)CFA, assert calls are transformed to two ASSUME edges, one of them leading to
the next location in the normal flow of the program, and the other one entering an
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(a) Single-block encoding (b) Large-block encoding

Figure 1: PCFA of the running example

error location. Checking the probability of failing an assertion thus can be reduced
to computing the probability of entering an error location.

We will describe the formal semantics of PCFA models denotationally by de-
riving a Markov Decision Process from them later, but for intuitive understanding,
we describe the operational semantics of a PCFA can be described semi-formally

here:

The model starts in the location l;,;; with the valuation v;,;;.

In each step, an outgoing edge e is selected non-deterministically from the
outgoing edges of the current location such that Stmt(e) is enabled by the
current valuation vey..

An element of the set Stmit(e)(veurr) is selected non-deterministically, which
is a distribution over the possible next valuations.

A valuation vpez: is sampled from this distribution. The location of the
model in the next step is the location at the end of the selected edge, and the
valuation in the next step is vpeqt-

If the current location has no outgoing edges, the model stops.

Precise formal denotational semantics can be found for example in [5].

Example. The PCFA of our running example can be seen in Figure la. Although
we did not need it in the code, an auxiliary variable coin_ return is added to keep
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track of the value returned from the coin function call. This is needed because we
need to separate the sampling call and the assignment to two edges.

Deciding whether the body of the loop should be executed or skipped is done
using two edges with opposing ASSUME statements. The PROB statement corresponds
to the call to the special sampling function coin in the code. This statement sets
the coin_return variable to either 1 with probability 0.4 or to 0 with probability
0.6. After this, an ASSIGN increments the value of the variable x by the value of
coin_return.

The if statement of the code is converted to two edges with opposing ASSUMESs,
similarly to the while loop. Non-deterministic assignment is done through an edge
with a HAVOC statement. The body of the loop ends with a SKIP statement leading
back to the head of the loop. The assert call in the code is converted to two ASSUMES,
one leading to the (non-erroneous) final state, the other leading to the error state.

Figure 1b shows another possible PCFA for the same program, where large block
encoding is used to create a more compact model: a single transition here applies
multiple statements in succession. This will be explained in detail in Section 4.

2.3 Markov Decision Processes

Definition 2 (Markov Decision Process). A Markov Decision Process (MDP) is a
tuple M = (S, Sinit, A, Av, §) where

e S is a finite set of states
® Sinit €5 is the initial state
e A is a finite set of actions

o Av: S — 24 is a function mapping states to the set of available actions in
the state

e : S x A — DS) is the transition function of the MDP. It is a partial
function, which must be defined for every (s,a) where a € Av(s). For such a
pair, it gives the distribution of successor states after taking the action a in
state s.

The transition notation s — p is used for §(s,a) = p. We will also use the
notation 0(s,a,s’) = d(s,a)(s’) for the probability of transitioning from s to s’
when taking the action a.

A lot of analysis tasks on MDPs use the notion of reward functions on the MDP.
A state reward function on an MDP is a function r : S — R that assigns rewards
to each state in the MDP.

A strategy on an MDP is a function S* — D(A) that assigns a distribution over
actions to all possible state sequences. A memoryless strategy depends only on the
last state. A deterministic strategy uses only dirac distributions.

In this paper, we will focus on probabilistic reachability properties: computing
the probability of reaching a given set of target states. Such properties can be
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formulated using rewards: the reward function assigns 1 to the target states, and
0 to all others. The target states must be made absorbing. The expected value of
the accumulated reward until absorption with a fixed strategy gives the probability
of reaching one of the target states. Computing optimal strategies thus can give
the maximal or minimal probability of hitting an error if the targets are the error
states of the system.

2.4 MDP semantics of probabilistic programs

The denotational semantics of probabilistic programs can be defined by deriving
an MDP from the probabilistic control flow automaton of the program.

Definition 3 (MDP of a PCFA). The MDP describing the semantics of the PCFA
P = ((L,E),linit, Var, vinit, S, Stmt) is M = (S, sinit, A, Av,§), where

e S=1Lx UVar
® Sinit = (linitvvinit)

o Ve = (I,lI') € E,v € Uy : (v enables Stmt(e)) < (Vd € Stmt(e)(v) : a €
A:ace Av((l,v)) A d((L,v),a) = join(l',d)),
where the distribution join(l,d) € D(L x Uyqr) is defined by join(l,d)((I,v)) =
d(v), and for any other location, it is 0. This condition defines A, Av,0.

A state can be identified by selecting the location of the program and the value
of each variable. Therefore, the state-space of the derived MDP is the Cartesian
product of the set of program locations and valuations of the variable set. The
initial state of the MDP is derived from the initial location and initial valuation of
the PCFA.

The edges of the PCFA are transformed to actions of the MDP. For each state
s = (l,vg, ..., v‘vm) of the MDP, we take the edges whose statement is enabled by
the valuation of the state. For each such edge, we compute the possible distributions
resulting from applying the statement of the edge. Let I’ denote the ending location
of the edge. For each computed distribution, we assign a new action to s leading
to that distribution, with I’ added as the location part of the states.

Example. The MDP obtained from the semantics of our running example can be
seen in Figure 2. For the sake of readability, we used the PCFA with large-block
encoding (Figure 1b) to reduce the number of states. The value of each variable is
unknown at the beginning, so the initial data state can be anything. To make the
figure easier to read, the possible initial states are merged and the unknown values
are indicated by question marks. As a statement cannot lead to both probabilistic
and (proper) non-deterministic choice in the next state, we have either only a single
action optionally with multiple states in the next state distribution or multiple
actions, each leading to dirac distributions in each state. Green nodes highlight
the states where a probabilistic decision is performed, the red node highlights the
non-deterministic decision (multiple possible actions).
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Figure 2: MDP of the running example corresponding to the PCFA in Figure 1b.
¢_r stands for the auxiliary variable coin_return.

2.5 Stochastic Games

Stochastic games are an extension of MDPs where instead of a single agent, two
different players make decisions. This allows representing two separate kinds of non-
determinism, which are resolved according to two separate strategies with different
objectives. The relevance of Stochastic Games to this work is that they are used
as abstract models for abstraction-based analysis of probabilistic programs.

Definition 4. A Turn-Based Stochastic Two-Player Game is a tuple G = (S =
S1 w Sa, Sinit, A, Av, ), where:

e S is a finite set of states, partitioned into the sets of Player 1 (S1) and Player
2 (Ss) states

Sinit € V' is the initial state

A is the set of actions
o Av: S — 24 is a function mapping each state to the set of available actions.

e : S5 x A — D) is the transition function of the game. It is a partial
function, which must be defined for every (s,a) where a € Av(s). For such a
pair, it gives the distribution of successor states after taking the action a in
state s.
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Definition 5 (Play). A play w in a two-player simple stochastic game G = (S =
S1 w So, Sinit, A, Av,d) is a (possibly infinite) sequence of state-action pairs w =

(s1,a})(s%,ad)(sd,ad)(s3,a2) ... such that

1 _
® 5] = Sinit

. Vsz» a € Av(s}

)
i VSQ (517a17 ) >0
1

o Vst d(shtabt sh) >0

In most applications, the goal of one player is to minimize the (expected) reward
gathered during a play according to a specified reward function, while the other
player aims to mazximize it. A reward function assigns rewards to states or transi-
tions. When the game enters a state or takes a transition, the reward associated
with that state or transition is collected.

Probabilistic reachability properties can be formulated as a total reward com-
putation problem the same way as for MDPs: the reward function assigns 1 to the
target states, and 0 to all others, and the target states must be made absorbing.

Throughout this work, the shortened name Stochastic Game (SG) will refer to
turn-based stochastic two-player games.

A special case is when the goals of the two players coincide, which is equivalent
to an MDP. Here, we will consider only those cases when the players have opposite
goals, as the cooperative case can be analysed as an MDP.

Definition 6 (Strategy). A Player 1 (resp. Player 2) strategy in a stochastic
game G = (S = S1 w Sy, Sinit, A, Av, ) is a function Strat : S*S; — D(A) (resp.
S*Sy — D(A)) from the set of finite plays ending in a Player 1 (resp. Player 2)
state to the set of distributions over Player 2 (resp. Player 1) states, such that
Vp € S*S;(resp.Vp € S*S3) : Strat(p)(a) > 0.0 = a € Av(end(p)).

For probabilistic reachability properties, there always exists a pair of memory-
less deterministic Player 1 and 2 strategies that are optimal among all strategies
[11]. This means that we can focus only on this finite subset of strategies, making
synthesis of optimal strategies much easier than in the general case. We only need
to determine a single optimal action to take for each state, not a distribution over
actions for every possible state sequence.

