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Single and Combined Algorithms for Open Set

Classification on Image Datasets

Modafar Al-Shouhaab and Gábor Szűcsac

Abstract

Generally, classification models have closed nature, and they are con-
strained by the number of classes in the training data. Hence, classifying
”unknown” – OOD (out-of-distribution) – samples is challenging, especially
in the so called ”open set” problem. We propose and investigate different so-
lutions – single and combined algorithms – to tackle this task, where we use
and expand a K-classifier to be able to identify K + 1 classes. They do not
require any retraining or modification on the K-classifier architecture. We
show their strengths when avoiding type I or type II errors is fundamental.
We also present a mathematical representation for the task to estimate the
K + 1 classification accuracy, and an inequality that defines its boundaries.
Additionally, we introduce a formula to calculate the exact K+1 classification
accuracy.

Keywords: binary classification, multi-class classification, GAN, out-of-
distribution, open set classification

1 Introduction

In the field of computer vision, classification is one of the earliest and most common
tasks that are challenged by deep neural networks [38]. With the availability of
large, well maintained training datasets, and the advancement of convolutional
neural networks (CNNs) [21, 22], neural networks could achieve remarkable results
in performing this task. However, their classification ability is bounded by the
training data features and attributes [3].

Majority of these neural networks apply SoftMax [14] function on the last layer,
that outputs the probability of each of the K training classes, and as a result the
most likely class is chosen accordingly. One main limitation is the inability of clas-
sifying an instance correctly in case it is not presented during training, i.e. OOD
(out-of-distribution) or ”unknown” class. The task to overcome this limitation is
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called open set recognition, open set classification, or as we call it K + 1 classifi-
cation. As a solution for such challenge, data can be produced or gathered for the
K+1 class, and a classifier could be trained on K+1 classes instead of K. However,
this solution remains insufficient and constrained by the ambiguity of defining the
”unknown” class while covering its wide features and possibilities.

Another way to address K + 1 classification is by adjusting K-classifier to be
able to solve the task. Most of the available approaches require retraining for
the original K-classifier or altering its architecture [43, 46]. In this paper, we
propose and study several solutions, that avoid the need for defining the ”unknown”
data explicitly or retraining the original K-classifier. The first group of solutions
consists of two single algorithms. One of them relies on the K classes confidence
when classifying an instance. The other takes advantage of GANs [15] to learn the
representation of the training data. A GAN consists of two parts, a generator and
a discriminator, and there is competition between them. The generative network
generates candidates while the discriminative network evaluates them. We use
the discriminator block as a binary classifier to distinguish between ”known” and
”unknown” instances, before performing K classification. As for the second group
we propose more robust solutions, by joining the strengths of various individual
algorithms; namely, the discriminator-based algorithm from the first group with a
threshold-based algorithm.

Moreover, we suggest a formula that represents mathematically the K+ 1 algo-
rithm classification accuracy when following our approach. Based on this formula,
we define an inequality that sets the boundaries for the K + 1 algorithm classifi-
cation accuracy. We validate those formulas empirically, and show that the test
results confirm their applicability.

In the next chapter we present some solutions that try to tackle the K + 1
classification task. Then we detail the proposed algorithms in two groups; single
and combined ones. In the same chapter, we introduce and prove the constructed
formula and inequality. After detailing the examination approach and presenting
the used models, datasets and metrics, we show and discuss the experimental re-
sults. Lastly, we conclude the paper and review the limitations and future work
possibilities.

2 Related work

Supervised learning methods hold an assumption about the excessive similarity
between training and testing data. With the presence of ”open set” data, the per-
formance of such models might degrade hugely, and it could be worse than random
guessing [9]. Many solutions were proposed to address this challenge focusing on
enhancing the supervised learning pipeline [33].

In computer vision related tasks, learning the feature representation is the first
component of the pipeline, where the aim is to achieve a proper generalization on
unseen target domain instances (images), i.e. images under different circumstances.
Some methods try to learn the disentangled and casual feature representation of
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the data [4, 27], in order to assess the model generalization ability over OOD data
during the learning process [17, 20, 42]. DANN (domain-adversarial neural net-
work) [12, 13], CIAN (conditional invariant adversarial network) [24], and some
others follow domain adversarial learning approach to catch the domain invariant
features during training and inference. Another approach for representation learn-
ing is to increase and decrease the distances between different and similar domain
instances, i.e. domain alignment [23, 36, 39].