If a fixed strategy is considered for each player, we can equip the set of plays
on the game with a probability measure derived from the strategies and the prob-
abilistic transition function of the game. Informally, the probability of a play is
product of the probability of each transition taken in the play. The probability of
a transition is the probability that the player takes an action that can lead to the
given transition according to the fixed strategy multiplied by the probability that
the action results in the given transition. A more precise formal specification of the
probability measure can be found e.g. in [2, Chapter 10].

The reachability probability of a set of target states is the probability measure
of the set of all plays that contain at least one target state.
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From now on we will assume that the game is played by a maximizer and
minimizer (referring to their goals with respect to the reward function), and refer
to their state sets as Sy, and S),q, respectively.

Definition 7 (Value Function for reachability properties). The value function
VS8 —>R for a game G = (S = Spaz & Smin, Sinit, 4, Av, §) with respect to a set
of target states T = S is the least solution to the Bellman equations:

MaXgeAn(s) V(5,a)  if 5 € Spaz
Mingeap(s) V(s,a)  if 5 € Smin
1 ifseT

0 if T is unreachable from s

Vi(s) =

The importance of the value function comes from the fact that a strategy is
optimal if and only if it always chooses an optimal action with respect to the value
function.

The value of a state is equal to the expected accumulated reward if the cor-
responding optimal strategies are used. If the reward function is derived from a
reachability property, the value of a state is equal to the probability that a target
state is reached from that state if the players follow the optimal strategies, which
is exactly what we aim to calculate for the initial state.

2.6 Abstraction-based analysis

The aim of abstraction is to make the analysis of a model or program tractable
by analyzing an abstract model with a smaller state-space than the original model
under analysis. This is done by discarding information which is deemed not useful
for proving or disproving the target property.

The resulting state-space is called the abstract state-space, while the original one
is called the concrete state-space. As a new state space is created, the transition
relation of the system is also lifted to this state space, resulting in the abstract
transition function.

Discarding information must be performed in a conservative way: the abstract
model must be built in such a way that the property being checked is satisfied by
the abstract model only if it is satisfied by the original system.

The reverse need not be true. If the target property is disproved in the abstrac-
tion, we can try to concretize the proof of non-satisfaction, mapping the abstract
counterexample back to the concrete state-space, thereby proving that the original
system does not satisfy the target property either. Obviously, this can only be done
if the original system does not satisfy it.

Different approaches for retaining only a fraction of the original information
is captured by different abstract domains. Abstract domains define what kind of
information can be contained in an abstract state and specify the correspondence
between concrete and abstract states.

The notion of abstraction precision is used to differentiate between retaining
different parts of the originally available information.
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Abstract domains can have a convenient property called disjointness, which
means that for a given precision, exactly one abstract state corresponds to each
concrete state. In other words, the abstract states considered as sets of concrete
states are disjoint for a fixed precision. This makes soundness proofs often much
simpler than the general case.

2.7 Predicate Abstraction

Predicate abstraction can be applied to systems described symbolically using a set
of state variables. It creates an abstract state-space by defining a set of predicates:
Boolean expressions over these variables. The precision of the abstraction is the
set of predicates.

As the concrete states assign exactly one value to each program variable, each
predicate can be evaluated unambiguously for a concrete state. The abstract state
corresponding to the concrete state is the Boolean vector resulting from evaluating
all of the predicates in the precision against the variable valuation of the concrete
state.

Although we can always evaluate the predicates for the concrete states, ab-
straction is often used exactly because exploration of the concrete state-space is
intractable. Instead of exploring the full concrete state-space and mapping the
concrete states, abstraction-based analysis techniques explore only the abstract
state-space.

Exploration of the abstract state space needs a method for determining which
actions are available in a given abstract state, and generating the possible next
states after applying one of these actions. This is generally done by solving some
form of a SAT (satisfiability) problem. As software involve not only Boolean vari-
ables, but other types like integers as well, their operations also have to be encoded
into the SAT problem. One option for this is to use bitwise encoding of all types
and use standard SAT solvers. This was the approach used in [18].

However, modern model checkers mostly employ Satisfiability Modulo Theories
(SMT) solvers to handle non-Boolean variables [1]. In this case, the logic is aug-
mented with theories that can handle the operations of variable types. In our
implementation, we rely on SMT encoding instead of bitwise SAT.

Example. If in the current state we know that the predicate x < 3 is true and
y = 0 is false, and we apply the statement ASSIGN (z,z + 1), the SMT problem
for the next state computation is:

xo<3A—(yo=0)Azi=x0+1A(x1<3 < a1) A (Yo =0 < a9)

The first underlined part corresponds to the current state, the second underlined
part to the statement applied, and the third part is a representation of the next
state.

The Boolean literals a; and as are called activation literals. All satisfying models
of the above expression are computed, and the next abstract states are derived from
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the values of a; and as in each model: the truth value of each predicate is set to
the value of the corresponding activation literal.

When the model under analysis is a control flow automaton, abstraction is
commonly applied to the data variables, and the location is also added to the
abstract states (i.e. it is always precisely tracked).

2.8 Game-based Abstraction Refinement

The game-based abstraction refinement framework for probabilistic systems has
been proposed in [25], and its application to probabilistic programs described in
[18].

The main idea of this abstraction scheme is to use a stochastic game as the ab-
stract model of an MDP, which allows introducing a second kind of non-deterministic
choice which is resolved using a different objective than the one in the original
model. This way we can introduce an “abstraction player” (referred to as Player A
from now on), whose responsibility will be intuitively to resolve the choice of which
concrete state we are in when we know only the abstract state (which represents a
set of possible concrete states). The other player will be referred to as Player C, as
its responsibility is resolving the original non-determinism already present in the
concrete model.

By setting the objective of Player A to minimizing the probability of reaching
the target state set, we can compute a lower bound for the original probability. By
maximizing it instead, we get an upper bound. By computing both bounds, we get
not only a conservative approximation of the error probability, but also a measure
of how precise the current abstraction is with respect to the property of interest.

Refinement is performed based on the difference between the minimizing and
the maximizing strategies of Player A. A state is refinable if the minimizing and the
maximizing strategies choose a different action in it. The new precision is computed
such that it prevents making this choice.

Two different strategies were proposed in [19] for choosing the state to base the
refinement on. We can choose the coarsest refinable state, for which the difference
between the upper and the lower abstraction values is the highest (hoping that
this will have the largest effect on the precision of values), or choose the refinable
state nearest to the initial state (hoping that this will make the abstraction precise
enough early in the state space exploration process).

After a refinable state has been chosen, a new predicate is computed to elimi-
nate the choice of the abstraction player in this state using weakest precondition
computation.

When analysing a PCFA, it is possible to use a different precision for abstracting
the data state in each location. This is called local precision, while using a single
one for the whole model is called global precision. When local precision is used,
the new predicate that was computed is added only to the location corresponding
to the chosen state to refine. However, propagating the newly chosen predicate
to other locations using weakest precondition computation can lead to a much
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lower number of refinement steps needed. [19] proposed two different strategies for
this propagation, one based on the explored abstract state space, the other based
directly on the CFA model.

2.8.1 Computing the abstraction game

Here we will briefly describe how the abstraction game is built in the case of predi-
cate abstraction applied to probabilistic programs. An example step of building the
game can be seen in Figure 3 for each statement type. A more detailed description
and the SMT formulae used can be found in [19].

ASSUME(x<3) PROB(
0.2: ASSIGN(x, x+1),
ASSIGN(x, x+1) @ i : HAVOC(x) HAVOC(x) 0.8: ASSIGN(x, 0)),
ASSUME(*(X<3))( >

Figure 3: Example PCFA components and the resulting game parts. Circles rep-
resent Player A nodes, rectangles represent Player C nodes.

x>=max of dom(y)

x<max of dom(y)

The construction method assumes the following constraints to be true for the
model, which are always satisfied by PCFA models created using single-block en-
coding, and are also satisfied by our large-block encoding implementation:

e If multiple outgoing edges are present in a location, then only one of them
can be enabled in any valuation. Because of this, the only source of non-
determinism in the model can be HAVOC statements.

e If there is a PROB or HAVOC statement present on an outgoing edge of a location,
then there must be no other outgoing edges.

The game used as abstract model alternates between Player A and Player C
nodes. Player A nodes correspond to abstract states. For each Player A node
(starting with the node corresponding to the initial abstract state), we need to
compute groups of next states resulting from applying a statement available in the
current state.

A-nodes are labeled by abstract states, while C-nodes get their identity from
the set of A-node distributions it can choose from. When building the abstraction
game, we take an A-node that has not been expanded yet, take a statement available
in it, and compute the result of the statement.

ASSIGN and ASSUME statements When the statement to apply is an ASSIGN or an
ASSUME statement, only the abstraction player has power over the resulting state.
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The result of an assignment and the satisfaction of the assumption depends on the
current values of the variables, but we might not know all variables that affect the
result exactly with the currently used precision. Thus the abstraction player can
select these values arbitrarily as long as they do not contradict what we know from
the currently tracked predicates. As there is no concrete non-determinism involved
with these statement types, Player C has no power in this state.

PROB statements Similarly to non-probabilistic assignments and assumes, only
Player A has any power over choosing the result of a PROB statement (as we dis-
allowed non-deterministic statements inside probabilistic statements in the defini-
tion). In this case however, we have to compute a set of distributions over abstract
states from which the abstraction player can choose, not stand-alone states. Be-
cause of this, the successor states must be computed in groups, all elements of a
possible distribution at a time. For the example in Figure 3, we need the following

query:
o <H A (x(ll) =zp+1n (x(ll) <h = agl))) A (x(12) =0A (x(lz) <5 = a§2)))

We are interested in all satisfying models that differ in at least one of agl) and

agz)’ because these models encode different next state distributions. The satisfying

models in this example are {agl),a?)}, representing the dirac distribution {1.0 :
(I =2,z <5)}, and {agl),ﬂaf)} representing the distribution {0.2 : (I = 2,2 <
5),0.2: (I =2,—(x <b5))}

We cannot simply evaluate the possible successors for the statements indepen-
dently: the results of applying the statements depend on each other through the
unknown variable values. Computing the possible results of the statements, and
then composing them into a set of distributions by taking a Cartesian product would
lead to “hallucinating” some successor distributions over the abstract states that
cannot result from applying the PROB statement to any concrete state. This would
be conceptually similar to the inexactness that Cartesian abstraction introduces,
described in Section 6.

General HAVOC statements Handling HAVOCs is the most problematic part, as
in the general case, both players can have power over the resulting abstract state.
To compute the set of possible next states and group them appropriately, we have
to introduce a term in the SMT query for each possible new value of the variable
modified by the HAVOC, similarly to what we do for each substatement of a PROB.
This is intractable if the domain of a variable is large.

Simplifiable HAVOC statements However, if we can split the information tracked
by the current precision so that the predicates one partition depends only on the
variable modified by the HAVOC, and the ones in the other partition do not depend
on that variable at all, then the computation can be simplified: in this case, only
Player C has any actual power over next state selection: it can decide how the first



688 Daniel Szekeres and Istvan Majzik

partition changes, while the second partition must stay the same as it was. Thus
we know that only one group has to be computed, making a standard flat list of
successor states sufficient. For this, a standard SMT query for the successors is
enough.

3 Incorporating Bounded Value Iteration

Value iteration (VI) computes an optimal strategy by iteratively approximating
the value function of the game. The resulting strategy is derived from the value
function using the fact that any strategy that always chooses an optimal action
with respect to the value function is optimal.

The algorithm iteratively refines a lower bound approximation to the value
function using the Bellman equations. The initial approximation is set to 1 for
every target state, and 0 everywhere else.

The approximate value function computed during value iteration converges to
the real value function only asymptotically. Because of this, unlike for strategy
iteration, it is not guaranteed that the algorithm terminates in a finite number
of steps. However, the value function often becomes good enough to compute the
optimal strategy in much less time than it would take strategy iteration to converge.
Value iteration is often preferred in practice for this reason.

The problem of determining when the value function is good enough still re-
mains. A very basic, but often used approach is to stop value iteration when the
difference between two consecutive value function approximations becomes smaller
than a predefined threshold. This stopping criterion cannot actually give any guar-
antees about the optimality of the resulting strategy: as long as the change of the
value function is not exactly zero in an iteration, the chosen transition can change
in any state, potentially leading to a vastly different mean reward [3].

Bounded Value Iteration (BVI) [24, 3] is a modified version of value iteration
originally proposed for Markov Decision Processes. It has been extended to Stochas-
tic Games in [20]. BVI computes both a lower and an upper approximation for the
value function. The reason for this is that the difference between the upper and
the lower bound can be used as stopping criterion. As the two approximations
are constructed in such a way that the real value function is known to be between
them, the error is no longer totally unknown, we have an upper bound for it, and
can thus be controlled. This leads to a guaranteed e-optimal strategy as a result.
Making the upper approximation converge on stochastic games is non-trivial - for
a detailed explanation of the algorithm, see [20].

Having more control over the optimality of strategies computed using the ap-
proximate value function has two advantages in the game-based abstraction scheme:
apart from the general advantage of making the end result more precise, the refine-
ment step is also enhanced by having a more reliable value function.

We constructed a simple example, where the problem of ineffective refinement
can be easily seen to highlight the importance of more reliable convergence checks
when computing values in the game-based abstraction refinement scheme.
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Based on the model given in [3] as an example for when the standard VI con-
vergence check can lead to a wrong result, we can construct an example for any
€, where a seemingly coarse abstract state is actually perfectly precise: the values
of a state with maximizing and minimizing abstraction choices coincide, the differ-
ence between lower and upper abstraction comes only from the imprecision of value
computation.

Example. An example where the unreliable result of standard value iteration can
be problematic for refinement can be seen in Figure 4. The only non-determinism in
the abstract state space is an abstraction choice in sy. As there is no concrete non-
determinism, the Player C nodes between the Player A nodes have been omitted
from the figure. The target states are ¢, and s7.

Figure 4: Example model for refinement problem with standard value iteration

The upper part of the model is the chain from [3]. The parameters n and p can
be chosen appropriately for any € such that if standard value iteration is stopped
when the latest change was smaller than e, then the final approximation of the
probability of reaching a target from sg is less than %, while the real probability is
1.

The lower part of the model is simply an instant target state, so both the
approximate computed probability and the real probability of reaching a target by
choosing the lower action are 1.

If the approximate values computed with standard VI are used to compute the
refinement, the abstract state sy seems to be quite coarse: the computed value
difference between the maximizing and the minimizing action is greater than %. In
reality, though, s¢ is perfectly precise with respect to the property of interest, as
both actions eventually lead to a target state with probability 1. This can lead to
sub-optimal refinement if the refinable state selection strategy is set to coarsest: if
the given example is only a part of the state space, an actually coarsely abstracted
part would be much more important to refine.

If qualitative pre-analysis is used to determine almost sure reachability precisely
before running VI, the example model can be modified to “leak” some probability
from the chain before reaching the target.

We have also implemented the topological version of VI and BVT [22]: this ap-
proach splits the game into the strongly connected components of its edge relation
graph, and computes the value function for each component in reverse topological
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order. This change can often speed up the convergence of value iteration for struc-
turally problematic models, as it enforces propagation of already converged values
instead of propagating non-converged values through the whole state-space.

4 Adapting Large-block Encoding

When creating a (P)CFA from the source code of a computer program, the most
obvious approach is to create an edge for every atomic statement in the code, as
seen in the example in Figure la. A disadvantage of this conversion is that it
introduces a high number of locations, leading to a wastefully large state-space.
This version is called single-block encoding (SBE).

Another possibility is large-block encoding (LBE). There are several possible
versions of this, but the general idea is that an edge is associated with multiple
statements. By allowing a single edge to hold multiple statements, we can reduce
the number of edges and locations, making the graph of the (P)CFA much smaller.
This can both speed up the analysis, and make the results easier to interpret. We
can introduce composite statements to be able to do this while staying with our
original definition of PCFA.

There are multiple variants of composite statements with different semantics,
but our current work uses only sequence statements (SEQ) representing a sequen-
tial composition of other statements (the statements given in an ordered list are
executed one after another according to their order in the list).

A SEQ statement is enabled by a valuation if and only if its first substatement
is enabled by the valuation, and each substatement is enabled by the result of
transforming the valuation through all substatements before it.

An example PCFA with large-block encoding can be seen in Figure 1b.

The idea of large block encoding can be implemented in several different ways.
For example, the authors in [6] used it for standard qualitative software model
checking and merged both sequential and parallel (non-deterministic and if-else)
edge combinations into single edges.

However, in the probabilistic abstraction case, doing this would prove problem-
atic: using a non-deterministic statement to combine guarded choices would make
the edge look like a concrete non-deterministic choice, while it is actually an ab-
straction choice, or it could merge the choices of the two players into a single edge
making building the game much more complex depending on the implementation.
Another difference from the qualitative case is that the game construction algo-
rithm of [18] needs all locations of the PCFA to be either choice, non-deterministic
or probabilistic, clearly separating ASSUME statements from HAVOCs and PROB.