Other works focus on the training strategy. Under this category, Finn et al. [11]
and later improvements aim to achieve model domain generalization, this is done
with the help of meta-learning [19]. Works [32, 40, 45] follow ensemble learning
approach, by combining group of models from different domains’ knowledge. Pa-
pers [26, 44] adopt semi-supervised and unsupervised approaches. Zhang et al. [43]
combine the original classifier with a discriminative classifier. Later, they train the
model (end-to-end) based on the latent feature space of the train data. They pro-
pose a flow-based model (OpenHybrid), without facing a common issue of assigning
larger likelihood to the OOD data.

Closer to our work, ODIN (Out-of-DIstribution detector for Neural networks)
[25] does not require model retraining, but it involves temperature scaling and input
preprocessing inspired by other papers [16, 18]. Additionally, they introduce a de-
tector which catches the OOD data after combining the preprocessing components.
On the other hand, paper [46] integrates a GAN network from an AC-GAN [28],
where the discriminator is used as aK+1 classifier for HSIs (hyper-spectral images).

In this work, Double Probability Model (DPM) [30] is used in constructing
some of the combined algorithms. DPM relies on the likelihoods of a classifier with
the assumption that the training data is accessible. The K classifier cumulative
distribution function (CDF) and its inverse (inverse-CDF) are calculated. After
obtaining the K classifier output for an instance, and using CDF and inverse-
CDF, the probability of the ith and K + 1 classes are calculated, PCi

and PCK+1

respectively. Lastly, the condition described by Formula 1 is checked, and if it
is true, then K + 1 class is assigned to the instance, otherwise, the K classifier
predicted label. Thus, the K classifier is extended by the OOD class; K + 1.

PCK+1
> maxi{PCi

} (1)

3 Proposed method

In this paper, we propose multiple algorithms with various combinations to tackle
K + 1 classification task. In contrast to prior work, these algorithms are model
agnostic (where the model is a K-classifier), and they do not require K-classifier
retraining or any modification on its architecture. The task becomes more difficult
in scenarios where the training data is not accessible. Our aim is to tackle these
challenges while maintaining the immunity against several uncertainties, including
but not limited to: OOD data characteristic and amount. We rely on two assump-
tions; (1) models tend to assign lower likelihoods to OOD (out-of-distribution) than
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Figure 1: K + 1 classification task stages; (1) binary classification, and (2) K
classification.

ID (in-distribution) instances [5], and (2) the two distributions (ID and OOD) are
different [1].

Moreover, K + 1 classification task can be divided into two steps, (1) binary
classification, and (2) K classification (Figure 1). Firstly, in the binary classification
stage, the instance is categorized as either ID or OOD. If it is determined as OOD
instance, K + 1 label is assigned to it. Otherwise, it is directed to the K-classifier
to get one of the K labels. Therefore, our approach is to construct the binary
classification component, and let the original K-classifier to handle the other task.
To do so, we design two groups of algorithms; i.e. single [2] and combined. In
the combined algorithms, the binary classification task is performed jointly by two
methods; while in the single algorithm, it is an individual decision. Furthermore,
we formulate the overall accuracy of the K + 1 classification task, by connecting
the test accuracy scores of the individual components (binary and K classification),
and the ratio of the OOD data in the test set. Consequently, we define an inequality
for the K + 1 classification accuracy based on those factors.

3.1 Single algorithms

We propose two single algorithms, one of them is the Threshold algorithm ”Thr”
(Algorithm 1) that relies on the prediction of the K-classifier. The prediction
output of the K-classifier is a vector that contains values that can be considered
as probabilities of an instance belonging to the K classes, i.e. higher probability
means more confidence. The Threshold algorithm checks the highest confidence
level for a prediction, and if it is lower than the threshold value, the instance is
assigned an K + 1 label, otherwise, the label is one of the K classes (K-classifier
prediction). The threshold value β (β ∈ [0, 1]) represents the aggressiveness of the
algorithm, higher threshold means that the algorithm is more strict in considering
the ID decision from the classifier. Despite that a similar idea was presented earlier,
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e.g. by [43] and [30], those approaches require either an end-to-end retraining or
access to the training data, to obtain a proper threshold value. In contrast, our
proposed ”Thr” algorithm does not assume that the training ID data is accessible,
and does not require any data preprocessing or additional model training.