Accordingly, we decided to implement only sequential LBE for the probabilistic
case, and defer the exploration of possibilities for merging parallel edges to future
work, and we split the LBE at PROB and HAVOC statements, making those have

their own edges separated from the sequences between them. This sequential LBE

is implemented as a simple preprocessing step on the PCFA: [y stmia, lo stmitz, ls

SEQ{stmt,stmto} lo. These
3.

patterns, where l5 has no other edges are merged to [y
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statements can be converted to SMT expressions by converting each substatement
into an expression with the appropriate indexing, and taking the conjunction of
these expressions.

5 Adapting Explicit Abstraction

Explicit abstraction (also called explicit-value abstraction and visible variables ab-
straction) [7] chooses for each variable if it is visible or not. This means that for
each variable, its value is either tracked exactly, or it is not tracked at all. The
precision of the abstraction is the list of tracked variables. Each abstract state
assigns an exact value to each variable tracked according to the precision used.

To use the explicit domain, we needed to adapt the game construction algorithm
of [18] to it. Constructing the abstraction game was originally formulated only
for predicate abstraction, so we needed to apply the main ideas of the grouped
successor computation to the explicit domain. Classical software model checking,
which explicit abstraction was previously used for, did not need grouped successor
computation in the abstract model construction, as the abstraction-induced non-
determinism did not need to be handled separately from the original (concrete) non-
determinism. Because of this, implementing the game-based abstraction scheme
with explicit abstraction involved determining how the flat successor computation
must be modified for the grouped computation needs.

One advantage of the explicit domain is that instead of always relying on expen-
sive SMT solver calls to compute the successor states, we can often simply evaluate
the program statements after all variables currently tracked have been substituted
with their values in the current abstract state. SMT calls are needed only if an
important variable is missing, and even then, the SMT query often contains much
fewer variables than without substituting the known ones.

For deterministic (ASSIGN and ASSUME) and HAVOC statements, explicit abstraction
can be used the same way as in the qualitative case, as we compute only a flat list of
next states, and assign the choice between them either to Player A (for deterministic
statements) or Player C (for HAVOC statement). In the case of HAVOC, this is correct
because the simplification described earlier is always applicable when using explicit
abstraction: a HAVOC statement always affects only one variable, and no matter
what it was, Player C can set it to any value. For PROB statements, we simply use
the same approach as in predicate abstraction: the state is converted to a Boolean
expression as a conjunction of equalities for the known variable values, and then
we can solve the same SMT problem as in the predicate case. When LBE is used,
SEQ statements are handled the same ways as deterministic statements, as they can
contain only ASSIGNs and ASSUMEs in our version.

Refinement is also similar to the predicate case, first discovering new predicates
using weakest precondition computation for splitting the state selected for refine-
ment and propagating if needed. The states are converted to Boolean expressions
for this computation by taking a conjunction of equalities for the known variable
values. Then, instead of adding the newly discovered predicates to the precision, we
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add all variables contained in them - just like in the qualitative version of explicit
abstraction.

6 Inexact Abstract Transition Functions for Game-
based Abstraction

The exact computation of the abstract transition relation is often computationally
very expensive, sometimes infeasible. Because of this, inexact transition functions
are often used in standard software model checking that conservatively overapprox-
imate the original relation. Two examples of this are Cartesian abstraction in the
case of predicate abstraction and limiting the number of next states enumerated
for a single successor state set computation in the case of explicit abstraction.

Here, we will first describe these and their application in the game-based ab-
straction scheme for probabilistic programs, then state two theorems related to
the correctness of using them. The proofs of these theorems are relegated to the
appendix.

The approximation introduced by these techniques can be considered a second
layer of abstraction. Instead of abstracting the state-space itself, it abstracts the
transition function, as it discards some information about the original relation.

Inexact transition functions need more flexible abstract domains than the ones
described before, which allow on-demand omission of information during explo-
ration. These domains do not have the disjointness property: for a given precision,
multiple abstract states can correspond to the same concrete state, as the preci-
sion is not strictly respected by all abstract states. Thus, the correctness of the
abstraction scheme must be reevaluated when using inexact transition functions.

We first describe the two inexact abstract transition functions that we imple-
mented, Cartesian abstraction [4] for predicate abstraction and limited enumeration
[15] for explicit abstraction, along with how we adapted them to the game-based
abstraction refinement scheme. After that, we elaborate on the correctness of their
usage.

6.1 Cartesian abstraction

In Section 2, we described the standard version of predicate abstraction, where
each predicate in the current precision must be stated to either hold or not in each
abstract state. A more general version of predicate abstraction uses three-valued
logic for the predicates: true, false and unknown/any.

The generalized version makes it possible to use (conservative) approximations
of the exact abstract transition relation which leave predicates unknown instead of
branching in both directions during exploration.

One such approximate computation of the abstract transition relation is Carte-
sian abstraction. Instead of evaluating the SMT problem with the whole Boolean
vector of the next state, it computes for each predicate whether it or its negation
is implied by applying a statement to the current abstract state. If none of these
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is implied, the predicate is set to unknown in the subsequent abstract state. If the
predicate itself is implied, it is set to true, if the negation is implied, the predicate
is set to false. Implying both means that the conjunction of the current state ex-
pression and the statement expression is unsatisfiable, leading to an empty set of
next states (as the statement is not enabled by the current state).

This is an over-approximation of the exact abstract transition function. Con-
sider the case for example when two predicates must be the opposite of each other
in the subsequent abstract state, but we do not know which one of them is true.
Because of this, both are set to unknown. This abstract state contains all of the
possible concrete states, but also contain states where both of the predicates are
true or both are false.

Our proposed adaptation of Cartesian abstraction is applying it only partially
in the game construction. As Cartesian abstraction modifies the method which we
use for the next state computation, we needed to decide how to use that in the
game construction.

For deterministic statements and simplified HAVOC statement computation, Carte-
sian abstraction can be used the same way as in the qualitative case, as we compute
only a flat list of next states, and assign the choice between them either to Player A
(for deterministic statements) or Player C (for HAVOC statement when simplification
is applicable).

For PROB statements and general HAVOC statements, we cannot break the grouped
SMT problem into atomic implications without introducing a high number of spu-
rious distribution choices (it would still be a conservative abstraction, but a very
imprecise one). Because of this, we propose to use Cartesian abstraction in the
probabilistic case only partially, and use the precise computation for PROB and non-
simplifiable HAVOC statements.

As most probabilistic programs have only a small amount of PROB statements,
and HAVOC statements are simplifiable in most cases, Cartesian abstraction can still
be much more efficient than the precise abstract transition relation.

Another possibility would be to compute an implication for each predicate for all
next states in one SMT problem. In this case, instead of computing if the negated
or ponated version is implied, we would need to check if any combination of ponated
and negated versions of the given predicate in each element of the next state group
is implied. This is tractable for PROBs with a small number of substatements (like
coin()), but the number of SMT problems for each predicate blows up exponentially
with the number of substatements, so we decided against this option.

Investigating other ways to apply the idea of Cartesian abstraction to the next
state computations used in the abstraction game construction is part of our future
plans, as the grouped computation parts could also benefit from the idea, but care
has to be taken to not make the abstraction either unsound or too coarse.

6.2 Explicit abstraction with limited enumeration

The version of explicit abstraction described earlier has the disjointness property.
However, there is a more general version of explicit abstraction, which is much more
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useful: in an abstract state, a variable which is tracked according to the precision
can also be set to T, meaning that the value is unknown in that state. This is
useful for example for HAVOC statements, where the abstract state space could be
infinite, or at least intractably large.

In this generalized domain, the abstract state space exploration can set the
value of a variable to unknown when there would be too many possible values to
evaluate. It is often possible to encounter an ASSUME statement or ASSIGN statement
somewhere after the HAVOC, which constrains the possible values of the variable to
a set of manageable size again.

The technique of limited enumeration for explicit abstraction means that we
set a limit for how many possible successor states we are willing to compute in
a single successor set computation. If the number of states would exceed this
limit, we merge them into a single state by selecting all the variables that have
different values in the possible next states, and set their value to T, even though
they should be tracked according to the precision. Unlike in the predicate case,
explicit abstraction can be used only for a very small subset of programs without
this generalization.

Using explicit abstraction with limited enumeration in the game-based abstrac-
tion refinement scheme is quite straightforward.

Similarly to the unlimited explicit case, when computing ASSIGN, ASSUME and
HAVOC statements, the successor computation is done the same way as in the quali-
tative case, no adaptation is needed, as a non-grouped list of successors is sufficient
for the construction. In the case of HAVOC, although Player C has full power in
theory, limited enumeration will lead to Player A having full power over the value
of the variable in practice if its domain is larger than the enumeration limit.

PROB statements are computed similarly to the unlimited explicit case, but be-
cause of the enumeration limit, resulting states might have to be merged. If the
states that would be merged are in the same distribution, we can merge them in the
distribution by replacing them with a single next state with original probabilities
summed. If the enumeration that must be limited is in the different distribution
choices, then we can instead merge them into a single distribution, where the vari-
able is set to T in the next state for the corresponding substatement which caused
the enumeration exceeding the limit.

6.3 Correctness

Here, we analyze the correctness of applying these techniques in the game-based
scheme.

For an abstraction-based analysis scheme to result in a correct verdict about
the analyzed property, the construction used for the abstract model must be sound,
meaning that whenever the property is provable for the abstract model, it is true
in the original model. In the context of game-based abstract analysis of stochastic
models, this means that analyzing the game with the abstraction player aiming to
minimize/maximize the objective results in valid lower and upper bounds respec-
tively.
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The original soundness proof in [25] assumed that the abstract domain used
for the abstraction has the disjointness property. However, this does not allow
the usage of generalized predicate and explicit abstraction, which Cartesian ab-
stracion and limited enumeration depend on. [13] proved that the approach can
be extended to non-disjoint domains. However, the context in that work was ab-
stract interpretation with widening, and they used a slightly different construction
for the abstraction game. Because of this, a new proof of soundness is necessary
for the adaptation of Cartesian abstraction and explicit abstraction with limited
enumeration described above.

Here, we only state the soundness theorems formally, and the proofs themselves
are relegated to the appendix.

Theorem 1 (Soundness of Cartesian abstraction). Given a PCFA P with a set of
target locations L, optimal strategies on the game abstraction of its MDP seman-
tics using Cartesian abstraction to compute the abstract transition relation gives
lower and upper bounds on the reachability probability of Lr. The optimal strate-
gies are understood w.r.t. the reward function that assigns 1 to states with a location
i L7 and 0 to all other states.

Theorem 2 (Soundness of limited enumeration). Given a PCFA P with a set
of target locations L, optimal strategies on the game abstraction of its MDP se-
mantics using explicit abstraction with limited enumeration to compute the abstract
transition relation gives lower and upper bounds on the reachability probability of
Lp. The optimal strategies are understood w.r.t. the reward function that assigns
1 to states with a location in Ly and 0 to all other states.

These correctness proofs make it possible to use Cartesian abstraction and ex-
plicit abstraction with limited enumeration in the game-based abstraction refine-
ment scheme, guaranteeing that the maximizing and minimizing strategies lead
to upper and lower approximations of the concrete value function respectively,
which result in a correct final verdict. Keep in mind, that these results only state
soundness, not completeness: using inexact transition functions without any other
modifications to the overall scheme does not lead to a complete decision procedure,
the verification might get stuck in the refinement loop, as the information that
would be needed for more precise abstraction might be discarded by the transition
function itself, which we do not refine.

7 Implementation and Numerical Experiments

We performed numerical experiments to evaluate our modifications: using large
block encoding (LBE) in the PCFA model, using the explicit abstract domain,
applying inexact abstract transition functions (Cartesian abstraction and limited
enumeration), and enhancing the reliability of strategy computation using bounded
value iteration (BVI). We used models from [18] which are standard benchmark
model in this area. Some of the models are direct implementations of probabilistic
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protocols, while others are standard stochastic analysis benchmark models con-
verted from PRISM models to probabilistic C code.

These models are scalable using scaling parameters, which makes it possible to
analyze how the analysis approach scales with model size. Multiple properties to
check are given for each model.

We used only a subset of the benchmark models, because the C frontend of
Theta does not support multiple compilation units yet - this feature is work in
progress, and further measurements are planned to be performed in the future.
Applying the GCC preprocessor to create a single compilation unit was enough for
some models originally given as multiple source files, but not all of them.

Our aim with the numerical experiments was to answer the following research
questions:

RQ1. How does using large block encoding affect the running time of the analysis?

RQ2. How does using BVI instead of standard VI affect the running time? Is the
impact on the running time sufficiently small to be an acceptable cost for
higher reliability?

RQ3. How does the running time with the explicit domain differ from the predicate
domain? What is the effect of using limited enumeration?

RQ4. How does applying Cartesian abstraction affect the running time?

RQ5. How prevalent is the problem of the refinement loop getting stuck with inexact
transition functions on practical models?

The measurements were performed with our prototype implementation in the
Theta model-checking framework. The following aspects of the analysis are con-
figurable: abstract domain (including abstract next state computation method),
refinable state selection strategy, precision locality (local: each PCFA location has
its own precision, global: a single global precision is used), predicate propagation
strategy (only applicable with local precision), stochastic game solver (VI, topo-
logical VI, BVI, topological BVI), SBE/LBE. Local precision (and because of this,
refinement propagation) is not implemented for explicit abstraction yet. For enu-
meration limits in the explicit domain, we used oo, 1, and 2.

We measured the performance of all possible configurations on all input models.
Analyzing the effect of precision locality, refinement propagation strategies and
refinable state selection strategies was not among the goals of these experiments.
Therefore, we merged those configurations in the analysis results that differed only
in these parameters by taking the smallest running time among them to reduce
clutter in the plots. This results in an analysis where these parameters are always
assumed to be chosen optimally.

The benchmarks were executed using BenchEzec [8], the official tool used for the
Software Verification Competition (SV-COMP) 2, providing reliable measurements

?https://sv-comp.sosy-lab.org/2022/
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on resources. The experiment was executed on virtual machines running Ubuntu
20.04.2 LTS with Java OpenJDK 11.0.13. There was a memory limit of 15GB
and a CPU core limit of 6 cores set. A timeout of 6 minutes was set for each
input-configuration pair.

Figures 5, 6 and 7 show our measurement results with different groupings, aim-
ing to make the effect of different features observable on each plot. The horizontal
axis shows the value of the scaling parameter, while the vertical axis shows running
time of the analysis. Each subplot has its own y scale in seconds, as the running
time can differ greatly depending on inputs and configuration, so having a common
scale would make data points with shorter running times incomparable.

Data points with 360s running time are timeouts, as that was the time limit.

The results provided the following answers for the research questions:

RQ1: Effect of LBE In general, LBE increased performance of the analysis.
240 input-configuration pairs succeeded before timing out with LBE, and only 154
input-configuration pairs without it. The difference can be easily seen in Figures 5
and 6 by comparing the blue (SBE) and red (LBE) data points, and in Figure 7
by comparing the number of not timed out data points in the two facet rows. LBE
was beneficial regardless of the other configuration parameters. On the herman P3
input, it even meant a difference between timing out or not.

RQ2: Effect of BVI The running time of BVI was close to the running time of
standard VI, when the best refinable state selection strategy was chosen. This can
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Figure 5: Strip plot showing the measured running times in seconds (note the
different scaling in case of brp P1) grouped by the input (model and analyzed
property together) and the application of BVI. Color shows whether LBE was on
(red) or off (blue)
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Figure 6: Strip plot showing the measured running times in seconds grouped by
the input (model and analyzed property together) and the domain used (including
the next state computation method). Color shows whether LBE was on (red) or
off (blue)
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Figure 7: Strip plot showing the measured running times in seconds grouped by
the input (model and analyzed property together) and whether LBE was used or
not. Color shows which domain was used.

be seen most clearly in Figure 5, by comparing the two facet rows. We observed
though that with other refinable state selection choices, BVI can be unacceptably
slow compared to standard VI.

RQ3: Efficiency of the explicit domain Explicit abstraction performed better
than predicate abstraction on some models. Neither is clearly better than the
other, but having both option increases the number of models we can analyze. The
unlimited version can often be problematic because of the infinite number of possible
next states, and limit 1 often gets stuck, but explicit abstraction with enumeration
limit 2 was able to analyze the most models without timing out among all the
domain configurations. The different domain configurations can be compared on
Figure 6 by comparing the facet rows (but the different y-axis scales might make
exact comparison a bit harder), and in Figure 7 by comparing the differently colored
data points. In the latter figure, we decided to not distinguish between the limits
in the color to not clutter the plot with too many different colors.

RQ4: Effect of Cartesian abstraction Whenever Cartesian abstraction did
not get stuck, it was often faster than exact predicate abstraction, but not signif-
icantly. In some cases, it was even slower and, unfortunately, the refinement loop
did become stuck in a lot of cases. Because of this, these measurements did not
lead to any significant answer for this research question. Cartesian abstraction can
be compared to the other options in Figures 6 and 7.
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RQ5: Refinement getting stuck Inexact next state computations were very
prone to getting stuck in the refinement loop, because they dropped the information
that would have been needed for refining based on the selected state.