Algorithm 1 Threshold algorithm

1: Obtain Preds, β (Threshold)
2: yi = ArgMax(Preds)
3: Pi = Max(Preds) Prediction confidence
4: if Pi < β then
5: Yi = not in class K+1 label
6: else
7: Yi = yi K-classifier label
8: end if

The other proposed algorithm is the Discriminator algorithm ”Disc”; which,
unlike ”Thr”, requires access to ID training data. We construct a K + 1-classifier
by using a discriminator block from a GAN as a binary classifier, then cascade it by
the pre-trained K-classifier. We built a simple GAN using two convolution and two
deconvolution layers for its discriminator and generator, respectively. In contrast
to some of the papers which are listed in the Related Work [11, 19, 24, 28], neither
the GAN nor the Discriminator component has a special architecture. Additionally,
unlike [25, 40, 45] it does not require knowledge or assumption about the OOD data
distribution, and it does not need any preprocessing. Furthermore, in contrast to
the mentioned papers [12, 13, 17, 20, 23, 32, 36, 39, 43], all the proposed methods
do not need any access, modification or retraining for the K-classifier. Later, we
trained the GAN on the available ID data only. The discriminator’s job is to
distinguish between ”real” and ”fake” instances based on the knowledge it gains
about the data during the GAN training process. We use this discriminator to
catch the OOD instances before deciding if the K-classifier prediction is considered
or not. If the discriminator defines an instance as ”fake”, K + 1 label is assigned
to it, otherwise, its label is the one that is offered by the K-classifier. While this
algorithm requires an extra training step with access to the ID training data, there
is no need to retrain the original K-classifier. Additionally, it is considered as
a generic method, and there are no specific characteristics defined for the GAN
network or any of its components (Algorithm 2).

3.2 Combined algorithm

Although the simplicity of the single algorithms is a big advantage, stability issues
in the performance might appear. For instance, the decision about β value is cru-
cial and influences ”Thr” algorithm performance. Also, relying on the K-classifier
Softmax confidence might be misleading in our task [31]. In order to utilize their
strengths, we combine them together in different variations. The general frame-
work stays the same; at first, if the instance is OOD, K + 1 label is assigned to
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Algorithm 2 Discriminator algorithm

1: Obtain Preds, Disc Pred
2: yi = ArgMax(Preds)
3: if Disc Pred = fake then
4: Yi = not in class K+1 label
5: else
6: Yi = yi K-classifier label
7: end if

it, otherwise, K-classifier decision is considered. The combination happens in the
binary classification level; at the stage where an instance is allocated either to ID or
OOD. Unlike in the single algorithms, the decision is jointly made by two individual
algorithms.

The combination has two main aspects; (1) selecting the individual methods to
combine, and (2) defining the logical relation between their decisions. We join our
proposed ”Disc” method with a threshold based method. For the latter, we use
either our proposed ”Thr” algorithm or ”DPM” (Double Probability Model) [30].
”DPM” [30] is a threshold based approach, which unlike ”Thr” algorithm demands
access on training data, and its threshold value is dynamically set. Regarding the
other aspect, logical ”OR” and ”AND” are used to combine the decisions of the
individual methods (Table 1). As a result, the combined algorithm has four different
variations: ”ThrAndDisc”, ”ThrOrDisc”, ”DpmAndDisc” and ”DpmOrDisc”.

Table 1: Truth table for combined algorithms. The first main column shows two
individual methods (”A” and ”B”) decisions, while the other represents their deci-
sions combined by logical ”OR” and ”AND”.

individual decision combined decision
method A method B OR AND

ID ID ID ID
ID OOD OOD ID

OOD ID OOD ID
OOD OOD OOD OOD

3.3 Formula for estimating the open set classification accu-
racy

Our approach to solve the K+ 1 classification task goes through two stages; (1) bi-
nary classification to opt out the OOD instances, and (2) K classification for the
instances which are ruled to be ID (Figure 1). Accordingly, the accuracy of the
algorithm can be estimated by combining high level information about the binary
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and K classification tasks. This can be accomplished by incorporating (1) the ratio
of OOD data in the test set, (2) the original model K classification accuracy, and
(3) the algorithm binary classification accuracy. This estimation does not require
more details about the task, such as: access to the confusion matrix, or the true
positive and negative ratios. In Formula 2, the first and second terms represent the
binary and the K classification tasks, respectively. Another form for Formula 2 is
Formula 3.