Explicit abstraction with limit 2 is an exception when combined with LBE:
it performed well on a lot of models, and it was able to solve the most analysis
tasks overall among all domains. More precisely, if we count the number of solved
inputs for each domain disregarding all other configuration parameters, Explicit
abstraction with limit 2 was able to solve the highest number of tasks without
timing out. With this limit, Boolean variables are always tracked exactly, while
other variables are abstracted when multiple values are possible. This limit is also
able to not merge probabilistic choices with two branches, while limit 1 will merge
them, basically getting rid of probabilistic choices in the abstract model.

The problem of getting stuck might be mitigated by different refinable state se-
lection approaches, or by on-demand refinement of the post operator itself. Further
research is needed in this area.

8 Conclusions and Future Work

In this work, we set out to (1) improve the scalability of game-based abstraction
of probabilistic programs by adapting modern techniques from qualitative software
model checking, and to (2) tackle the problem of convergence checking for the
abstract model.

Regarding (1) we can conclude the following based on our numerical evaluation:

e Introducing the explicit abstraction and limited enumeration options made
the analysis of more models possible.

e Using large block encoding generally resulted in faster analysis.

e Cartesian abstraction and limited enumeration often get stuck in the refine-
ment loop, so more sophisticated techniques are needed to make them usable.

Regarding (2), we can say that applying BVI does not incur a significant in-
crease in running time, making it worth to use the more reliable version instead
of standard VI. Performance of BVI was highly dependent on the refinable state
selection strategy. We plan to investigate this phenomenon in detail in the future.
We also plan to implement optimistic value iteration [16] and sound value iteration
[26] adapted to stochastic games as abstract model solvers to compare them with
BVI in the game-abstraction context.

Building on the conclusions we have drawn from these experiments, we plan to
make inexact post operators more stable by introducing partial switching to exact
computation as a refinement option.



Towards Abstraction-based Probabilistic Program Analysis 701

References

(1]

[10]

[11]

Armando, A., Mantovani, J., and Platania, L. Bounded model checking of
software using SMT solvers instead of SAT solvers. International Journal on
Software Tools for Technology Transfer, 11(1):69-83, 2009. DOI: 10.1007/
11691617_9.

Baier, C. and Katoen, J.-P. Principles of model checking. MIT Press, 2008.

Baier, C., Klein, J., Leuschner, L., Parker, D., and Wunderlich, S. Ensuring
the reliability of your model checker: Interval iteration for Markov decision
processes. In International Conference on Computer Aided Verification, pages
160-180. Springer, 2017. DOL: 10.1007/978-3-319-63387-9_8.

Ball, T., Podelski, A., and Rajamani, S. K. Boolean and Cartesian abstrac-
tion for model checking C programs. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 268-283.
Springer, 2001. DOI: 10.1007/s10009-002-0095-0.

Barthe, G., Katoen, J.-P., and Silva, A. Foundations of Probabilistic Program-
ming. Cambridge University Press, 2020. DOI: 10.1017/9781108770750.

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M. E., University, S. F.,
and Sebastiani, R. Software model checking via large-block encoding. In
Formal Methods in Computer-Aided Design, pages 25-32, 2009. DOI: 10.
1109/FMCAD.2009.5351147.

Beyer, D. and Lowe, S. Explicit-state software model checking based on CE-
GAR and interpolation. In International Conference on Fundamental Ap-
proaches to Software Engineering, pages 146-162. Springer, 2013. DOI:

10.1007/978-3-642-37057-1_11.

Beyer, D., Lowe, S., and Wendler, P. Reliable benchmarking: requirements and
solutions. International Journal on Software Tools for Technology Transfer,
21(1):1-29, 2019. DOI: 10.1007/s10009-017-0469-y.

Chadha, R. and Viswanathan, M. A counterexample-guided abstraction-
refinement framework for Markov decision processes. ACM Transactions on
Computational Logic (TOCL), 12(1):1-49, 2010. DOI: 10.1145/1838552.
1838553.

Clarke, E.; Grumberg, O., Jha, S., Lu, Y., and Veith, H. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the
ACM (JACM), 50(5):752-794, 2003. DOI: 10.1145/876638.876643.

Condon, A. The complexity of stochastic games. Information and Computa-
tion, 96(2):203-224, 1992. DOI: 10.1016/0890-5401(92)90048-X.


https://doi.org/10.1007/11691617_9
https://doi.org/10.1007/11691617_9
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/s10009-002-0095-0
https://doi.org/10.1017/9781108770750
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1145/1838552.1838553
https://doi.org/10.1145/1838552.1838553
https://doi.org/10.1145/876638.876643
https://doi.org/10.1016/0890-5401(92)90048-K

702

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

22]

Daniel Szekeres and Istvan Majzik

De Alfaro, L. and Roy, P. Magnifying-lens abstraction for Markov decision
processes. In International Conference on Computer Aided Verification, pages
325-338. Springer, 2007. DOI: 10.1007/978-3-540-73368-3_38.

Esparza, J. and Gaiser, A. Probabilistic abstractions with arbitrary domains.
In International Static Analysis Symposium, pages 334-350. Springer, 2011.
DOI: 10.1007/978-3-642-23702-7_25.

Graics, B., Molnar, V., Voros, A., Majzik, 1., and Varr6, D. Mixed-
semantics composition of statecharts for the component-based design of reac-
tive systems. Software and Systems Modeling, 19(6):1483-1517, 2020. DOI:
10.1007/s10270-020-00806-5.

Hajdu, A. and Micskei, Z. Efficient strategies for CEGAR-based model
checking. Journal of Automated Reasoning, 64(6):1051-1091, 2020. DOI:
10.1007/s10817-019-09535-x%.

Hartmanns, A. and Kaminski, B. L. Optimistic Value Iteration. In Interna-
tional Conference on Computer Aided Verification, pages 488-511. Springer,
2020. DOI: 10.1007/978-3-030-53291-8_26.

Hermanns, H., Wachter, B., and Zhang, L. Probabilistic CEGAR. In Interna-
tional Conference on Computer Aided Verification, pages 162-175. Springer,
2008. DOI: 10.1007/978-3-540-70545-1_16.

Kattenbelt, M., Kwiatkowska, M., Norman, G., and Parker, D. Abstraction
refinement for probabilistic software. In International Workshop on Verifica-
tion, Model Checking, and Abstract Interpretation, pages 182—-197. Springer,
2009. DOI: 10.1007/978-3-540-93900-9_17.

Kattenbelt, M. A. Automated quantitative software verification. PhD thesis,
University of Oxford, 2010.

Kelmendi, E., Kramer, J., Kfetinsky, J., and Weininger, M. Value iteration for
simple stochastic games: Stopping criterion and learning algorithm. In Inter-
national Conference on Computer Aided Verification, pages 623-642. Springer,
2018. DOI: 10.1007/978-3-319-96145-3_36.

Komuravelli, A., Pasdreanu, C. S., and Clarke, E. M. Assume-guarantee
abstraction refinement for probabilistic systems. In International Confer-
ence on Computer Aided Verification, pages 310-326. Springer, 2012. DOI:
10.1007/978-3-642-31424-7_25.

Kfetinsky, J., Ramneantu, E., Slivinskiy, A., and Weininger, M. Comparison
of algorithms for simple stochastic games. Information and Computation, page
104885, 2022. DOI: 10.1016/j.1ic.2022.104885.


https://doi.org/10.1007/978-3-540-73368-3_38
https://doi.org/10.1007/978-3-642-23702-7_25
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-93900-9_17
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.1016/j.ic.2022.104885

Towards Abstraction-based Probabilistic Program Analysis 703

[23] Kwiatkowska, M., Norman, G., and Parker, D. PRISM 4.0: Verification of
probabilistic real-time systems. In Gopalakrishnan, G. and Qadeer, S., ed-
itors, Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), Volume 6806 of LNCS, pages 585-591. Springer, 2011. DOI:
10.1007/978-3-642-22110-1_47.

[24] McMahan, H. B., Likhachev, M., and Gordon, G. J. Bounded real-time dy-
namic programming: RTDP with monotone upper bounds and performance
guarantees. In Proceedings of the 22nd International Conference on Machine
Learning, pages 569-576, 2005. DOI: 10.1145/1102351.1102423.

[25] Parker, D., Norman, G., and Kwiatkowska, M. Game-based abstraction for
Markov decision processes. In Third International Conference on the Quanti-
tative Evaluation of Systems-(QEST’06), pages 157-166. IEEE, 2006. DOI:
10.1109/QEST.2006.19.

[26] Quatmann, T. and Katoen, J.-P. Sound value iteration. In Chockler, H.
and Weissenbacher, G., editors, Computer Aided Verification, pages 643—661,
Cham, 2018. Springer International Publishing. DOI: 10.1007/978-3-319-
96145-3_37.