ÂK+1 = Abin ·OOD + Abin · ÂK · ID (2)

ÂK+1 = Abin + Abin · ID · (ÂK − 1) (3)

Where:

ÂK+1: estimated K + 1 classification accuracy

ÂK : K classification accuracy of the original model

Abin: binary classification accuracy

OOD: OOD data ratio

ID: ID data ratio

Proof.

1. Let us denote the number of instances by N. The number of ID instances and
OOD instances are N ·ID and N ·OOD respectively. The decision between ID
and OOD leads to a binary classification task. The approximate number of
correct decisions among the OOD (TPOOD or TN) and ID instances (TPID

or TP ) is expressed by Equations 4 and 5, receptively.

TPOOD ≈ N ·OOD ·Abin (4)

TPID ≈ N · ID ·Abin (5)

2. The correctly classified ID instances are passed to the K-classifier. The orig-
inal accuracy of the K-classifier (ÂK) is not more than the original model
test accuracy (test set consists of ID data only). The number of the true
positives in the K-classification task is approximated by multiplying ÂK by
the all number of the instances in the K-classification task (TPID).

TPK ≈ N · ID ·Abin · ÂK (6)
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3. The estimated K+1 classification accuracy (ÂK+1) is the ratio of the correct
decisions.

ÂK+1 =
N · ID ·Abin · ÂK + N ·OOD ·Abin

N
(7)

After using OOD = 1− ID and simplifying Equation 7, we get Formula 3.

Additionally, we prove that the estimated K+1 classification accuracy is neces-
sarily larger than w and cannot exceed the algorithm binary classification accuracy
(Abin); where w = Abin · ÂK (Formula 9) and the conditions (Formulas 10, 11
and 12) hold. To do so, we rewrite Formula 2 as Equation 8 by using OOD = 1−ID.

OOD =
ÂK+1 − w

Abin − w
(8)

Where:

w = Abin · ÂK (9)

0 < Abin ≤ 1 (10)

0 ≤ ÂK < 1 (11)

0 ≤ OOD ≤ 1 (12)

We use Formula 8 to derive the K + 1 classification accuracy inequality defined
in Formula 13.

w ≤ ÂK+1 ≤ Abin (13)

Proof.

1. Using proof by contradiction, we will prove that the denominator in For-
mula 8 is always positive ( Abin − w > 0 ). Let us suppose the opposite of
this statement.

Abin − w ≤ 0 (14)

a) if Abin−w = 0, then OOD is undefined, which contradicts Formula 12.
Thus,

Abin − w 6= 0 (15)
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b) Let us suppose the following

Abin − w < 0 (16)

Abin < w (17)

Abin < Abin · ÂK (18)

1 < ÂK (19)

but this contradicts Formula 11.
Therefore,

Abin − w > 0 (20)

2. Using the left side of the inequality (Formula 12) and Formula 20, the nu-
merator cannot be negative ( ÂK+1 − w ≥ 0 ).

OOD ≥ 0 (21)

ÂK+1 − w

Abin − w
≥ 0 (22)

but Abin − w > 0, then,

ÂK+1 − w ≥ 0 (23)

ÂK+1 ≥ w (24)

3. Using the right side of the inequality (Formula 12) and Equation 8

OOD ≤ 1 (25)

ÂK+1 − w

Abin − w
≤ 1 (26)

ÂK+1 − w ≤ Abin − w (27)

ÂK+1 ≤ Abin (28)

4. Finally, combining Formulas 24 and 28

w ≤ ÂK+1 ≤ Abin (29)

3.4 Formula for calculating the exact open set classification
accuracy

The exact accuracy of the algorithm can be calculated by using Formula 30. It
is important to highlight that AK is the actual K-classification accuracy. It is
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calculated for the ID instances in the test set and it depends on the actual scenario.
In general, it can be assumed that AK is close to ÂK , in scenarios where the ID
data has similar distribution as the original K-classifier test set. Additionally, if
the data has only OOD instances (ID = 0), Formula 30 cannot be applied, since
RID is undefined (RID = 0

0 ).

AK+1 = Abin + RID · ID · (AK − 1) (30)

Where:

AK+1: exact K + 1 classification accuracy

AK : K classification accuracy of the actual model

Abin: binary classification accuracy

RID: binary True Positive Ratio (TPR = TPID

TPID+FNID
)

OOD: OOD data ratio

ID: ID data ratio

Proof.

1. Let us denote the number of instances by N. The exact number of correct
decisions among the OOD (TPOOD) and ID instances (TPID) is expressed
by Equations 31 and 32, receptively.