[27] Song, L., Zhang, L., Hermanns, H., and Godskesen, J. C. Incremental bisim-
ulation abstraction refinement. ACM Transactions on Embedded Computing
Systems (TECS), 13(4s):1-23, 2014. DOI: 10.1145/2627352.

[28] Toth, T., Hajdu, A., Vords, A., Micskei, Z., and Majzik, I. Theta: A frame-
work for abstraction refinement-based model checking. In Formal Methods
in Computer Aided Design (FMCAD), pages 176-179. IEEE, 2017. DOI:
10.23919/FMCAD.2017.8102257.

[29] Wachter, B. and Zhang, L. Best probabilistic transformers. In International
Workshop on Verification, Model Checking, and Abstract Interpretation, pages
362-379. Springer, 2010. DOI: 10.1007/978-3-642-11319-2_26.

A Proofs of Soundness

A.1 Notions used in the proofs

Here we show that both Cartesian abstraction with the generalized predicate do-
main and the usage of the generalized explicit abstraction domain with limited
enumeration of values lead to sound abstractions. We will use the abstraction
game simulation approach that was proposed in [18] for the proofs.

As abstract states in the same model are no longer disjoint when considered
as sets of concrete states, we will use the notion of covering when analyzing the
resulting abstraction game and the construction algorithm: an abstract state S;
covers another abstract state S, when the set of concrete states corresponding to


https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1109/QEST.2006.19
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1145/2627352
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-642-11319-2_26

704 Daniel Szekeres and Istvan Majzik

So is a subset of the set corresponding to S;. Covering between A-nodes can be
defined using the abstract states of the A-nodes.

By describing abstract states via SMT formulae, cover checking can be for-
mulated using the language of logic: a state A covers the state B if and only if
Expr(B) = Fuxzpr(A), where Expr(-) denotes the SMT formula describing the
state.

In the case of (P)CFA analysis, the location is also retained by the abstraction.
Covering in this case also requires that the two states have the same location. We
will omit mentioning this from now on, but it is always an implicit requirement of
covering.

An example game with covering can be seen in Figure 8. It can be seen on
this example that whenever an A-node covers another one, the set of C-nodes that
can be chosen from it is a superset of the C-nodes that can be chosen from the
covered node. This property is ensured by the construction method. This leads to
the more abstract A-node having more choices, and thereby its associated abstract
state having less strict lower and upper value bounds, as expected.

<cover>

<cover>_

Figure 8: Example of an abstraction game on a domain without the disjointness
property (generalized explicit domain).

This intuitively leads to conjecturing that the abstraction is sound, which we
will formally prove in the next subsection.

Covering can also be used between states of different abstractions of the same
MDP.

We will need to extend the notion of covering to C-nodes as well to simplify
the wording of the proofs. In order to do this we first need to define the process of
lifting a relation to distributions.
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Definition 8 (Lifting a relation to distributions). For a relation R € S1 x S, the
lifting of the relation to distributions is a relation D(R) € D(S1) x D(Ss), defined
by:

(d1,d2) € D(R) < 3§:51 x Sy — [0,1], such that:

VSl € 51 : dl(Sl) = Z 5(31,82)

SQESQ

VSQ € SQ : d2(82) = Z 5(31,82)

81€Sl

(s1,82) ¢ R = 8(s1,82) =0

Unlike for A-nodes which are identified by an associated abstract state, the
identity of C-nodes comes from their available choices, which are distributions over
A-nodes. Therefore, covering is also determined by the available choices. Let us
take the covering relation over A-nodes R = {(§,s) | § covers s}. We say that a C-
node ¢ covers another C-node c if for all A-node distributions d that can be chosen
in ¢, there is an A-node distribution d available in ¢ such that (d, d) € D(R).

The covering C-node thus does not have to have a superset of the exact choices
of the covered C-node: A-nodes can be replaced by others that cover them. This
means that for example, if the covering C-node has a single choice (0.5 : s1,0.5 : s2),
and there is an A-node s3 covering both s; and ss, another C-node with the choice
(1: s3) covers it.

To prove the soundness of our inexact abstract transition functions, will make
use of the notion of strong probabilistic game simulation proposed in [19]. Its aim
was to define a relation that can be used to decide if a game is more abstract than
another one.

The definition is asymmetric for the players, as it was defined specifically for
game-based abstractions, where Player 1 is the abstraction player, with all of its
actions leading to dirac distributions.

When defining the simulation relation for stochastic games, the simulating game
is allowed to use combined actions to simulate actions of the other game, not only
existing pure actions. Intuitively, this is similar to using probabilistic strategies
when a player plays the game: instead of choosing a specific action, a distribution
over the available actions can be chosen.

Although we adopt the full definition of strong probabilistic game simulation
from [19] to be able to directly reference the proofs therein, we do not need the full
power of this notion. Specifically, we will not need combined transitions to prove the
soundness of Cartesian predicate abstraction and explicit abstraction with limited
enumeration.

Combined actions will introduce “virtual states” for the players: the result of
using a combined action will be treated similarly to existing nodes of the game,
although it is not originally in the set.

Definition 9 (Virtual state). Given a game G = (S = S1 w Sa, Sinit, 4, Av,0), a
virtual state is a formal sum Y\ | p;s;, where s; € S, ZLlpi =1,0<p<1and
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i#j = s; # ;. All component states must belong to the same player, and the
resulting virtual state also belongs to that player.

The set of available actions in a virtual state is given by: Av(X. | pis;) =
X Av(s;).

The transition function of the game is extended to virtual states as:

6(2 piSi, (ah ey a’n)) = 2 pi5(8i7 ai)~
i=1 i=1

The resulting sum is not only a formal one: it is a sum over functions and addition
18 understood pointwise. The constraints on the weights p; ensure that the result is
a probability distribution over states.

Intuitively, a virtual state is a probabilistic superposition of states correspond-
ing to the same player. The available (virtual) actions in the virtual state are
combinations of real actions that can be considered one-step strategies: the player
does not know which state they are actually in from the superposition, but it can
decide which action it would choose in each of the component states.

Definition 10 (Combined actions). Given a stochastic game G = (S = S w
S, Sinit, A, Av, §), the set of combined transitions available in a state s € S is
Cmb(s) = {>; vaila; € Av(s),0 < a; < 1,>, a5 = 1}. We also extend the
transition function § to accept inputs with combined transitions. For any s € S,a =
2 ia; € Cmb(s), 0(s,a) = 3, p;s;.

Combined actions are also available in virtual states as a similar combination
over the virtual actions.

Definition 11 (Strong Probabilistic Game Simulation).
Let G = (S = S1 w S, Sinit, A, Av, d) be a stochastic game where all actions of
Player 1 lead to dirac distributions on So and let R € Soo X Soo be a relation on
S1. 0 :S51 x A— Sy will denote a deterministic version of the transition function
constrained to Player 1, meaning that 6(s,a) = s’ <= (s,a) = dirac(s’).

R is a strong probabilistic game simulation on G if for all (§,s) € R all of the
following conditions hold:

o Vae Au(s) : Ja € Cmb(8) : 53 = 6(s,a) A Vay € Av(sy) : 82 = 6(8,d) A Jag €
C’mb(§2) : (5(§2,d2),6(52,a2)) € D(R)

o Ya e Au(s) : Ja € Cmb(38) : 83 = 6(8,4) A Vag € Av(33) : 52 = 6(s,a) A Jag €
Cmb(sz) : (6(52,a2),0(s2,a2)) € D(R)

A relation between the Player 1 states of two different games is a strong proba-
bilistic game simulation if it is a strong probabilistic game simulation on the disjoint
union of the two games, and the pair of the two initial states is in the relation.

The two required properties of the relation intuitively mean that the abstraction
has a choice both to limit the choice of the concrete non-determinism at least as
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much as in the simulated state (underapproximation of the choice set), and to make
the choice at least as free as in the simulated state (overapproximation of the choice
set).

Being able to convert and MDP to an abstraction game without ignoring any
information will also help with the proof. The game embedding of an MDP captures
this notion.

Definition 12 (Game embedding of an MDP). The game embedding of an MDP
M = (S, Sinit, A, Av, §) is the abstraction game p(M) = (5’ = SawSC,émit,AAv,&),
where

e S, =S (there is exactly one A-node for each state of the MDP)

e There is a single C-node in S, for each A-node s € S, which will be denoted
by c(s)

e Vie S, :laeA:ae Av(3) A 6(5,a) = dirac(c(s))

o Vs € S,a€ Av(s),d € i(s,a) : Jla e A a e Av(e(s)) A bdle(s),a) = 8(s,a)
(and A is the smallest set satisfying this constraint)

Game embeddings make it possible to use strong stochastic game simulation to
define when a game correctly abstracts an MDP. As Player A has at most one choice
in each A-node of a game embedding, there is exactly one Player A strategy on this
game. This means that the lower and upper bounds for probabilistic reachability
properties coincide when using this game as an abstraction, giving exact results.
Figure 9 shows a simple MDP and its game embedding as an example.

O

Figure 9: An MDP (left) and its game embedding (right)

Theorem 1. Given two stochastic games G and G such that there is a strong
probabilistic game simulation relation R between G and G and two sets of target
states T, T on them respectively such that (3,s) e R —> (3€ T < seT), we
have that

Prob™~(G,T) < Prob=~(G,T) < Prob*~(G,T) < Prob™ (G, T)
Prob=*(G,T) < Prob=*(G,T) < Prob**(G,T) < Prob™*(G,T),



708 Daniel Szekeres and Istvan Majzik

where Prob®*(G,T) denotes the probability of eventually reaching a state in the
target set T when playing the game G with optimal strategies, (a,b) denoting the
optimization objectives of the two players (+: maximize, -: minimize).

Proof. See Theorem 6.18. in [19]. O

This means that computing the reachability probabilities with optimal strate-
gies in a more abstract game provide upper and lower bounds on the reachability
probabilities of a less abstract game.

The original version of the theorem in [19] is a bit stronger as it allows the
usage of abstract reward functions. For us this version will be enough, as we only
care about the analysis of PCFA for now, where the target states of a reachability
property are always based on the location, and the location is always exactly known
in the abstraction.

A.2 Soundness of Cartesian abstraction

Theorem 1 (Soundness of Cartesian abstraction). Given a PCFA P with a set of
target locations L, optimal strategies on the game abstraction of its MDP seman-
tics using Cartesian abstraction to compute the abstract transition relation gives
lower and upper bounds on the reachability probability of Lr. The optimal strate-
gies are understood w.r.t. the reward function that assigns 1 to states with a location
m Lt and 0 to all other states.

Proof. 1t is shown in [19] that strong probabilistic game simulation is transitive,
meaning that given a strong probabilistic game simulation R between the games
G and G’ and another one R’ between G/ and G, then R = R' o R is a strong
probabilistic game simulation between G and G. Tt is also proved that there is
a strong probabilistic game simulation between an abstraction game of the MDP
semantics computed using exact predicate abstraction and the game embedding of
the MDP semantics.

These two facts mean that it suffices to show only that there is a strong prob-
abilistic game simulation between the abstraction game computed using Cartesian
abstraction and the one using the exact abstract transition function.

Let G = (S S & Sc, Sinit A AU 6) be the abstraction game computed using
Cartesian abstraction and let G = (S = S1w S5, Sinit, A, Av, §) be the one computed
using the exact transition function. We will show that R = {(3,s) | § € Si,s €
S1, § covers s} is a strong probabilistic game simulation relation between G and G.

Recall that to prove that R is a strong probabilistic game simulation, we need
to show that two properties hold for all (3, s) € R:

e Ya e Av
C’mb(§2

s,a) A Yag € Av(ss) : 82 = 0(3,a) A Jag €

—~

s):3dae Cmb(s) : s
2 (6(82,a2),0(s2,a2)
s):Jae Cmb(8): 8

(0(82,a2),0(s2, az)

=
N\
m
G%z
—_—~
=)
\_/@

e Yae Av §,a) A Vag € Av(S2) : s = d(s,a) A Jag €
)

Cmb(ss) :

—~

v
~ N
m

S o
=
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The difference between Cartesian abstraction and the precise abstract transition
function is that a Cartesian abstraction might set a subset of the predicates to
unknown. Let s be an abstract state in the stricter predicate domain, where all
predicates in the precision are assigned to be either true or false, and let next(s)
denote the exact next states available from s. Let § denote an abstract state in the
generalized predicate abstraction domain with the same precision such that § covers
s, and let nmext(s) denote the set of next states available from § using Cartesian
abstraction.

From the covering relation we know that predicate assignments in s and § never
contradict each other: if a predicate is not unknown in 3§, it has the same truth
value in § as in s. This also leads to the fact that Vs’ € next(s) : 3§ € next(8) :
§' covers s'.

To see why this is true, let us examine the interaction between next state compu-
tation and the covering relation. In the exact case, we compute all satisfying mod-
els for the SMT formula expr(s) A expr(stmt) A activation(s'), where activation ()
stands for the activation literal representation of the next state. From the logic-
based formulation of covering, we know that expr(s) = expr(§), from which

(expr(s) nexpr(stmt) nactivation(s')) = (expr(8) nexpr(stmt) Aactivation(s'))

follows. This means that any model that satisfied the SMT formulation of the step
from the covered state also satisfies it from the covering state, so if we used exact
computations, at least the same next states are available from the covering state.

Now we have to show that the approximate computation of Cartesian abstrac-
tion retains this property, modulo covering, as it suffices if a covering state is avail-
able instead of exactly the states available from the covered state. If there exists
a satisfying model for expr(§) A expr(stmt) A activation(s’), where the activation
literal of a predicate is set to true, than expr(5) A expr(stmt) cannot imply the
negation of the predicate, as that would lead to a contradiction. A similar state-
ment is true for a false activation literal and the ponated version of the predicate.
Because of this, for each resulting state of the exact computation, there is always
a state in the result of the Cartesian computation that is consistent with it: each
predicate is either the same as in the exact one, or unknown. This state covers the
exact state.

Now we have to prove that an extension of this holds for the case when we use
Cartesian abstraction with grouped transition functions (when the abstract state
is in the generalized domain, but the transition is computed exactly, as explained
above), as we want to show that the resulting C-nodes also cover the original ones.

The same reasoning can be used here as above for the flat list of states by simply
replacing the single expr(stmt) Anactivation(s’) by /\,(expr(stmt;) nactivation(s)))
with ¢ ranging over the indices of the substatements. By doing this we can see that
the same groups (leading to the same distributions) are obtained from the covering
state, as well as some additional choices. As these groups are all Player A choices,
we only give the abstraction player more choices, but the original choices are still
available. Here we do not even have to take the “modulo covering” into account,
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as the exact computations can result only in states that do not contain unknown
predicates.

This means that for all A-nodes s of G, if an A-node § of G covers it, than
for every C-node directly available from s, there is a C-node directly available
from § covering it. This leads to the satisfaction of both properties required for
the simulation: under and overapproximation of the choice sets modulo covering
are both satisfied by actually having the same choice sets with some states in the
distributions replaced by another state covering the original one. O

A.3 Soundness of limited enumeration

Theorem 2 (Soundness of limited enumeration). Given a PCFA P with a set
of target locations L, optimal strategies on the game abstraction of its MDP se-
mantics using explicit abstraction with limited enumeration to compute the abstract
transition relation gives lower and upper bounds on the reachability probability of
Ly. The optimal strategies are understood w.r.t. the reward function that assigns
1 to states with a location in Lt and 0 to all other states.

Proof. Although explicit abstraction was not mentioned in [19], it can be regarded
as a special case of predicate abstraction where all predicates are equalities, and we
have one equality for each possible assignment of a tracked variable. This means
that the proof of predicate abstraction being sound also extends to exact explicit
abstraction.

Now, similarly to the Cartesian abstraction case, we only have to show that
there is a strong probabilistic game simulation between the game constructed us-
ing limited enumeration and the one constructed using precise explicit abstraction
(without limiting enumeration).

The same reasoning is used here as above: we can show that the covering relation
R ={(5s)] 8¢ Sy, s € Sq, 8 covers s} is a strong probabilistic game simulation
relation between the game G computed with limited enumeration and G compute
using the exact abstract transition relation.

For the generalized explicit domain, a state § covering another state s means
that for all tracked variables if its value is known in §, it must be the same as it is
in s. Now we proceed similarly to the Cartesian abstraction case.

We can see that

(expr(s) A expr(stmt) A expr(s’)) = (expr(5) A expr(stmt) A expr(s’)).

For explicit abstraction, we can use the expression form of the next state instead
of a formulation based in activation literals. This shows that if we used the exact
next state computation from a covering state, the set of available next states would
contain the set of states available from the covered state.

Now we have to show that using limited enumeration instead of this does not
cause any problems. With limited enumeration, whenever we encounter a situation
where the number of possible next values for a variable grows over a limit, instead
of enumerating all possible next states, we merge these into a single one with the
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variable set to unknown. This merged state will then cover all of the originally
available ones where the value of the variable is exactly known.

This means that for each state available from s computed using the exact next
state relation, there is always a state available from s’ computed using limited
enumeration that covers it.

From this, the theorem can be proven using the same reasoning as in the previous

proof.
O
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