TPOOD = N ·OOD ·ROOD (31)

TPID = N · ID ·RID (32)

2. The accuracy of binary classification task Abin comes from the sum of correct
decisions divided by the all decisions (Equation 33).

Abin =
N · ID ·RID + N · (1− ID) ·ROOD

N
(33)

Using Equation 33, ROOD can be expressed by Equation 34.

ROOD =
Abin − ID ·RID

(1− ID)
(34)

3. The diagonal entries of the confusion matrix contains the true positive in-
stances in the K-classification task, and the sum of them gives the number of
correct decisions, which is equal to accuracy AK multiplied with all instances
in the K classification task (Equation 35).

TPK = N · ID ·RID ·AK (35)
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4. The exact K + 1 classification accuracy (AK+1) is the ratio of the correct
decisions.

AK+1 =
N · ID ·RID ·AK + N · (1− ID) ·ROOD

N
(36)

5. After substituting the ROOD in Equation 36, and simplification, Equation 36
can be written as Formula 30

To determine AK+1, RID and AK have to be known. Whereas the estimation
(ÂK+1) is calculated using ÂK without the need for RID. The difference between
the exact and the estimated algorithm accuracy is the correction factor (∆AK+1).
It is expressed by Formula 38, which is derived by plugging Formulas 3 and 30 in
Equation 37. If AK = ÂK and RID = Abin, then ∆AK+1 = 0.

∆AK+1 =
∣∣∣AK+1 − ÂK+1

∣∣∣ (37)

∆AK+1 =
∣∣∣ ID · [RID · (AK − 1) − Abin · (ÂK − 1)

]∣∣∣ (38)

4 Experiments

In the experiments, we examined and evaluated the four variations of the combined
algorithm; ”ThrAndDisc”, ”ThrOrDisc”, ”DpmAndDisc” and ”DpmOrDisc”. Also,
we studied the three single algorithms – ”Thr”, ”Disc” and ”DPM” – individually
to show their drawbacks and set them as a baseline. One main variable is the
threshold value (β) for the ”Thr” algorithm. Hence, we picked and tested different
threshold values (with 0.01 step) out of the infinitely many possibilities; β ∈ [0, 1].
The other variable is the OOD percentage in the test set, since it has a direct
relation with the overall algorithm performance (Formulas 2 and 30). Those two
variables; i.e. β and OOD ratio, affect the algorithms robustness when dealing with
different scenarios. For proper generalization, we used multiple datasets, models
(classifiers) and metrics.

4.1 Datasets

We defined ID and OOD datasets; ID data includes instances of K classes, while
OOD data is the test set from other datasets. For ID data we used two sets
separately, creating two main experiment groups. The first is Extended-mnist (E-
MNIST - by merge) dataset [7], where the numbers are excluded, hence, it contains
37 letter categories (K = 37). The other is Arabic handwritten characters set
(Arab-L) [10], that contains 13440 and 3360 grey-scaled 32x32 pixel images for train
and test splits respectively. Those images are distributed evenly over 28 classes,
hence, K = 28. We augmented the data in order to expand its size. After
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resizing it into 28x28 pixel, random scaling and rotation was applied resulting in
40 000 train and 10 000 test images. The train sets were used to train two different
K-classifiers, and the experiments were conducted with the test sets (Table 2).

Table 2: Datasets size details. E-MNIST and Arab-L datasets are the ID data. K
is the number of classes in each dataset.

Dataset train test K
E-MNIST 410 000 10 000 37
Arab-L 40 000 10 000 28

In order to provide better generalization and represent diverse levels of similarity
with respect to the ID data, we used six different types for OOD data (Figure 2).
We chose the test set of four classical datasets: MNIST dataset [8], Fashion-mnist
(F-MNIST) [41], Kuzushiji-mnist (Ku-MNIST) [6] and B-MNIST (we performed
binarization for MNIST test set). Additionally, we generated two datasets with
Gaussian distribution. R-gauss (28x28 pixel random Gaussian data with 128 mean
and 12.8 standard deviation), and I-gauss (ID-based Gaussian data). For the I-
gauss we calculated the training data (ID) mean and standard deviation and used
them as the distribution parameters. Since we have two ID sets, separate I-gauss
data was generated for each of them.

We executed the experiments on mixed test sets, each containing in total 10000
ID and OOD instances. For the test set of each experiment, we selected one ID set
and one OOD set. Hence, we chose either E-MNIST or Arab-L data as ID, and
combined it with one of the six OOD sets. The percentage of OOD instances was
defined by setting the OOD ratio, which varies from 0% to 100% with 5% step.

4.2 Classifiers

For K classification we trained two different classifiers on the two different ID
sets. For the first classifier, we used VGG16 [34] architecture with dropout layers.
The classifier was trained on E-MNIST data (without numbers data). Since the
training data has 37 categories (K = 37), it is called ”Classifier-37”. Similarly, we
trained AlexNet [21] on Arab-L dataset. Following the same fashion, this classifier
is called ”Classifier-28”; K = 28. Additionally, we trained a simple GAN on the
two ID training sets separately, then we extracted the discriminators to be used
as a binary classifier in the proposed ”Disc” algorithm accordingly. As mentioned
earlier, any arbitrary classifier can fit this purpose.

4.3 Metrics

The first component of our approach is the binary classification, where the sus-
pected OOD instances are filtered out. In case the instance is from ID, it is either
correctly classified (TP) or results in type II error (FN). While if it is from OOD,
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Figure 2: OOD with (a) E-MNIST and (b) Arab-L datasets after dimension reduc-
tion using t-SNE [37]. The number of components for t-SNE is 2, and it uses PCA
initialization with 50 components.
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it is either TN or FP (type I error). Therefore, to evaluate the first step we used
sensitivity (TP rate) and specificity (TN rate). Moreover, we used the accuracy
(Equation 39) and the balanced accuracy1 (Equation 40) to measure the perfor-
mance of the overall classification task [35], because unbalanced data might mislead
the conclusion [29]. Lastly, we used mean squared error for evaluating the goodness
of Formula 2 using Formula 37 (∆AK+1), and aggregating these results of all the
experiments.

Accuracy =
1

nsamples

nsamples∑
i=1

1 (ŷi = yi) (39)

Balanced Accuracy =
1∑
ŵi

nsamples∑
i=1

ŵi (ŷi = yi) (40)

5 Results and discussion

When performing the experiments, the two main variables to deal with are the
OOD ratio in the test set, and the β value. Keeping in mind that β value is only
relevant for the methods that include ”Thr” algorithm, and it is not arbitrarily
chosen. Instead, we defined a range [0.90, 0.99], where the resulted K + 1 accuracy
is the highest with the smallest variance as shown in Figure 3. The aim is to avoid
any misleading intuitions that might be caused by relying on K-classifier Softmax
confidence [31]. Additionally, we created three groups. In the first group we fixed
β value to 0.99, and checked the results over the OOD ratio between 5% and 95%.
The other two groups simulate two extreme scenarios; we fixed OOD ratio to 5%
and 95% over a range of β values (Table 3).

Table 3: Groups parameters

Parameter Group 1 Group 2 Group 3
β 0.99 ∈ [0.90, 0.99] ∈ [0.90, 0.99]
OOD ratio ∈ [0.05, 0.95] 0.05 0.95

First, we evaluated the proposed algorithms’ ability to execute the binary clas-
sification task. In Table 4 it can be seen that ”And” methods, i.e. ”ThrAndDisc”
and ”DpmAndDisc”, achieve the highest sensitivity score, alongside with the sin-
gle ”Disc” algorithm. In other words, they can lead the ID instances to the next
stage successfully and attain the highest TP rate. They are well suited in scenarios
where avoiding type I error (FP) is vital. In contrast, Table 5 shows that ”OR”
methods, i.e. ”ThrOrDisc” and ”DpmOrDisc”, are better fit in scenarios where
committing type II error (FN) is more harmful. Sensitivity and specificity results

1ŵi is the sample weight adjusted according to its true class inverse prevalence.
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Figure 3: The average K+ 1 accuracy (in dark blue) and standard deviation range
(in light blue) from all experiments that include ”Thr” at β value in range [0, 1].
(a) and (b) plots are for the experiments that use Classifier-37 and Classifier-28,
respectively. Red lines define the range of β value where the accuracy is the highest
and the standard deviation is the lowest.

(Tables 4 and 5) also highlight some interesting points: (1) despite its simplicity,
single ”Disc” algorithm executes the binary classification task adequately; (2) the
ability to catch OOD instances is in an acceptable range regardless of the algo-
rithm; (3) the methods are more stable in terms of sensitivity (TP rate) compared
to specificity (TN rate).



312 Modafar Al-Shouha and Gábor Szűcs

Next, we used the three groups to assess the algorithms capability in accom-
plishing the K + 1 classification task, based on their average accuracy results. The
experiment results are consistent regardless of the used classifier and the ID data
type. Furthermore, second and third group results in Tables 6 and 7 confirm our
previous findings w.r.t. sensitivity and specificity. For instance, when OOD ratio
is low (Group 2) ”And” methods perform the best, whereas ”OR” methods excel
with high OOD ratio (Group 3). Also, the first group demonstrates the overall
superiority of ”DpmAndDisc” method in terms of achieved accuracy and stability.

Table 4: Average sensitivity of binary task among all OOD datasets (using
Classifier-37 & Classifier-28). In Table 3, Group 1 shows the corresponding ex-
periment parameters. The results are in the form of mean and standard deviation.
The highest three sensitivity scores in every group are in bold.

Algorithm
Classifier-37 Classifier-28
mean sd mean sd

Disc 85.81 0.27 76.73 2.42
DPM 65.14 0.45 37.46 2.28
DpmAndDisc 95.59 0.24 84.97 2.28
DpmOrDisc 55.36 0.48 29.22 2.39
Thr 66.44 0.41 69.98 2.35
ThrAndDisc 95.54 0.13 91.90 1.23
ThrOrDisc 56.72 0.57 54.81 3.33

Table 5: Average specificity of binary task among all OOD datasets (using
Classifier-37 & Classifier-28). In Table 3, Group 1 shows the corresponding ex-
periment parameters. The results are in the form of mean and standard deviation.
The highest three specificity scores in every group are in bold.

Algorithm
Classifier-37 Classifier-28

mean sd mean sd
Disc 93.84 13.70 100 0.00
DPM 80.61 12.13 93.16 13.25
DpmAndDisc 75.40 16.00 93.16 13.25
DpmOrDisc 99.04 2.12 100 0.00
Thr 91.63 9.89 82.53 27.48
ThrAndDisc 85.47 13.53 82.53 27.48
ThrOrDisc 100 0.00 100 0.00

Additionally, Tables 6 and 7 highlight the instability of single ”Thr” algorithm.
It is very sensitive to β value, which is reflected in Group 2 and 3 standard deviation
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results. Thus, albeit having a high mean value in Group 2, it cannot be concluded
that it outperforms the others. For instance, in this scenario single ”Disc” algorithm
might be a better choice.

Table 6: Average AK+1 (using Classifier-37). The experiments’ parameters are
detailed in Table 3. The results are in the form of mean and standard deviation.
The highest three accuracy scores in every group are in bold.

Algorithm
Group 1 Group 2 Group 3

mean sd mean sd mean sd
Disc 87.39 8.90 81.57 0.78 93.15 14.33
DPM 72.53 8.58 65.65 0.67 78.71 13.73
DpmAndDisc 83.00 10.80 90.11 0.86 75.09 17.34
DpmOrDisc 76.93 13.46 57.11 0.06 96.77 2.48
Thr 78.70 9.68 86.46 9.54 48.44 33.75
ThrAndDisc 87.93 8.29 91.26 1.60 46.06 32.42
ThrOrDisc 78.17 13.29 76.76 8.92 95.53 9.19

Table 7: Average AK+1 (using Classifier-28). The experiments’ parameters are
detailed in Table 3. The results are in the form of mean standard deviation. The
highest three accuracy scores in every group are in bold.

Algorithm
Group 1 Group 2 Group 3

mean sd mean sd mean sd
Disc 82.08 12.17 62.87 0.01 98.52 0.00
DPM 64.39 19.94 36.12 0.64 90.38 13.94
DpmAndDisc 82.81 0.82 70.28 0.64 92.25 13.94
DpmOrDisc 63.66 23.06 28.72 0.02 96.64 0.00
Thr 73.83 17.34 74.29 7.96 28.68 31.52
ThrAndDisc 80.71 16.26 77.52 1.73 28.84 31.73
ThrOrDisc 75.20 16.49 59.64 6.59 98.36 0.36

We evaluated the algorithms further, by investigating a more general scenario.
Figure 4 shows their average K + 1 balanced accuracy, given that β ∈ [0.90, 0.99].
Using balanced accuracy eliminates the effect of OOD ratio and provides broader
insight about the algorithms’ performance. This figure gives another evidence of
the ”And” methods general effectiveness. In this case, ”ThrAndDisc” algorithm
outperforms the others, followed closely by ”DpmAndDisc”. Since the two algo-
rithms include ”Disc” component, they both require access to the training data.
Therefore, the main advantage of ”Thr” algorithm, i.e. train data independence,
vanishes.
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Figure 4: The average K+1 balanced accuracy for all OOD sets, at OOD ratio value
in range [0.05, 0.95] for the experiments using (a) Classifier-37 and (b) Classifier-28.

Moreover, Figure 5 shows the algorithms’ average K + 1 accuracy results with
respect to the OOD set. All the algorithms, regardless of the used K-classifier,
performed the best when OOD data was random (R-gauss). With other OOD
sets, ”Disc” algorithm performance was independent from the OOD data. This
behaviour was reflected also on the ”OR” methods.

Lastly, Table 8 demonstrates an empirical evidence of our proposed Formula 2.
We executed an extensive amount of experiments (∼76 000 experiments2) and

2total number of experiments = 2 ID sets (classifiers) * 6 OOD sets * 20 OOD ratios * [ 4
algorithms without ”Thr” + 3 algorithms with ”Thr” * 100 β values ].
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Figure 5: The average K+1 accuracy for all algorithms with respect to the selected
OOD set for the experiments using (a) Classifier-37 and (b) Classifier-28.

calculated the mean squared error between the actual and estimated K+1 accuracy.
Additionally, we validated that the proposed inequality (Formula 13) holds in all
cases (Figure 6). The estimated K + 1 accuracy (ÂK+1) of the algorithm is higher
than or equal to w (ÂK ·Abin), but it can not exceed Abin. The inequality highlights
that the binary classifier is the vital segment in this architecture (Figure 1). Failing
to distinguish ID from OOD data degrades the overall algorithm performance.
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Table 8: MSE scores between the actual (by experiment) and the estimated (by
formula) K + 1 accuracy for the algorithms (using Classifier-37 & Classifier-28).

Classifier-37 Classifier-28
MSE 1.02 · 10−4 6.31 · 10−4

Figure 6: The inequality empirical results sorted by the calculated accuracy value.
The dark blue data is the calculated K + 1 accuracy (ÂK+1), that lies between the
lower (w) and upper (Abin) bounds in light blue for all the experiments using (a)
Classifier-37 and (b) Classifier-28. A plot was used instead of a table, because of
the large number of experiments (more than 76 000).
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6 Conclusion

In this paper we proposed various approaches to solve the open set classification
task for image datasets. By proposing a flexible methodology, we overcome the need
for retraining a pretrained K-classifier or altering its architecture. As a result, our
proposed methods can adapt to any available classifier.

We interpreted K + 1 classification task as two consecutive steps: (1) Binary
classification; i.e. ID or OOD, followed by (2) K classification. Our proposal han-
dles the first task and lets the original K-classifier to solve the other. We grouped
our proposed algorithms based on the decision technique. The first is the sin-
gle algorithms, where we proposed threshold-based ”Thr” and discriminator-based
”Disc” methods. The second is the combined algorithms, where we built the fi-
nal judgment based on a collective decision between ”Disc” and a threshold-based
method, i.e. ”Thr” or ”DPM”. Their outcomes are joined either by logical ”OR”
or ”AND”. As a result, we proposed four variations; ”ThrAndDisc”, ”ThrOrDisc”,
”DpmAndDisc” and ”DpmOrDisc”. After evaluating all methods, the results show
that ”DpmAndDisc” and ”ThrAndDisc” algorithms are an excellent general solu-
tions. Additionally, ”And” algorithms are good fit when the priority is to avoid
committing type I error (FP), while ”OR” algorithms are more suitable in dealing
with higher percentage of OOD instances; avoiding type II error (FN).

Furthermore, we presented mathematical formulas to calculate the exact and
estimated K + 1 accuracy of the algorithm, and used the latter to define an in-
equality for ÂK+1. We proved mathematically and empirically that ÂK+1 is equal
to or larger than w (ÂKAbin), but it is lower than Abin.

7 Future work

We evaluated our proposal to tackle open set classification task for image datasets
from multiple aspects. However, the proposal ability to solve the task for other
data types, e.g. text (document) classification, can be shown. Another direction is
to investigate the influence of the ID and OOD data characteristic on the proposed
solutions performance. For instance, the task is expected to be more challenging
with higher similarity between ID and OOD data distribution. Additionally, more
experiments can be conducted to analyze how the hyper-parameters (β) tunning is
affected by multiple factors, such as the ID and OOD data characteristic and the
K-classifier performance (AK).
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